
Ind.  Eng. Chem. Res. 1991,30, 2543-2555 2543 

PROCESS ENGINEERING AND DESIGN 

Estimation of Distillation Compositions from Multiple Temperature 
Measurements Using Partial-Least-Squares Regression 

Thor Mejdell and Sigurd Skogestad* 
Chemical Engineering, University of Trondheim, NTH,  N -  7034 Trondheim, Norway 

This paper addresses the use of temperature measurements to  estimate product compositions in 
distillation columns. A simple linear multivariate calibration procedure based on steady-state data 
is used, which requires minimal modeling effort. It is found that these principal-component-regression 
(PCR) and partial-least-squares (PLS) estimators perform well, even for multicomponent mixtures, 
pressure variations, and nonlinearity caused by changes in operating conditions. The use of weighting 
functions, additional factors, and logarithmic transformations improve the estimates and counteract 
nonlinearities, provided there is not too much noise on the temperatures. In the paper we also 
compare more generally regression methods based on singular-value decomposition (SVD; generalized 
least squares), PCR, and PLS. 

1. Introduction 
Reliable and accurate measurement of product compo- 

sitions is one of the main difficulties in distillation column 
control. Most product analyzers, like gas chromatographs, 
suffer from large measurement delays and high investment 
and maintenance costs. The overall measurement delay 
is typically 10 to 20 min. This imposes severe limitations 
on achievable control performance. However, the relia- 
bility of the analyzers is perhaps their weakest point, and 
this also results in high maintenance costs in terms of 
manpower and expensive back-up systems. One employee 
per every three GC analyzers is common in industry. The 
most popular alternative to analyzers is single-temperature 
control, Le., control of a given tray temperature. Tem- 
perature measurements are reliable and inexpensive and 
have negligible measurement delays. However, they are 
not accurate indicators of product composition. Never- 
theless, in most cases temperature control is preferred. For 
example, Kister (1990) recommends using temperature 
control unless the difference in boiling point between the 
key components is very small or there are substantial 
economical benefits in keeping tight control of the product 
compositions. 

This paper addresses two-product columns where we 
make a split between two defined key components, denoted 
the light key (LK) and heavy key (HK) component. We 
can make two independent specifications to define the split 
between these components. The distribution of the re- 
maining components, denoted the off-key or nonkey (NK) 
components, may not be specified. In this paper the 
specifications are chosen as the product mole fractions, y’,, 
and x’B, of the light component on a pseudobinary basis. 

1.1. Problems with Single-Temperature Control. 
Figure 1 displays typical steady-state profiles for the binary 
example column (The column is described in section 2.1). 
For this binary mixture a t  constant pressure, the tem- 
perature a t  the column end is an exact indicator of com- 
position. However, as seen from Figure 1, the temperature 
variation is very small at the column ends and may be 
difficult to distinguish from measurement noise. There- 
fore, temperatures further removed from the ends are 
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preferred (Nisenfeld and Seeman, 1981). However, even 
with this precaution, the use of a single temperature to 
indicate product composition is generally not reliable be- 
cause of the following. 

(a) Even for binary mixtures the relationship between 
a temperature inside the column and a product compo- 
sition depends on the feed composition and also on the 
product composition at  the other end of the column. 

(b) For multicomponent mixtures the presence of off-key 
components implies that even at  the column ends tem- 
perature is not an exact indicator of composition. The 
effect of variations in off-key components is largest near 
the feed and at the column ends. 

(c) Associated with the measurement and data treatment 
device are (1) random high-frequency noise that will usu- 
ally have the same magnitude on all trays and (2) low- 
frequency measurement offsets, for example, due to fouling 
or changes in the ice-point temperature compensation. 

(d) Flow pulses and improper mixing on the trays cause 
temperature variations which have a peak at  intermediate 
frequencies and are largest in column sections with large 
temperature gradients. 

(e) Pressure changes cause temperature variations. The 
total pressure has a similar effect on all temperatures, while 
the pressure drop, which is influenced by the throughput, 
has its largest temperature effect near the bottom. Varying 
liquid holdups and tray performance may give additional 
local pressure variations. 

Some measures may be taken to counteract these 
problems. The high-frequency noise may easily be filtered. 
Pressure variations may be compensated for using pressure 
measurements or using differential temperatures. The 
effect of nonkey components may be reduced by locating 
the temperature measurement in regions of the column 
where their composition is nearly constant (Rademaker 
et. al., 1975). 

However, some of these problems may not be corrected. 
In particular, keeping a temperature constant on a tray 
some distance away will not keep the product composition 
constant. For example, consider Figure 2, where it is 
shown that the temperatures in the lower part of the 
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Figure 1. Steady-state profiles of the example column (binary 
mixture). 
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Figure 2. Effect of changes in top composition on the temperature 
profile. The feed and bottom compositions are constant. 
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Figure 3. Effect of changes in feed composition on temperature 
profile. Top and bottom compositions are constant. 

column are affected by changes in top composition, and 
Figure 3, where it is shown how the temperatures are af- 
fected by different feed compositions. 

1.2. Multiple Temperatures. One solution to these 
problems is to use multiple temperature measurements to 
infer the product composition. There has recently been 
reports from industry on successful implementations of 
somewhat ad hoc approaches. Whitehead and Parnis 
(1987) used a weighted temperature average of differential 
temperatures on a Cz splitter. Bozenhardt (1988) used 
multiple temperatures to track the maximum temperature 
difference between two trays in an alcohol/water/ether 
column. He found the position of this maximum difference 
to be strongly correlated to the product composition. 

A more rigorous approach is to use a temperature-based 
composition estimator. In another paper (Mejdell and 
Skogestad, 1991a), we compared rigorously three different 
estimators using linear data for the binary example col- 
umn. These estimators were the dynamic Kalman-Bucy 
filter (Kalman and Bucy, 19611, the static Brosilow in- 
ferential estimator (Weber and Brosilow, 1972; Joseph and 
Brosilow, 1978), and the static principal-component-re- 
gression (PCR) estimator. It was found that for feedback 

control the static PCR estimator performed almost as well 
as the Kalman filter. The reason is that the temperatures 
and the compositions have similar dynamic reeponses. The 
Brosilow estimator was very sensitive to model error for 
this ill-conditioned plant with large relative gain array 
(RGA) values. Mejdell and Skagestad (1991a) therefore 
recommended using the simple regression eatimator, which 
is obtained simply by considering corresponding values of 
temperatures and composition. Such data sets are most 
easily obtained from simulations but may be comple- 
mented with experimental data. 

In this paper we consider some additional aspects of 
using regression estimators for composition estimation, 
including nonlinearities in the column, pressure variations, 
multicomponent mixtures, and measurement noise. We 
discuss different ways of handling these problems, such 
as variable transformations and scaling. 

In this paper, temperature measurements on all trays 
are used. This is not because it is strictly necessary but 
to emphasize that all available measurements should be 
used and to exclude the influence of measurement selec- 
tion, which otherwise would bias the results. Note that 
other measurementa, such as flow rates, are not used. This 
is based on Mejdell and Skogestad (1991a) who found that 
the static estimate was not significantly improved by 
adding such measurements and that the dynamic ptimate 
became worse. 

The results in this paper are based on simulations only. 
In a companion paper (Mejdell and Skogestad, 1991b) we 
present results from a pilot-scale distillation colump. 
These results demonstrate that simple static regression 
estimators, such as PLS, also work in practice. 

2. Problem Definition 
The following problem is treated in this paper: Given 

the temperatures on all trays in a distillation column, find 
a good static estimator for the product compositions. The 
example column described below is used to illustrate the 
main issues. 

2.1. Example Column. The column has 40 theoretical 
stages (including the reboiler) and a total condenser. The 
feed stream enters the column at stage 20 as saturated 
liquid. Two cases are considered: (1) binary mixture with 
constant relative volatility of 1.5; (2) multicomponent 
mixture coqsisting of one heavy and one light nonkey in 
addition to the binary components in case 1. The column 
in case 1 is "column A" (Skogestad and Morari, 1988b), 
which is the same example as used by Mejdell and Sko- 
gestad (1991a). Data for the column and for the mixtures 
are given in Table I. The difference in boilin point 
between the two pure key components is only 13 O 8 .  This 
is approximately the lower limit for what is usually rec- 
ommended when a single-temperature control is used 
(Riggs, 1990). Typical temperature profiles for the binary 
case are shown in Figures 1-4. 

2.2. The Estimation Problem. Consider the case with 
binary mixture, constant pressure, and feed and reflux as 
saturated liquid. Then specifying different values of feed 
composition zp, distillate composition YD, and bottom 
product XB yields unique steady-state profiles of the 41 
temperatures 8. This may be expressed as 

f(ZFfiD,XB) (1) @4lXl = 

We want to find the inverse relation 
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Table I. Data for Distillation Column Example” 
A. Binary Mixture 

Antoine parameters 
i compt ZF YD XB ai,i+l P/K A B C 
1 LK 0.500 0.99 0.01 1.5 341.9 15.83660 2697.55 -48.78 
2 HK 0.500 0.01 0.99 355.4 15.431 13 2697.55 -48.78 

B. Multicomponent Mixture 
Antoine Darameters 

i compt ZF YD XB ai,itl P/K A B C 
1 LNK 0.050 0.125 O.OO0 2.0 321.4 16.529 75 2697.55 -48.78 
2 LK 0.350 0.866 0.006 1.5 341.9 15.836 60 2697.55 -48.78 
3 HK 0.350 0.009 0.577 2.0 355.4 15.431 13 2697.55 -48.78 
4 HNK 0.250 O.OO0 0.417 381.6 14.737 99 3697.55 -48.78 

Conditions and parameters: In P(mmHg) = A - B/((B(K)) + C); feed is saturated.liquid; constant molar flows; ideal VLE using Raoult’s 
law; constant pressure, 1 atm; N = 40, NF = 21 (theoretical trays); holdup on all trays, Mi/F = 0.5 min; flow dynamics are neglected. 

I 4.?  I 

Coildenser Reboiler 
Figure 4. Changes in temperature profile caused by the following: 
(1) increase in external flows (ADIF = 0.01), Vis kept constant; (2) 
decrease in internal flows (AL./F = AV/F = -1). D and B are kept 
constant. 

The simplified linear estimator used in this paper may 
be written (in terms of deviation variables) as 

j ,  = KO (3) 
where the matrix K is of dimension 2 X 41. The problem 
is to find optimal values of these 82 parameters. These 
parameters cannot be determined independently because 
(1) the temperatures are not independent and (2) there is 
not enough degrees of freedom in the excitations. The first 
fact is illustrated by Figure 1, where we see that temper- 
atures close to each other change in nearly the same way. 
The second fact is illustrated by eq 1, where we see that 
there are only three degrees of freedom in the excitations, 
and in a nonlinear sense the temperatures have only three 
different ways to vary. However, note that the number 
of directions in the linear temperature space may be larger 
than three if large perturbations are used in zF, YD, and 
xB. Pressure variations and off-key components also in- 
crease the degrees of freedom, but they are for the moment 
assumed to be constant. 

The estimation problem may be divided in two steps. 
(1) Temperature data are reduced into k latent variables 

t (also denoted factors): 

(4) tkxl = p(~41x1)  

(2) An estimator is  obtained by finding a relationship 
g between the latent variables and the product composi- 
tion. 

(5) 

The key question is how to find suitable latent variables, 
in order to make the second regression step easy. Pref- 

erably the latent variables should be independent, and they 
should contain all the original information relevant for 
estimating the compositions. 

(a) The simplest approach is to delete measurements and 
select only a few which are mutually independent. Then 
the problem of optimal measurement selection becomes 
a key issue. A lot of articles have been published on this 
subject, for example, Joseph and Brosilow (1978), Morari 
and Stephanopoulos (1980), and Moore (1987). 

(b) Using unknown disturbances as latent variables is 
a procedure that has been proposed by Brosilow and co- 
workers and employed in their inferential control, e.g. 
Weber and Brosilow (1972) and Joseph and Brosilow 
(1978). 

(c )  Gilles and Retzbach (1980) and later Marquardt 
(1989) used some geometric shape factors of the temper- 
ature profile as latent variables. Here the first factor is 
the location of the steepest temperature gradient. 

(d) The principal components (PCR method) or the 
partial-least-squares factors (PLS method) can be used as 
latent variables. These methods have been introduced for 
distillation columns by Mejdell and Skogestad (1989) and 
are further outlined in the next section. 

The simplest of the above methods is of course to reduce 
the number of measurements. However, this is not opti- 
mal, because additional measurements will improve the 
estimate as they contain more independent information 
(at least for few measurements), reduce the effect of 
measurement noise, make the estimator less sensitive to 
measurement selection and changes in operating condi- 
tions, and better capture the effect of nonlinearities. 

We have briefly investigated Marquardt’s method and 
found it to perform very well with perfect measurements, 
but it was sensitive to measurement noise for our column. 
It might perform better for distillation columns with sharp 
profiles, for which it was originally developed. 

The Brosilow estimator was studied in detail by Mejdell 
and Skogestad (1991a). We found that it performed poorly 
for the binary distillation example. The reason is that for 
ill-conditioned plants, like distillation columns, the esti- 
mate is very sensitive to small errors. This sensitivity has 
indeed been pointed out also by Brosilow and co-workers. 

Mejdell and Skogestad (1991a) studied the static PCR 
estimator for the example column and found that i t  per- 
formed almost as well as an optimally tuned Kalman filter. 
In this paper we shall use the static regression estimators, 
PLS and PCR. 

2.3. Multicomponent Mixture. The multicomponent 
mixture is obtained by extending the original binary with 
one light nonkey (LNK) and one heavy nonkey (HNK) 
component (See Table I). The control objective for the 
separation is still the split with respect to the key com- 
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Figure 5. Concentration profiles of the multicomponent mixture. 
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Figure 6. Concentration profiles for binary mole fraction (x) and 
multicomponent pseudobinary mole fraction ( x  7. 

ponents. On a given tray x'denotes the pseudobinary mole 
fraction (based on key components) of the light key com- 
ponent, i.e. 

The product specification for both the binary and multi- 
component case is y b  = 0.99 and x $  = 0.01. 

The compoeition profile for the multicomponent mixture 
a t  the nominal operating point is displayed in Figure 5. 
The off-key components are almost constant in the column 
except at the column ends and around the feed tray. The 
composition profile on a pseudobinary basis, x', is com- 
pared with that of the binary example column, x ,  in Figure 
6, and the corresponding temperature profiles are shown 
in Figure 7. The concentration profiles are almost iden- 
tical, where- the temperature profiles are quite different. 

2.4. Use of Transformed Variables. The composition 
and temperature profiles are nonlinear functions of the 
operating variables. One way to deal with nonlinearity is 
to find other variables (factors) which can capture the 
nonlinearity. The Marquardt (1989) method is one such 
method. A simpler method is to use nonlinear trancsfor- 
mations on each variable. Logarithmic transformation of 
the product compositions have been proposed by several 
authors (e.g., Joseph et al., 1976; Skogestad and Morari, 
1988a) as an effective way to linearize the dynamic and 
static response (with L, V ,  F, zF, etc. as independent 
variables). For binary mixtures the following relationships 
are defined: 

YD = In (1 - yD); XB In X B  (7) 
These transformations apply also for multicomponent 

mixtures if pseudobinary compositions are used. The 
composition profile (with tray number as an independent 
variable) may also be linearized using similar transfor- 
mations. Ryskamp (1981) plotted the compositions on a 
probability scale. It is also common to use the logarithm 
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Figure 7. Temperature profiles for the binary and multicomponent 
cases. 
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Figure 8. Temperature profiea in terms of logarithmic transformed 
temperatures, Lp 

of the separation parameter on each tray (e.g., PROCESS, 
1981) 

x=ln(:) 

Here x L  and xH are mole fractions of light and heavy 
components on a given tray (the subacript i is omitted to 
simplify notation). Note that since most columns have Y D  
= x D L  = 1 and 1 - X B  = xBH = 1, (8) may be viewed as a 
generalization of (7). In Appendixes 1 and 2, we show that 
this transformation in addition to linearizing the profile 
also linearizes the dynamic response. 

Temperature is often a nearly linear function of com- 
position. On the basis of eq 8, we therefore propose to use 
the following transformation to linearize the temperature 
response and profile (Appendix 1) 

Here B is the tray temperature, and and 7$ are the 
boiling temperatures of pure light and heavy components, 
respectively. For our example column, this results in a 
nearly linear profile, as shown in Figure 8 (compare with 
the unscaled profiles in Figure 1). A column with pinch 
zones around the feed will not have a h e a r  profile. Note 
that for the binary case X = -LP 

Instead of using boiling temperatures, one may use the 
transformation 

/ a - a .  \ 
L@ = In [e,) 

where BL and BH are some reference temperatures (usually 
measured) a t  the top and the bottom of the column, re- 
spectively. For binary mixtures, one may use the tem- 
perature a t  the column end, which is very close to the 
boilii temperature. Note that the transformation LT may 
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addition the feed mole fraction of the light nonkey com- 
ponent was varied between 0.025 and 0.075, and that of 
the heavy nonkey, between 0.15 and 0.35. In this case all 
temperatures were rounded to one decimal, which may be 
viewed as a (colored) noise source. 

2.6. Evaluation Criteria. The main criterion used to 
evaluate the performance of the estimators is the mean 
square error of prediction (MSEP) (Martens and N m ,  
1989, p 250), which is a measure of the expected error of 
future predictions. An estimate of MSEP was performed 
by a cross-validation procedure as follows: The 32 cali- 
bration runs were divided into seven groups. Then the 
calibration procedure (i.e., finding the estimator K) was 
performed seven times, each time with six groups used for 
calibration and one for testing. The mean square error of 
all test predictions was then obtained from 

(11) 

Here k is the number of factors (or principal components) 
used in the calibration, and yi is YD or XB for the ith test 
run. MSEP will generally not go to zero when the number 
of factors increases, since the test runs are independent 
from the ones used in the calibration. Rather, MSEP will 
increase when factors containing only noise are included. 

We then compute the explained prediction variance in 
percent 

32 

i= 1 
MSEP(k) = 7 3 2 1  (jli(k)- yJ2 

Table 11. Speeifications Used in Simulations To Obtain 
Static Temperature Profiles 

ZF YD 
0.5000 0.990 00 
0.5375 0.991 30 
0.4250 0.973 80 
0.5250 0.970 00 
0.4125 0.980 10 
0.6000 0.984 90 
0.5125 0.994 20 
0.5500 0.982 70 
0.4875 0.996 20 
0.4750 0.995 60 
0.5625 0.993 40 
0.4625 0.977 20 
0.4375 0.995 00 
0.4500 0.992 40 
0.5750 0.986 80 
0.5875 0.988 50 
0.4000 0.970 00 
0.4000 0.97000 
0.4000 0.996 67 
0.4000 0.996 67 
0.6000 0.97000 
0.6000 0.970 00 
0.6000 0.996 67 
0.6000 0.996 67 
0.4500 0.982 68 
0.4500 0.982 68 
0.4500 0.994 23 
0.4500 0.994 23 
0.5500 0.982 68 
0.500 0.982 68 
0.5500 0.994 23 
0.5500 0.994 23 

XB 
0.01000 
0.026 20 
0.015 10 
0.013 20 
0.005 80 
0.004 40 
0.006 60 
0.007 60 
0.018 90 
0.008 70 
0.011 50 
0.030 00 
0.003 80 
0.017 30 
0.022 80 
0.005 00 
0.03000 
0.003 33 
0.030 00 
0.003 33 
0.03000 
0.003 33 
0.030 00 
0.003 33 
0.017 32 
0.005 77 
0.017 32 
0.005 77 
0.017 32 
0.005 77 
0.017 32 
0.005 77 

be used even when we have only one temperature mea- 
surement, 8, whereas the transformation LB usually needs 
in addition two measured reference temperatures. 

For multicomponent mixtures, one must select the 
reference temperature a t  a location some distance away 
from the ends where the off-key compositions are almost 
constant from one tray to another (see Figure 5). To avoid 
taking logarithms of negative numbers, the temperatures 
between the reference locations and column ends must be 
treated separately, for instance by using the absolute value 
of the temperature differences in eq 10. To avoid large 
effects of noise on the temperatures closest to the reference 
temperatures, one should also specify a lower permitted 
limit on the difference termperatures in eqs 9 and 10. 

Using reference temperatures instead of boiling point 
temperatures also provides pressure compensation of the 
temperature measurements, as well as off-key compensa- 
tion in the multicomponent case. 

2.5. Calibration Set for PCR and PLS. The cali- 
bration set used in this paper consists of 32 different sim- 
ulation runs. The outputs X B  and yD and the feed com- 
position zF (disturbance) were specified, and the corre- 
sponding steady-state temperature profiles were obtained 
using a nonlinear column model. The 32 values are listed 
in Table 11. The data were spread with equal distances 
around zF, xB, and yD The first run is the nominal op- 
erating point; the next 15 runs were randomly chosen. The 
last 16 runs were selected by a 2-composite design in 4 
levels. The 32 runs correspond to maximum variations in 
column end temperatures of about 0.4 "C and of interior 
temperatures of about 5 "C. 

Different versions of the 32-calibration set was made, 
which included total pressure variations of fO.l  atm spread 
randomly on the various runs, normal distributed random 
noise of magnitude 0.1 or 0.2 "C on all temperatures, and 
nonkey components. The pseudobinary compositions were 
the same as those in the binary case (Table 11); but in 

MSEP(0) is approximately the variance in the calibration 
data. 

3. Data Treatment and Multivariate Regression 
We want to estimate p outputs (y) from q known var- 

iables (e). Multivariate regression is a linear statistical 
technique for obtaining the matrix K in 

9 = KO (13) 
Both vectors y and 0 are centered (deviation variables), 
so there is no constant term. We obtain a "training set" 
consisting of n calibration runs of corresponding values of 
y and 0 and place these as rows in the matrices YnXp and 
W x q .  (It might seem more reasonable to place y and 0 as 
columns in the matrices, but we shall here use the standard 
notation in statistics.) We have the desired relation 

Y = 8KT (14) 
The general least-squares solution for K is (Strang, 1980, 
P 139) 

KT = 0fY (15) 
The pseudoinverse et is most easily obtained using the 
SVD of 8. In addition to minimizing (y - g)z this solution 
minimizes the norm of K. 

3.1. Singular-Value Decomposition (SVD). The 
SVD of 8 may be written 

e = uzV (16) 
or as a sum of m rank 1 - matrices (of decreasing impor- 
tance) 

e = UlulVIT + u ~ ~ ~ V ~ T  + ... + U,u,V,~ (17) 
where m is the rank of 8. If m < min (n, q),  then both 
columns and rows in 8 are linearly dependent (the matrix 
is singular). The column vectors of U, u1 ... u,, are the 
orthonormal eigenvectors of (WT), and the column vectors 
of V, v1 ... v,, are the eigenvectors of (eTe). ui are the 
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sin ular values; uI2 is the largest eigenvalue of 

nonzero eigenvalue. The pseudoinverse of 8 is 

et = VZ-lUT (18) 
Here Z1 is diag (cr1-l, cr2-l, ..., u m 3 .  Note that the smallest 
singular value, u,, becomes the largest in the pseudoin- 
verse. Consequently, the sensitivity of the pseudoinverse 
to small errors (e.g., noise) in 8 may be large if u, is small, 
that is, if the condition number 

(19) 

is large. The key idea of the PCR estimator is to reduce 
this sensitivity by retaining only k I m terms in the sum 
in eq 17. 

3.2. Principal Component Regression (PCR). The 
SVD in eq 17 is written in the alternative form 

(20) 

Here ti  = upi is the score vector (or latent variable) and 
pi = vi  is the loading vector for principal component i. In 
PCR, only the k first terms which may be distinguished 
from measurement noise are kept, and the matrices Pqxk 
and Tnxk include only these k most important directions. 
Then 8 = 8 k  = TPT. The latent variables for a given 
temperature vector, 8, are then given by tkxl = PTPx1. The 
least-squares solution to Y = TKF becomes K, = YTT- 
[T'"I']-'. The condition number of T, y(T) = ul(T)/ak(T), 
may be adjusted by selecting the number k. Since P-' = 
PT (P is orthonormal), the overall estimator gain matrix 
then becomes 

(21) 

3.3. Partial-Least-Squares (PLS) Regression. This 
is a variation of the PCR method which recently has be- 
come popular among analytical chemists. The latent 
variables are here determined in order to have the greatest 
covariance with the y variables. It is an iterative process, 
which (see Hoskuldsson, 1988) may be described as follows. 

For 8 and Y these parameters are found: 
(1) the largest eigenvalue a, and corresponding 

(or (e Ig e)), u22 the second largest, and so on. um2 is the smallest 

01 

gm 
?(e) = - 

8 = tlplT + t 2 ~ 2 T  + ... + tmpmT 

K ~ C R  = YT(8ft)T = YTT[TTT]-lPT 

eigenvector w1 of BTYY'% (scale w1 to length one) 

p1 = eTtl/(tlTt,) 

(2) the scores 

(3) the 8 loadings 

(4) the 8 residual matrix 

(5 )  the Y loadings q1 = YTtl/(tlTtl) 
(6) the Y residual matrix F1 = Y - t,qlT 

The procedure is started from the top with the residual 
matrices El and F, instead of 8 and Y, and continued until 
the matrix EkTFkFkTEk has only small eigenvalues left. For 
a more exact description of the algorithm and its different 
versions, see Martens and Naes, 1989. 

The estimator based on It  factors is 

tl  = ew,  

El = 8 - tlplT 

KpLs = Q(PTW)-'WT (22) 
where the matrices Qpxk, PqXk, and Wqxk are formed by 
the vectors q, p, and w introduced above. 

The main advantage of the PLS algorithm compared to 
PCR is that it selects the directions in 8 which have the 
largest covariance with y and thus ensures that these di- 
rections are treated first. 

3.4. Scaling of Variables (Weight Functions). The 
objective of scaling is to improve the estimate by giving 

5 .  

4. 

3. 2. 

1. 

w\ 

w2%--& \ w 
'1t.V no. 

Figure 9. Weight functions W1, W,, and W, for case n2 (untrans- 
formed data with 0.2 O C  random noise). 

each temperature a weight corresponding to the inherent 
prediction ability. 

The most common weight is the inverse of the standard 
deviation. This ensures that variable scaling (or variable 
transformations) do not bias the results. The weight for 
the ith temperature is 

w,i = 1/Sci (23) 

We use sCi as the standard deviations of the calibration set 
for temperature i, that is, it is the square root of the ith 
diagonal element of (l/n)(eT8). This weight simply scales 
all temperatures such that their changes are of the same 
magnitude. Since the change in terms of unscaled tem- 
peratures is small toward the end of the column, this 
means that measurements close to the ends will have a 
large weight, W,. However, we know that this may not be 
a good approach because the noise is large (in relative 
terms) close to the ends. In order to take noise into ac- 
count in the weighting, Martens and Naes (1989) suggest 
using the weight 

(24) 

Here seki is an estimate of the noise level, defined as the 
square root of the residual variance after k factors, i.e., the 
square root of the ith diagonal element of (l/n)(EkTEk). 
This variance includes all contributions of model/data 
mismatch, i.e., both noise and mismatch due to nonlin- 
earities, etc. Note that sd = se$ L seg. Finally, we propose 
a new weight function 

This weight is equal to Wl when there is no noise but gives 
zero weight to measurements where all variatians are 
unexplained (due to noise). 

To calculate the weights, we first performed the cali- 
bration once without weights. In the weight functions k 
= 3 was used for the binary mixture, and k = 4, in the 
multicomponent mixture. Typical examples of weight 
functions are given in Figure 9. We see that weight W, 
puts less weight on the column ends than W, and W2. 

3.5. Estimators for the Example Column. The dif- 
ferent PLS and PCR estimators are identified with a code 
sequence given in Table 111. An "h4" denotes a multi- 
component mixture. A "P" denotes that different pressure 
levels of *0.1 atm are included randomly in the calibration 
set. Ly denotes an estimator with logarithmic compositions 
and untransformed temperatures; LT denotes logarithmic 
compositions and logarithmic temperatures; LB denotes the 
same, but with trays 1 and 41 (binary mixture), or trays 
4 and 37 (multicomponent mixture) as reference temper- 
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Linear study Nonlinear study 

x 1 0 - 2  x10-2  no (PL.S) 
0.4 0.4 
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Figure 10. Closed-loop responses of yD for steps in feed rate (upper) and feed composition (lower) for binary mixture. Input to the controller: 
perfect measurement (solid line), estimator with three factors (dotted line), and estimator with seven factors (long dotted line). 

Table 111. Estimator Cases 
M multicomponent mixture 
P pressure variations of 10.1 atm 
Ly logarithmic transformed composition 
LT logarithmic transformed composition and temperature 

Ld logarithmic transformed composition and temperature 

no no noise 
nl 0.1 "C noise 
n2 0.2 O C  noise 
W ,  weight function n 

atures, rather than the pure component boiling tempera- 
tures. Trays 4 and 37 are selected because they have 
minimum variance in the calibration set and are just 
outside the nonkey separation area; see Figure 5. The 
logarithm of the absolute value is used for temperatures 
1-3 and 38-41. no, n,, and n2 denote estimators with zero, 
0.1 "C, and 0.2 "C normal distributed noise added to the 
calibration set. Noise is added to each measurement ex- 
cept for cases P where we add noise on the temperature 
differences 0 - BL and OH - 8. Note that estimators based 
on Le have a varying reference temperature, which will be 
corrupted by noise, whereas LT and PLB do not. Finally, 
W1, W2, and W2 denote the different temperature weight 
functions in section 3.4. 

4. Results 
The static explained prediction variance (EPV) (see 

section 2.6) for a number of cases are summarized in Table 
IV, and we shall study these results in more detail below. 
All estimators use PLS regression unless otherwise stated. 

4.1. Dynamic and Static Estimation. We shall first 
discuss the use of PLS estimator no (no noise) for the 

(reference: boiling temperature) 

(reference: tray temperature) 

binary column. This uses no transformations on y and 6 
and no weighting. For the linear case (if we use a linear 
column model a t  the operating point) with three factors 
these estimates are identical to those obtained with the 
PCR estimator studied by Mejdell and Skogestad (1991a). 
They found the performance of this static estimator to be 
excellent also when used dynamically and for feedback 
control. Typical simulation results for the linear case are 
shown in the left part of Figure 10. The corresponding 
nonlinear simulations in the right part of Figure 10 show 
similar dynamic responses. From the figure the main 
problem seems to be the static prediction capability of the 
estimator, and we shall therefore use mainly static argu- 
ments to evaluate the estimators in the following. 

In the dynamic simulations we use a column model with 
41 states for the binary case and 123 states for the mul- 
ticomponent case (not including flow dynamics) and a 
control system with two PID controllers using LV con- 
figuration. 

4.2. Effect of Nonlinearity on PLS Factors. From 
the simulations in the right part of Figure 10 we see that 
increasing the number of factors in the PLS estimator from 
three to seven almost removes the effect of nonlinearity. 
The same conclusion is obtained by considering the static 
EPV values in Table IV. Since the column itself has only 
3 degrees of freedom, three factors would account for 100% 
of the variance if the column were linear (small pertur- 
bations). However, because of nonlinearity, the actual 
EPV with three factors is only 9470, and the EPV increases 
by adding factors. 

4.3. Influence of Measurement Noise. The simula- 
tions above and the EPV values are for the ideal case with 
no noise, and in practice the results with many factors will 
not be as good. Figure 11 compares EPV for different 
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Table IV. EPV for Different PLS Eotimatore 
EPV for given no. of factors 

1 2 3 4 5 6 7 
no noise: 

noLY 
noLT 
noLe 
noP 
noL!P 
Mn0 
Mno Wz 
MnoLY 
MnoLe 
MnoLeW2 

n o  

0.1 O C  noise 
nl 
nlLTW3 
nlL@W3 
nlL@W3P 

0.2 O C  noise 
n2 
nzW1 
nzwz 
h w 3  
h L Y w 3  
n2LT 
n2LTW1 
n2LTWZ 
nZLTW3 
nZL@W3 
n&L,W,P 

19.61 
21.78 
19.72 
32.90 

19.16 
10.66 
11.14 
18.52 
22.73 
20.69 

19.59 
23.10 
23.18 
26.89 

18.87 
17.06 
20.40 
19.78 
18.14 
12.50 
22.65 
22.78 
23.04 
26.41 
20.58 

-2.31 

81.97 
80.14 
96.38 
95.39 
46.77 
94.90 
48.02 
48.44 
48.88 
77.52 
73.75 

81.78 
91.42 
84.60 
91.05 

81.10 
86.04 
84.65 
83.34 
80.14 
78.41 
86.65 
87.66 
89.07 
84.53 
86.30 

94.17 
92.86 
99.97 
99.95 
75.71 
99.94 
56.78 
57.40 
52.59 
94.10 
93.81 

93.81 
98.89 
91.09 
98.25 

93.78 
95.75 
95.66 
95.08 
91.53 
81.90 
95.44 
96.43 
97.49 
86.59 
98.01 

97.18 
93.45 
99.98 
99.96 
92.19 
99.97 
88.35 
87.76 
83.66 
95.81 
95.87 

98.18 
96.92 
99.99 
99.97 
95.50 
99.97 
89.58 
90.61 
84.10 
96.27 
96.75 

99.43 
97.20 
100.00 
100.00 
95.95 
100.00 
91.50 
91.84 
87.84 
97.61 
97.68 

99.96 
98.80 
100.00 
100.00 
97.59 
100.00 
91.94 
92.25 
87.43 
97.55 
97.66 

97.00 97.59 97.86 98.05 
98.92 98.92 98.82 98.80 
94.01 96.16 96.69 97.06 
98.78 99.04 99.08 99.04 

94.92 
94.66 
95.36 
95.59 
92.57 
84.04 
96.25 
96.99 
97.68 
87.43 
98.09 

94.49 
94.39 
94.74 
95.40 
91.73 
87.59 
96.70 
97.30 
97.86 
90.07 
97.89 

94.42 
94.18 
94.70 
95.25 
91.29 
90.63 
97.22 
97.64 
98.14 
89.10 
97.84 

94.47 
93.64 
94.12 
95.04 
90.53 
91.16 
97.33 
97.59 
98.05 
88.52 
97.80 

95. 

9.. 

e.. 

ni.ci=.. = nub.* or r.ctOn= 
Lxpl.1n.d u.rl.nc.. In x . U.lIdatIon : C~0.s valldatlon 

Figure 11. Effect of measurement noise on EPV for estimator ni: 
i = 0,  no noise; i = 1, 0.1 "C; i = 2, 0.2 OC. 

levels of measurement noise on the temperatures in the 
calibration set. The noise will corrupt the smallest factors, 
and after three to five factors there is no improvement with 
the addition of factors, and it may even reduce the pre- 
diction ability. We therefore see that in the presence of 
noisy measurements, it is doubtful to use additional factors 
to capture nonlinearity. 

4.4. Insights about Directions in the Temperature 
Space. Figure 12 displays a typical plot of the three 
largest loading vectors; that is how the different mea- 
surements are summed up to make the factors (latent 
variables). By comparing with the temperature profiles 
in Figure 4, we see that the first factor is due to the changes 
in external streams, D and B, and reflects movement in 
the temperature profile up and down the column. The 
second factor is related to changes in the internal streams, 
L and V, when D and B are held constant. I t  reflects the 
magnitude of separation in the column. The third factor 
is due to changes in feed composition. 

4.5. Effect of Pressure. Figure 13 displays the loading 
plot for the case with total column pressure variations of 
10% (case nOp in Table IV). We see that the first factor, 
which has no predictive ability, mainly represents the 

lhv no. -6. 4 

i I 176 is 20 25 36 35 40 

L O n D l Y G S  ' C u w m  Il l .nt l f1 .v  = factor number 

Figure 12. Loading plot (vector pi) of the first three factors for 
estimator no. Curve identifier: i, factor number. 

I 1  

I ..- I a I i'a 1'5 in 25 3. 35 

LOlDIYOS : CuW. 1d.ntlfl.F = fac tor   numb.^ 

Figure 13. Loading plot for case n0p with pressure variation. Curve 
identifier: Factor number. 

pressure variation. To get good predictive properties, we 
need at least five factors. The pressure variation may 
alternatively be taken care of by using differential tem- 
peratures. 

4.6. Use of Logarithmic Transformations. The re- 
sults in Table IV seem to indicate that use of logarithmic 
transformed compositions, i.e., YD = In (1 - yD) and XB 



Ind. Eng. Chem. Res., Vol. 30, No. 12, 1991 2551 

4.7. Effect of Weights on Temperatures. We shall 
consider the case with logarithmic temperatures. In cases 
n & -  and noLe with no noise, there is no improvement of 
weighting the measurements, because the logarithmic 
transform will automatically weigh the temperatures sim- 
ilar to weight W,. But when noise is added to the cali- 
bration set, weighting is very important. Figure 14 com- 
pares different weight functions with 0.2 "C noise. Weight 
W3 yields the best result. 

4.8. Noise of Reference Temperatures. Case n&0W3 
in Table IV shows that estimators using corrupted (noisy) 
reference temperatures perform poorly. The values of LB 
close to the location of the reference will then be very 
sensitive to noise. However, in practice, temperatures close 
to each other are perhaps more likely to have correlated 
rather than independent noise. The results with the noise 
put on the temperature difference instead, such as LQ and 
LT, may therefore be more realistic. Anyhow, the results 
demonstrate that logarithmic transforms may be quite 
sensitive to noise. 

4.9. Multicomponent Mixture. The results in Table 
IV for case Mn,-Je show that with no noise we obtain EPV 
values in the range 94.1-97.6% for static PLS estimators 
using logarithmic temperatures and three to six factors. 
We see that we need more factors compared to those for 
the binary mixture, mainly due to the additional degrees 
of freedom caused by the two additional components. 
However, we see that even with more factors, we do not 
attain the same prediction capability as for the binary 
mixture. The improvement from using logarithmic tem- 
peratures is however substantial also in this case. 

The simulations in Figure 15 illustrate the dynamic 
performance of the static PLS estimator. The performance 
is somewhat worse than for the binary mixtures shown in 
Figure 10. The worst disturbance seems to be changes in 

nb.ci... = nub.* OP r.ctor. 
..,l.l".. Y.I.1.M.. I" t( . U.lld.tlon : CDO.. u.ll..tlon 

Figure 14. Effect of weights on EPV for estimator n.&Wi with 
logarithmic temperatures and 0.2 O C  noise. 

= In x B ,  combined with untransformed temperatures ( L y  
estimators), generally has a negative effect on the estimate. 
However, the results are not quite comparable because the 
EPV is based on YD and XB instead of YD and xB. Other 
tests show that they are comparable in performance, but 
they have slightly different properties: The accuracy of 
the logarithmic estimator will be best in the pure region 
and will never give estimates outside the region 0-1. 
Furthermore, for feedback control it may be an advantage 
to use YD and XB because this makes the controller tunings 
less dependent on operating conditions (e.g., Skogestad and 
Morari, 1988b). 

However, estimator performance is significantly im- 
proved by using logarithmic transformations also on the 
temperatures. We see from Table IV, cases n& and n,,LT, 
that with no noise EPV is close to 100% after only three 
factors. This is the case also when pressure variations are 
included; that is, these are automatically taken care of 
when transformed temperatures Le are used. 

n o - 2  x10-2 

0 . 4  

0 . 2  

A 0.0 

- 0 . 2  

- 0 . 4  
O 20 40  60 B O 20 40  6 0  

x10-2  x10-2  

C 

40  60 

0 . 4  

0 . 2  

0.0 

-0.2 
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D 

Figure 15. Closed-loop responses of compositions y (solid line), and estimates 9 (dotted line), for multicomponent mixture. Estimator is 
MnoLaW2 with four factors. Results are shown for 20% steps in (A) feed rate, (B) feed composition r;, and (C, D) heavy nonkey composition. 
y is used for feedback in cases A-C, whereas 9 is used in case D. 
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Table V. Improvement of % EPV Using PLS Rather Than PCR Estimator 
EPV for given factor k 

case 1 2 3 4 5 6 7 

nn -9.64 0.90 0.06 
n1 -9.76 0.87 0.07 
n2 -9.63 0.91 0.05 

1.48 -1.70 4.99 
-11.70 1.37 4.31 

Mn&B -5.96 1.64 16.54 

n&Y -9.26 1.00 0.01 
noP 
n2LTW1 

the heavy component. However, case D in Figure 15 
demonstrates that even this seemingly poor estimate may 
be acceptable for feedback control. 

4.10. Comparison of PLS and PCR. In Table V the 
two methods are compared. The values of practical in- 
terest are those for three to five factors. In most cases the 
difference is small, although PLS is generally somewhat 
better. 

5. Discussion 
5.1. Comparison with One Temperature Estimator. 

All results above were based on using all 41 temperatures 
for estimation. To compare with the conventional one- 
temperature control, we used the same calibration data to 
compute the EPV for an estimator using only one tem- 
perature. Different measurement locations were consid- 
ered for the case with the binary mixture and 0.2 "C noise. 
To estimate yD, tray no. 9 was found to be optimal with 
EPV = 88.790, and for logarithmic compositions, EPV = 
85.4%. This compares to EPV = 97.5% obtained with 
logarithmic estimator n&L,W3 with three factors and using 
all temperatures. The relatively good EPV values for the 
case with one temperature may explain why one-temper- 
ature control is popular for composition control. However, 
the accuracy of the estimate is quite sensitive to the lo- 
cation, and the EPV is reduced 4-5% only two trays off 
tray 9. In addition to yielding better estimates, the use 
of multiple temperatures is therefore less sensitive to 
measurement location and to noise. 

5.2. Neglected Effects. The results have demonstrated 
that it is possible to obtain quite precise estimates with 
the PLS and PCR regression methods. The results are 
based on a simulation study where we neglected variations 
in tray efficiency, liquid fraction in feed, reflux subcooling, 
local pressure drops, etc. Variations in these will affect 
the temperature profile to some extent. However, we 
believe that in many cases of these variations will be too 
small to be distinguished from noise or will not signifi- 
cantly change the relationship between 0 and y. 

5.3. Noise Level. Our mixture has a relative volatility 
of 1.5, corresponding to a temperature difference between 
the two key components of only 13 OC. Nevertheless, for 
the binary mixture we were able to obtain a prediction 
capability (EPV) of 97.5% with only three factors for the 
case with 0.2 "C noise. This noise level is about 1.5% of 
the temperature difference. Hence, a mixture with a 
temperature difference of 40 "C should be able to cope 
about equally well with a noise level of about 0.6 "C. 

5.4. Coping with Nonlinearity and Noise. A major 
problem for the estimator is that the temperatures at the 
column ends, which are most representative for the 
product streams (at least in the binary case), also are most 
affected by nonlinearity and noise. 

We have proposed three different methods to deal with 
this problem: use more factors, weight according to tem- 
perature variation and noise, and logarithmic transforms. 

Using a larger number of factors than the number of 
degrees of freedom is helpful when the noise level is not 

0.14 0.01 0.49 0.00 
0.06 0.60 0.68 1.16 
0.03 -0.32 -0.23 -0.35 
0.35 4.60 0.86 0.01 
0.02 0.13 0.34 0.59 
2.29 2.14 2.11 2.34 
4.11 -0.27 1.36 0.33 

too high. The reason why this may help is that the product 
compositions have different nonlinear relations to different 
temperatures. These differences will appear as extra di- 
rections (factors) in the linear temperature space. However 
some of these directions may be too small to be distin- 
guished from noise. A useful rule is to increase the number 
of factors until they no longer have any significant positive 
effect on the EPV. For our distillation column, the typical 
optimal number of factors is three to five. 

Weighting of variables is commonly used for dealing with 
different kinds of measurements. This is to prevent 
domination by measurements with the largest nominal 
changes. In our distillation column only temperature 
measurements are used, so one might think that weighting 
is unnecessary. Nevertheless, weighting proved useful. 
The reason is that the temperature changes are very small 
a t  the column ends (in the calibration set their standard 
deviation is only 6% of the temperature with the largest 
variation), but even in the presence of noise they do con- 
tain useful information about the end compositions. By 
using weights we avoid discarding the use of these tem- 
peratures with the PLS method. However, the noise 
should also be taken into account, and weight functions 
W,  and even more W3, which include information about 
the noise, yield better results. 

Compared to PCR, there is a kind of weighting inherent 
in the PLS method (Hoskuldsson, 1988). This follows since 
it searches for directions in the eTYY'%, instead of only 
eT8. The weighting with the matrix YYT gives temper- 
atures which have the largest covariance with y larger 
weight when the factors are made. The comparison be- 
tween PLS and PCR shows that these "weightings" im- 
proved the estimates in some cases, although the difference 
was quite small. 

The use of logarithmic transformations of temperatures 
was clearly the single method with the greatest effect. It 
appears to be a very powerful method to cope with the 
nonlinearity in distillation columns and also automatically 
gives the temperature measurement a t  the ends a greater 
weight. However, when the temperatures are corrupted 
with noise, the noise will also be transformed and will have 
a relatively large effect on these end temperatures. 
Therefore, as seen from Figure 14, it is absolutely necessary 
to weight the transformed data to take this into account. 
As already mentioned, one should also take action to avoid 
very small or negative temperatures differences before 
transforming the temperatures. 

5.5. Choice of Reference Temperature. For multi- 
component mixtures the reference temperatures should 
be located some distance away from the ends. (1) They 
should be in the section where the concentration of the 
off-key component is almost constant (See Figure 5). 
Much of the off-key component's contribution to the 
temperature will then be cancelled. (2) They should be 
located as far out to the ends as possible to capture the 
nonlinearity. A simple method which combines these two 
criteria is to select the temperature with the least variation 
in the calibration set. 
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found that the logarithmic transforms of compositions and 
temperatures proposed in this paper is a highly powerful 
means of coping with this nonlinearity. Together with 
weight functions that place less weight on sensors with 
large noise, these transforms are found to give a substantial 
improvement in the prediction ability. 

Use of logarithmic temperatures, Lg, which makes use 
of differential temperatures, gives the additional benefit 
of counteracting pressure variations. 

The results for multicomponent mixtures indicate that 
the estimator may perform well in a wide range of appli- 
cations. Using section reference temperatures a t  locations 
with the smallest temperature variance will make loga- 
rithmic transforms useful also here. 

Besides being an efficient method of obtaining estima- 
tors, the standard multivariable calibration techniques 
yield added benefits, such as insight in the process, good 
statistical information about the prediction ability, and 
a method for sensor location. 
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Nomenclature (Also see Table 111) 
B = bottom product flow rate 
D = distillate flow rate 
Ek = residual matrix for 8 using k factors 
EPV = explained prediction variance (see eq 12), % 
F = feed rate 
k = number of factors used in estimator 
K = estimator constant 
L = reflux flow rate 
LT = logarithmic temperature based on boiling points 
Lo = logarithmic temperature based on reference temperatures 
t = vector of latent variables 
T = matrix of latent variables (t) for calibration runs 
Tb = boiling temperature of pure component 
V = boilup from reboiler 
XB = mole fraction of light component in bottom product 
YD = mole fraction of light component in distillate 
y = output vector CyD, xB)T 
Y = matrix of outputs (y) for calibration runs 
ZF = mole fraction of light component in feed 
W1, W2, W3 = weight functions for measurement (tempera- 

ture) scaling 
Greek Symbols 
a,j = relative volatility between components i and j 
y = condition number 
ui = ith singular value 
8 = tray temperature 
0 = temperature vector 
OL, OH = reference temperatures in top and bottom of column 
8 = matrix of temperatures ( 8 )  for calibration runs 
Subscripts 
H = heavy key component 
i = tray number 
L = light key component 
Superscripts 
' = pseudobinary basis 

Appendix 1: Linearizing Effect of Logarithmic 
Transform on Profile 

constant relative volatility, then 
(1) For the condition of a binary mixture and assumed 

Figure 16. Estimator vector K ( y ~ )  for PLS estimator niW2 with 
three factors. Curve identifier i: 0, no noise; 1, 0.1 "C; 2,0.2 "C; 3, 

"C (the same as no weighting). 

5.6. Measurement Selection. The results above are 
based on using all temperatures as measurements. This 
is of course not necessary. However, the number of 
measurements should at  least be equal to the number of 
factors needed for prediction. For example, to capture 
three factors, we need at  least three to five temperatures. 
The highest number applies to estimators which use dif- 
ferential temperatures, for example, Lg. Additional tem- 
peratures will mainly reduce the effect of measurement 
noise. As a simple method to select the location of tem- 
perature measurements, we recommend identifying the 
peak elements in the K matrix for the weighted (scaled) 
variables. The number of peaks is usually the same as the 
number of factors. As an illustration, consider Figure 16, 
which displays the elements in K for the weighted un- 
transformed temperatures for yD using PLS estimators 
no?,, n1 W,, n2 W,, and no with three factors (the weight 
W, is different in each case as it depends on the noise 
level). We see that when the noise is increased it seems 
better to locate the temperatures further from the end. 

A simple procedure for measurement selection and ob- 
taining the estimator is to (1) find all possible measure- 
ment locations and include all these in steps 2-7, (2) de- 
termine expected magnitudes of outputs (y) and all var- 
iables (disturbances) affecting the system, (3) perform 
simulations that include the expected variations (using 
factorial design and making sure the entire output space 
is spanned), (4) add random noise to all measurements, 
( 5 )  transform the variables and perform the PLS regres- 
sion, (6) determine the number of optimal factors and 
weigh the variables with a suitable weight function, for 
example, W,, (7) do the PLS regression once more with 
the weighted variables, but without noise on the mea- 
surements, (8) find from the weighted K matrix which of 
the possible measurements to select, and (9) perform the 
final calibration to obtain the estimator with the selected 
set of weighted measurements. 

The advantage with this procedure, compared for in- 
stance to that of Moore (1987), is that for each measure- 
ments it explicitly takes care of both its correlation to the 
outputs and its noise level. 

6. Conclusions 
The problem addressed in this paper belongs to a broad 

class of problems concerning how to handle multiple 
measurements in an estimator. Depending on the mag- 
nitude of correlation with the estimated variable and its 
sensitivity to noise, the different sensors should be 
weighted to give the best estimate. The paper has shown 
that this indeed also applies for sensors of the same type 
such as the temperatures in a distillation column. 

For distillation columns the main difficulty of using 
linear estimators is the nonlinearity in the process. It is 
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suming constant molar flows), 
dxi 

Mi - = L(Xi+l - X i )  + v(yi-1 - yi) (36) 

If the column is assumed to be at  steady-state and the 
initial response to a small change in L is considered, we 
get 

dt 

(26) 

At  infinite (total) reflux we have yi = xi+l and we get 

( xi+l ) - In  ( - x i  ) = l n a  (27) 1 - xi+l 1 - x i  

If the logarithmic mole fraction is introduced 

xi = In ( L) 1 - x i  

Then 

Xi+l  - X i  = In a (29) 

(2) At  finite reflux we derive a similar expression: In 

LBxi+l = Vyi + BxB (30) 

where LB = L + F is the liquid flow in the bottom part. 
Equation 26 then gives 

That is, the profile in terms of X i  is linear. 

the bottom part the material balance is 

In a- (31) ( 3 
In most cases the first term is approximately equal to In 
[xi+J(1 - x i + l ) ] .  (The numerator approximation may not 
apply to the bottom tray if B/LB is close to 1; the de- 
nominator approximation usually does not apply close to 
the feed tray where xi+l is not small.) We then get 

xi+l - xi = In ( a i )  

(Here a(V/LB) is the ratio between the slope of the 
equilibrium line and operating line in the bottom section.) 
A similar expression but with a( V/LB) replaced by a(L/ 
VT) is derived for the top. Around the feed tray the ex- 
pression does not apply, and the profile in terms of X i  may 
not be linear. 

(3) To derive a linearizing transform in terms of tem- 
peratures, we assume that the boiling temperature is a 
linear function of x i ,  that is, for the binary case 

and we derive 

xi a - ei 
1 - x i  oi-n -- -- 

and we have 

(34) 

(35) 

Appendix 2 Linearizing Effect of Logarithmic 
Transforms on Dynamic Response 

(Also see Skogestad and Morari, 1988a.) 
With consideration of the component material balance 

on a given tray with vapor flow V and liquid flow L (as- 

(37) 

Here xi+l - x i  varies strongly with tray number i and with 
the operating point. However, if both sides are divided 
by x i ,  then 

In the bottom part of the column the ratio x i + l / x i  = 
a( V/LB) and is approximately constant (Appendix 1). 
That is, in terms of logarithmic compositions the initial 
dynamic response is almost independent of tray number 
and operating point. A similar expression is derived for 
changes in V. 

Similar expressions in terms of d In (1 - x i )  are derived 
for the top part. Since in the bottom 1 - x i  = 1 and in the 
top x i  = 1, we may combine these transforms and use for 
the entire column the following transform 

xi = ln ( L) 1 - xi  (39) 

This transform also has some linearizing effect in the static 
case, but to a lesser extent (Skogestad and Morari, 1988a). 
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Composition Estimator in a Pilot-Plant Distillation Column Using 
Multiple Temperatures 

Thor Mejdell and Sigurd Skogestad* 
Chemical Engineering, University of Trondheim, NTH,  N -  7034 Trondheim, Norway 

Results are given for the implementation of a static partial least-squares (PLS) regression estimator 
for product compositions on a high-purity pilot-plant distillation column. Temperatures on all 11 
trays are used as inputs to the estimator. Several estimators were tested off line to compare their 
performance, and one estimator was used on line for dual composition control. It was found that 
the estimators perform very well when appropriate logarithmic transforms and scalings are used. 
Since the estimator is static, the implementation is straightforward. An estimator based only on 
experimental data gave excellent performance over a wide range of operating points. Estimators 
based on simulations did not perform quite as well, and the bias had to be adjusted when a change 
was made from one operating point to another. Nevertheless, since it may be difficult to  obtain 
good experimental data in an industrial setting, this estimator is probably most useful in practice. 
In this paper we also discuss how to combine information from simulations (basic modeling) and 
experiments. 

1. Introduction 
Product composition analyzers for distillation columns, 

such as gas chromatographs, have large investment and 
maintenance costs, in addition to unfavorably large mea- 
surement delays. The most popular means of product 
control is therefore temperature control (Kister, 1990), 
which provides an easy, fast, and inexpensive means of 
composition control. 

The temperature selected for control is usually located 
a t  a tray some distance away from the column ends, be- 
cause the products may be extremely pure, and the tem- 
perature variations are then small compared to the noise. 
Furthermore, pressure variations and off-key components 
will interfere with the relationship between product com- 
position and temperature and locating the measurements 
away from the ends is favored (Rademaker et al., 1975, p 
421). However, if the measurement is located too far from 
the end the temperature will be strongly influenced by the 
composition of the feed and of the product at the other 
column end. 

An important issue in conventional temperature control 
is therefore to find the best measurement location by 
making proper compromises between these considerations. 

However, some of the interferences may be handled by 
using more measurements. For example, since the column 
pressure has about the same effect on all temperatures in 
the column, the pressure variation may be compensated 
for using temperature differences. This requires an ad- 
ditional temperature measurement which preferably is 
located at a tray where the composition is almost constant. 
Along the same line of thought are the proposals to use 
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double differential temperatures. Yu and Luyben (1984) 
proposed use of the other differential temperature for 
off-key-component compensation, while Luyben (1969) and 
Boyd (1975) proposed using it for column-pressure-drop 
compensation. However, these ideas do not seem to be 
widely applied. 

On the other hand, for the case of high-purity columns 
with large relative volatility between the components, the 
use of multiple temperatures has found some applications 
because the conventional temperature control is difficult. 
In these columns the main temperature drop will take 
place in a small region consisting of only a few trays. Quite 
small deviations from the normal operating point may lead 
to a control temperature outside this region. On the other 
hand, the location of this temperature front (region) is 
usually closely correlated to the compositions and may 
alternatively be the control objective. Bozenhart (1988) 
located the front by scanning multiple temperatures for 
the maximum temperature drop between two trays. Lu- 
yben (1971) suggested tracking the temperature front by 
using an average of many tray temperatures. Whitehead 
and Parnis (1987) used a weighted average of many dif- 
ferential temperatures in a C2 splitter. 

A more rigorous means of using multiple temperatures 
is to provide an estimator for product compositions. Many 
approaches have been proposed, e.g., by Brosilow and 
co-workers (Weber and Brosilow, 1972; Joseph and Bro- 
silow, 1978), who used temperatures together with stream 
measurements and a linearized process model, and by 
Marquardt (1989), who used a state space observer for the 
location of the temperature front. 
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