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Simple distillation columns with ideal vapor-liquid equilibrium may display mul- 
tiple steady-state solutions. Two fundamentally different sources for the multiplicity 
are presented. Both bring about the unexpected result that increasing reflux makes 
separation worse in the top part of the column. It corresponds to an unstable 
operating point. 

The first type of multiplicity is found for columns with mass or volume inputs 
(e.g., mass reflux and molar boilup). Even for constant molar flows, the trans- 

formation from the actual input units to molar units may become singular (cor- 
responding to a pitch fork bifurcation point ), resulting in multiple steady-state 
solutions. The results are highly relevant in practice, as industrial columns usually 
have inputs on a mass or volume basis. The second type for  specifications on a 
molar basis (e.g., molar reflux and molar boilup) depends on the presence of an 
energy balance in the model. The multiplicity is caused by interactions between flows 
and compositions in the column. 

Introduction 
Multiple steady states (multiplicity) in distillation columns 

have been studied extensively over the last 30 years. A review 
on homogeneous (liquid phase) distillation is given by Doherty 
and Perkins (1982). Rosenbrock (1960, 1962) was the first to 
prove, using a Krasovski form of the Lyapunov function, that 
multiplicity is impossible for the binary case with constant 
relative volatility [ideal VLE (vapor-liquid equilibrium)] and 
constant molar flows (neglecting the energy balance). Doherty 
and Perkins (1982) considered the case with nonideal VLE and 
constant molar flows. They conclude that multiple steady states 
are impossible for single-staged “columns” and for any mul- 
tistage column separating a binary mixture. Sridhar and Lucia 
(1989) include the energy balance in the model and conclude 
under certain assumptions that also in this case binary distil- 
lation columns will exhibit unique solutions. They do, however, 
study only two different sets of specifications ( QDQB and LB). 

In a simulation study on multiple solutions for a nonideal 
mixture of water-ethanol-benzene, Magnussen et al. (1979) do 
not explain why the multiplicity was predicted only by the 
NRTL and UNIQUAC activity coefficient models. Their re- 
sults have been studied and reproduced in several other sirn- 
ulations (Prokopakis and Seider, 1983; Kovach and Seider, 
1987; Venkataraman and Lucia, 1988). The main reason for 

the multiplicity in this case is the nonideality in terms of po- 
tential liquid-liquid phase split in the mixture (Lucia et al., 
1989). Widagdo et al. (1989) report multiplicity for another 
heterogenous system. 

Chavez et al. (1986) and Lin et al. (1987) find multiple steady- 
state solutions in interlinked distillation columns. The multi- 
plicity they find, however, is due to the interlinking and is not 
found in single columns. 

For the first time, we present examples of multiplicity in 
distillation columns with ideal thermodynamics. Two funda- 
mentally different types of multiplicity presented are: I. mul- 
tiplicity in input transformations and 11. multiplicity for molar 
flows. 

Z. Multiplicity in Znput Transformations. Common for 
all the works mentioned above is that the authors have assumed 
the independent flows (e.g., reflux L and boilup V )  to be given 
on a molar basis. In fact, this is not even mentioned as an 
assumption, but simply taken for granted. The main reason 
for using molar flows is that they enter directly into the tray 
material balances and thus determine the separation in the 
column. In addition, there must have been a belief that using 
other units for the flows would not alter the fundamental 
results. However, we believe that in real columns most streams, 
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in particular liquid streams, are not given on a molar basis 
but rather on a mass or volume basis. The transformation 
from mass or volume flows to molar flow rates depends on 
the compositions in the column and is nonlinear. As shown in 
this work, this transformation is singular in some cases, leading 
to multiplicity and instability even in ideal two-product dis- 
tillation. 

ZZ. Multiplicity for Molar Inputs. We present results 
showing that also for specification of molar inputs we may 
get multiplicity in ideal distillation. The multiplicity is found 
for specification of molar reflux and boilup, and depends on 
the presence of an energy-balance in the model. The interaction 
between flows and compositions in the column may lead to 
multiple solutions, one of which is unstable. Also the multi- 
plicity found here may be experienced in real columns as it is 
the size of the molar flows that determines separation in dis- 
tillation. This type of multiplicity will add its importance for 
simulations since specifications usually are on a molar basis. 

The term “multiplicity” refers to the case of output mul- 
tiplicity: when there for a given value of the independent vari- 
ables (inputs such as reflux and boilup) exists several possible 
sets of dependent variables (outputs such as product compo- 
sitions). This is similar to the classical example of multiplicity 
in exothermic chemical reactors, in which two stable and one 
unstable steady states exist. 

Another kind of multiplicity, in which for a given value of 
the output there exists several possible sets of inputs input 
multiplicity, is discussed only briefly here. It is quite common 
in chemical engineering, when there is an extremum in the 
relationship between the input and the output. For example, 
for multicomponent distillation columns the relationship be- 
tween product flow and concentration of intermediate com- 
ponent generally has a maximum, as will be discussed later. 
In terms of control, output multiplicity is generally related to 
poles crossing the imaginary axis (unstable operating points), 
while input multiplicity is related to zeros crossing through the 
origin (changes in sign of gain and inverse response). A pole 
at the imaginary axis corresponds to a singularity in the transfer 
function from input to output, while a zero at the imaginary 
axis corresponds to a singularity in the transfer function from 
output to input. 

In this article we consider output multiplicity in distillation 
columns from only a steady-state point of view. The impli- 
cations for dynamics and control are discussed in another 
article (Jacobsen and Skogestad, 1990). We start the article by 
considering multiplicity for the case of input units other than 
molar (Part I). Here, we assume constant molar flows: we 
neglect the energy balance. In considering multiplicity for mo- 
lar inputs (Part 11), we include the energy balance in the model. 
This is a requirement for getting multiple steady states for 
molar inputs. Finally, we present results for the case when 
both types of output multiplicity may appear. 

Table 1. Data for Example Columns’ 

Example zF F 01 N NF MI 

Methanol-Propanol 0.50 1 3.55 8 4 32.04 60.10 
One-Stage Column 0.50 1 4.0 1 1 20 40 
Propanol-Acetic Acid 0.50 1 * *  1 1  

‘Feed is saturated liquid; total condenser with saturated reflux 
**a varies from 1.85 t o  2.25 

1. Multiple Steady States for Mass 
or Volume Inputs 

We consider the simplest case with binary mixtures, constant 
relative volatility (ideal VLE), and constant molar flows. Sim- 
ilar results are obtained also in columns with more nonideal 
behavior. 

Doherty and Perkins (1982) have shown that multiplicity is 
impossible in the binary, constant molar flow case; for a given 
L and V (molar basis), there exists only one possible steady 
state. For example, the top compositiony, = g ( L ,  1’) is a unique 
function of L and Vin the constant molar flow cdse. This also 
applies if we select as independent variables any other two 
independent combinations of molar flows, for example, D and 
L .  However, in real operating columns both flows are almost 
never specified on a molar basis. In the following we mainly 
consider the L,V configuration, with reflux specified on mass 
basis and with boilup on molar basis. Also discussed is the 
effect of choosing other flows as independent inputs, for ex- 
ample, the D,Vand LQB configuration. In the latter case, the 
heat input QB, which indirectly sets V, is used as an independent 
variable. 

Introductory Example 
Example I .  Data for a methanol-propanol coliimn are given 

in Table 1.  The assumption of the constant molar flows implies 
constant vapor and liquid molar flows through the column 
(except at the feed location). Boilup V is fixed at 2.0 kmol/ 
min and we consider the steady-state solutions with reflux L,  
in the range 47 to 55 kg/min. The results are summarized in 
Table 2 and in Figure 1. (The numerical results were actually 
obtained by varying yo with fixed V.)  For L,  between 48.8 
and 52.2 kg/min, there exists three steady-state solutions. For 
example, with V= 2.0 kmol/min and L,  = 50 kglmin, we get 
the three steady states (11, 111 and IV) in Table 2.  With fixed 
values of L,  and V, the solutions on the upper and lower 
branches on Figure 1 are stable, whereas the solutions on the 
intermediate branch (e.g., steady state 111) are unstable. The 
reason for this multiplicity is the transformation L = L,/M 
between mass and molar reflux. As seen from Figure 1, this 
transformation is not unique for L ,  in the region 48.8 and 
52.2 kg/min. 

Specification of Flows in Distillation Columns 
We discuss here which units are most often encountered for 

the flows in distillation columns during operation. 
Configurations. Consider the two-product distillation col- 

umn in Figure 2. If the feed to the column is giv-en there are 

Table 2. Steady-State Solutions for Methanol-Propanol Col- 
umn: Y=2.0 k m o l h i n  and L,  48-53 kg ‘min* 

Steady L D L W  Y D  XB 
State kmol/min kmol/min kg/min 

I 1.064 0.936 48.00 0.534 3 . 1 0 ~ 1 0 - ~  
I1 1.143 0.857 50.00 0.584 3 . 5 0 ~ 1 0 - ~  
111 1.463 0.537 50.00 0.9237 7.60X 
IV 1.555 0.445 50.00 0.9969 0.104 
V 1.650 0.350 53.00 0.9984 0.233 

‘Assuming constant molar flows 
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L,  [kg/min] 
Figure 1. Multiple steady states for mass reflux L, for 

the methanol-propanol column assuming con- 
stant molar flows. 
Boilup V =  2.0 k m o l h i n  

at least four flows that might be specified: reflux L ,  boilup V,  
distillate (top product) flow D,  and bottoms flow B.  However, 
for a given column there are only two degrees of freedom at 
steady state: only two of these flows may be specified inde- 
pendently. A specific choice of two independent flows is de- 
noted as a “configuration.” The term comes from process 
control and is the independent variables from a control point 
of view. Let, n (or no subscript) denote molar flow in kmol/ 
min, w (or as subscript) mass flow in kg/min, q (or as subscript) 

volumetric flow in m’/min. For example, L is reflux in kmol/ 
min, L,  in kg/min, and L,  in m’/min. Furthermore, v (m/ 
min) is the linear velocity, M(kg/kmol) is the molecular weight, 
p (kg/m3) is the density, and A (m2) is the cross-sectional area. 
We have 

w =Mn = pq (1) 

q = Mn/p = A v  (2) 

For example, L ,  = pL, = ML. The molecular weight M is often 
a strong function of composition (operating point). For liquids, 
the density p is usually a relatively weak function of compo- 
sition, but the molar volume M / p  is often a strong function 
of composition. For gases, the molar volume M/p  is dependent 
weakly on composition. 

In this case, the liq- 
uid flow is usually changed either by adjusting a valve position 
or the power to a pump. In the first case, assume that the 
pressure drop Apu across the valve is constant. Then, for 
turbulent flow Apu = k(z )pd  = k ( z ) q w ,  where k is a function 
of the valve position z. That is, fixing the valve position is the 
same as fixing the geometric average of mass and volumetric 
flow rate, G. In the second case, assume that the pressure 
drop across the pump App is fixed. The power is given by 
P = Ap,q, and fixing the power is the same as fixing the vol- 
umetric flow rate q. In this case it is most natural to specify 
the flow on a volumetric or mass basis (as noted above these 
usually are not too different). In the special case, if a partial 
condenser is used, then the reflux may be given indirectly by 
the cooling duty and it may be reasonable to assume reflux to 
be give on a molar basis. 

In many cases, the valve 
position or pump power is adjusted to keep the measured value 
of the flow constant. Most liquid flow measurements are on 
a mass or volumetric basis (or mixed). For example, the flow 
is often inferred by measuring the pressure drop over a fixed 

Liquid Flows without Measurements. 

Liquid Flows with Measurements. 

V 
QB r-+ 

QD 

Figure 2. Two product distillation column. 
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restriction in a pipe, such as an orifice or venturi. As noted 
above, the pressure drop is proportional to the product qw,  
and hence one gets a measure of the geometric average of the 
mass and volumetric flow rate. Other measuring devices give 
a direct measure of volumetric flow rate q, such as displacement 
meters, turbine meters, and magnetic meters. Direct measure- 
ments of mass flow rates also exist. However, for liquids no 
direct measurement of molar flow rate is in common use. 

This is a vapor flow. However, usually the 
amount of boilup is given indirectly by the heat input Q B  to 
the reboiler. An energy balance around the reboiler gives: 

Boilup V. 

(3) 

where Hi’ and Hf are the molar enthalpies on tray i of the 
vapor and liquid phases, respectively. Neglecting changes in 
the liquid enthalpy yields 

where AHYp is the heat of vaporization in the reboiler. In 
many cases, A HTp depends only weakly on composition, and 
specifying QB is almost the same as fixing the molar boilup V. 
However, for widely different components or strongly nonideal 
systems, this may not be the case. 

Therefore, it can be summarized that: 
For liquids, it is most natural to specify the flow rate on 

a volumetric or mass basis. In a distillation column, L ,  D ,  and 
B are usually liquids. 

It seems reasonable in many cases to assume the boilup V 
to be given on a molar basis. 

L,V Configuration 
This choice of independent variables is very common in- 

dustrially, and the introductory example showed that it may 
display multiple steady states. Consider the simplest case with 
a binary separation, and let subscript 1 denote the most volatile 
(“light”) component and 2 the least volatile component. The 
transformation between mass and molar reflux is given by: 

where Mi is the mole weight of the individual components. We 
might expect L to increase uniformly with L,: dL/dL,> 0 such 
that an increase in the mass reflux L ,  will always increase the 
molar flow L .  However, because M is a function of compo- 
sition bD) and thereby of L,  this may not be the case. Assume 
that the molar boilup Vis fixed, and differentiate both sides 
of L,= LM with respect to L:  

A possible negative slope, (aL,/aL),< 0, will correspond to 
an unstable operating point and is explained by two opposing 
effects. Since these effects have different time constant, it is 
most instructive to consider the dynamic response (although 
we are here interested in the steady-state effect). Consider an 

increase in L .  Initially, L,=LM always increase.;, because M 
is unchanged. However, as a result of the increise in L,  the 
fraction of light component will start increasing ( ,ee Appendix 
B) and hence M will change. If M2>Ml (which s usually the 
case), M will decrease and the resulting decreabe in I , ,  may 
eventually offset the initial increase. Note that m iltiple steady 
states and instability will not occur for the L,V configuration 
when M2 < M I .  

The instability may be explained physically as follows: As- 
sume M2>Ml and that L ,  and V are constant. ’I he column is 
perturbed slightly such that yD increases by AyDl. This reduces 
M and thus increases L by AL1= (aL/ayD)L,AyDI. The in- 
creased L will subsequently increase yo even more. I f  this 
second increase Aym= (ay,/aL) is larger than the initial 
pertubation A,Y,,, then the column will start driftrng away and 
we have instability. The condition for instability then becomes 
AYD2>AYDI Or 

which may be shown to be equivalent to having a negative 
slope in Eq. 6. Note that this derivation is not rigorous as it 
is based on steady-state arguments only. A more detailed anal- 
ysis using dynamics is given in Jacobsen and Skopestad (1990). 

The fact that an operating point is unstable does not nec- 
essarily imply that there exists another stable operating point 
for the same values of L,  and V(see Figure 3c). For example, 
if L starts increasing as discussed above, it may reach a point 
where the specified value of L,  corresponds to a L > V,. This 
is impossible as it would drain the condenser or require a 
negative distillate flow D. In practice, the operator would then 
have to increase Vor reduceL,. However, as shown in example 
1, there does exist cases where multiple steady states exist for 
a given L ,  and V.  This happens when there for the given V 
exist points (values of L,), where the transformaiion from L,  
to L is singular (aL/aL,= OD or aL,/aL = 0 in Eq. 6). 

Analytical treatment 
To understand the characteristics of columns, in which mul- 

tiplicity and instability are most likely to occur, the ideal case 
with constant molar flows and constant relative volatility is 
considered. From Eq. 6 we know that for binar? separations 
instability occurs at operating points where 

Here it was assumed that M,>M, which is a necessary con- 
dition for instability for this configuration. To understand the 
implications of condition 8, we need an analytical expression 
for the gain (ay,/aL),. We shall consider a one-stage column 
where exact expressions are easily derived, and subsequently 
a multistage column where good approximations exist. 

Consider the simple column in Figure 4 with 
one theoretical stage (the reboiler) and a total condenser. This 
is the simplest column for which the instability and multiplicity 
may be observed. Of course, such a column will never be 
operated in practice because the reflux is simply wasting energy 

Example 2. 
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L,  [kg/min] 

Figure 3. Steady-state solutions as a function of mass reflux L, for one-stage column with a = 4. 
a. V = 4.0 kmol/min: unique stable solution; b. V = 4.7 kmol/min: multiple solutions; c. V = 7.0 kmol/min: unique unstable solution 

and has no effect on separation. The following equations ap- 
ply: 

Let a = 4.0, zF= 0.5, M I  = 20 kg/kmol and M2 = 40 kg/kmol. 
Consider a nominal operating point with V=4.7 kmol/min 
and L = 4 . 2  kmol/min. From Eqs. 9-12 we get D = B = 0 . 5  
kmol/min, xB=0.33, yD=0.67, and L,= 112 kg/min. How- 
ever, this is not the only possible steady state with V=4.7 

QB 

Figure 4. One-stage column with total condenser. 
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kmol/min and L ,  = 112 kg/min. Table 3 shows that there exist 
two other solutions with y D =  0.56 and yo = 0.76, respectively. 
The results are shown in Figure 3b. Note that the nominal 
steady state with yo = 0.67 is in the region where the relation- 
ship between L ,  and L has a negative slope and thus is unstable 
with V and L ,  as independent variables. 

The effect of increasing the internal flows is illustrated by 
Figure 3c where V has been increased from 4.7 to 7.0 kmol/ 
min. Here, the relationship between L and L ,  has a negative 
slope over the entire region. The two stable branches have 
disappeared and we have only one unstable solution for any 
given L,. On the other hand, for low values of the internal 
flows there exists only one stable solution. This is illustrated 
by Figure 3a where V = 4 . 0  kmol/min. 

Differentiating Eqs. 9-1 1 yields the following exact expres- 
sion for the gain: 

Condition 8 for instability then becomes: 

Table 3. Steady-State Solutions for One-Stage Column: V =  4.7 
kmol/min and L 3.7-4.7 kmol/min 

L D LW Y D  
k m o 1 /mi n kmol/rnin kg/min 

3.7 1 .o 111.00 0.500 
3.9 0.8 112.01 0.564 
4.2 0.5 112.00 0.667 
4.5 0.2 111.99 0.756 
4.7 0.0 112.80 0.800 
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The gain (Eq. 13) varies only moderately with operating con- 
ditions for a single-stage column. Thus, we conclude from (Eq. 
14) that any operating point may be unstable with the L,V 
configuration, provided the internal flows (L) are sufficiently 
large. 

To test stability of the nominal operating point in example 
2, let D=B=0.5 ,  xB=0.33, yD=0.67, M 2 / ( M 2 - M , )  = 2  and 
derive from Eq. 14 the instability condition L > 4.0. Since we 
have L = 4.2, the operating point is unstable. 

Somewhat surprisingly, the analytical 
results for the one-stage column carry over almost directly to 
the multistage case. For example, expression 13 for the gain 
(ayD/aL)v is a good approximation for multistage columns 
with constant relative volatility and constant molar flows (e.g., 
Skogestad and Morari, 1987b). The reason is that the overall 
separation factor 

Multistage Column. 

usually does not change very much with operating conditions 
and may be assumed constant when estimating the gain (for 
a one-stage column the separation factor is equal to the relative 
volatility a). Equation 15 then takes the place of Eq. 11, and 
assuming S constant yields the same expression for the gain 
as for the one-stage column. [The exact expression when S is 
not constant is 

The only assumption made here is the one of constant molar 
flows such that Eq. 10 applies. Equation 16 shows that the 
effect of changes in S on the gain is always negligible when 
the bottom product is pure, xB= 0.1 

The main difference from the single-stage case is that in a 
multistage column the compositions and the gain (Eq. 13) may 
change drastically with operating conditions. To study this 
effect consider the following three cases: 

I. Top impure, bottom pure [x,<< (1 -yo) ] .  Equation 13 is 
simplified to: 

11. Equal purity in top and bottom [xB= (1 -yo) ] .  Equation 
13 is simplified to: 

111. Top pure, bottom impure [xB> > (1 -yo)].  Equation 13 
is simplified to: 

Recall the instability condition (Eq. 8). We conclude that 
instability is unlikely in case 111, when the top prt)duct is pure 
relative to the bottom product. The approximate ,:ondition for 
instability in case I when the bottom product is pure (xB=0)  
becomes: 

From this derivation, we conclude that instability with the L,V 
configuration is most likely to be observed in the following 
cases: 1. bottom product relatively pure [x,<< (1 - Y D ) ] ;  2. mole 
weight of light component much smaller than of heavy com- 
ponent; and 3. L / D  large. We note that any column with 
MI < Mz may become unstable with sufficiently large L / D .  

In practice, conditions 2 and 3 often are not satisfied at the 
same time. First, large values of L / D  should be used only for 
difficult separations (a close to one) which usually involve 
components with similar mole weights. Second, columns with 
large values of L / D  (greater than five according to Luyben, 
1979) usually are not operated with the L,V configuration at 
all. The reason usually given for this is that controlling the 
condenser level with a small stream is difficult, and reflux L 
should be used for level control whenever LID is large. While 
this argument certainly is true, it is also possible that open- 
loop instability of the L ,  V configuration may have caused the 
poor observed behavior. 

Other Configurations 
D,  V configuration 

We have 

where M is defined by Eq. 5 .  Differentiating yelds the fol- 
lowing condition for instability: 

Note that the condition for instability is almost independent 
of the size of the internal flows. Since (ayDBD),,  is essentially 
always negative (Appendix A), we see from Eq. 22 that a 
necessary condition for instability or singularity is that M I  >M2: 
the most volatile component must have the largest mole weight. 
This implies that we have the opposite case as iompared to 
the L,V configuration. Thus, instability and multiple steady 
states in a given operating point with the L,V configuration 
is avoided by using the D,V configuration instead. During 
operation, this is accomplished by changing condenser level 
control from using distillate to using reflux. 

In fact, it seems very unlikely that multiple steady states or 
instability may ever occur for this configuration: consider the 
case Ml>M2.  As we have no multiplicity for the molar DV 
configuration (Doherty and Perkins, 1982) the gains ( a ~ , / d D ) v  
and (dx~ /aD) ,  are negative (see Appendix 1). An analysis of 
the differentiated component material balance (Eq. 9), then 
gives (ayD/dD)v> -yD/D. For the worst case with (ayD/ 
aD) v =  -yo /D the condition for instability (Eq. 22) becomes 
M2<0 which of course is impossible. 
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LQB con figuration 
We have assumed the boilup to be measured on a molar 

basis. However, as discussed previously, the boilup will often 
be set indirectly by the amount of heat input, Q B ,  to the re- 
boiler. The energy balance for the reboiler when liquid enthalpy 
changes are neglected yields (Eq. 4): 

V z  & / A H v a P ( x ~ )  (23) 

Here we have indicated that the heat of vaporization, AHvap, 
in general depends on the composition in the reboiler, xB. Note 
the similarity between this transformation and the transfor- 
mation L = L, /M(yD)  studied above. For simplicity, assume 
reflux to be kept constant on a molar basis, and consider a 
binary mixture where xB is the mole fraction of light com- 
ponent. The differential of Q B  with respect to V becomes: 

and we have instability if this slope is negative. For constant 
molar flows (axB/aV), is always negative (Appendix B), and 
we see from Eq. 24 that a necessary condition for instability 
or singularity is that dAHVap/dxB>O for the actual value of 
xB. This is not too common in practice. It will be the case when 
the lightest component has the largest heat of vaporization, 

10.5 

i n . 4 1  

In3l 10 2 

E l o . l ~  

f 
P 

9.8 1 
9.6 9.71 

but may also happen for nonideal systems where this is not 
the case. 

A similar analysis as for the L,V configuration shows that 
instability is most likely for the LQB configuration when the 
internal streams are large and when the bottom product is 
relatively unpure. 

Example 3: One-Stage Propanol-Acetic Acid Col- 
umn. Propanol is the more volatile component and the rel- 
ative volatility, a, is in the range 1.85 to 2.25. The heat of 
vaporizations is 41.2 kJ/mol for propanol and 23.7 kJ/mol 
for acetic acid, implying that multiplicity is possible. In this 
example, we use the exact energy balance (Eq. 3) and the Van 
Laar activity coefficient model the vapor-liquid equilibrium. 
Consider a nominal operating point with reflux L = 9.5 kmol/ 
min and boilup QB = 349 MJ/min. We obtain two steady-state 
solutions for these specifications: 1) yD=0.596 and 2) 
yD = 0.787. If we could allow for negative product flows, we 
would get three solutions. Solution 1 is unstable while solution 
2 is stable. The multiplicity is illustrated graphically in Figure 
5 .  

Other cases 
As seen from the above, possible singularities in the trans- 

formation of streams vary depending on the choice of config- 
uration, or in terms of steady-state simulation, the 
specifications of flows. Singularity occurs when aw/an is zero. 
For liquid flows, we conclude that singularity may occur for 
reflux L,  and bottoms product B, when M2>M, ,  while dis- 
tillate D, and boilup V, require the opposite, i.e., MI >M2.  
This is easily seen from the sign of the respective gains (Ap- 
pendixes 1 and 2). However, as noted above, singularity seems 
unlikely to occur for D,  or B,. For ratio inputs, singularities 
are also unlikely in most cases. For example, (L/D) is inde- 
pendent of composition provided that the column has a total 
condenser and L and D are measured in the same units. 

II. Multiple Steady States for Molar 
Inputs 

We have discussed the multiplicity resulted from the use of 
input units other than molar. In Part 11, we consider the mul- 
tiplicity when molar reflux and boilup are used as specifications 
(i.e., LV configuration). This type of multiplicity does not 
occur for the case of constant molar flows, and thus depends 
on the energy balance. 

LW Configuration 
Example 1. We will continue to study the methanol-pro- 

panol column in Table 1. We now include an energy balance 
on each tray where we previously assumed constant molar flows 
(see Table 4): 

Qi + F'-lHL I + Li+ lHf+ I - V,Hr- L,Hf -k F i Z =  0 (25)  

,.., 
344 345 346 347 348 349 350 351 Here, subscript i denotes tray number (trays are numbered 

from the bottom). We assume constant relative volatility as 
before, while enthalpies are computed from the equations given 
in Table 4. Molar boilup V is kept constant at 4.5 kmol/min 
and we consider solutions for molar reflux between 4.6 and 

QB [Ml/mml 

one-stage propanol-acetic acid column. 
Reflux L = 9.5 kmol/min 

Figure 5. Multiple steady states for heat input QB for 
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Table 4. Saturated Molar Enthalpies (kJ/mol) for Meth- 
anolPropanol System at a Pressure of 1 atm* 

Hf.= 16.67 ~ e - ' . ~ ~ ~ ~ f i  

H r =  1 3 . 4 9 ~ e - ~ . ~ ~ i + 4 3 . 9 7 x e - ' ~ ~ ~ '  

*Reference state: pure components as liquid at O"C, where 
x, denotes mole-fraction methanol in liquid phase. 

4.75 kmol/min. Some solutions in Table 5 show that for 
L=4.70 kmol/min we get the three solutions, 11, 111, and IV. 
Solution 111 is found to be unstable. The multiplicity is illus- 
trated in Figure 6. 

Similar results were obtained with commercial simulators 
using consistent thermodynamic data for VLE and enthalpy 
(e.g., SRK equation of state) which satisfy the Gibbs-Duhem 
equation. 

The example above shows that we 
may have multiplicity for the L V configuration even in ideal 
binary distillation. To understand the source of the multiplic- 
ity, the transformation between the DV configuration, which 
yields unique solutions in terms of compositions in all examples 
studied, and the L V configuration is examined. 

Consider the gain ( dyD/aL) v. This gain is usually positive, 
but as seen above (Figure 6) it may be negative in some cases 
and the operating point will then be unstable. We have: 

Analytical Treatment. 

where the gain ( ayD/aD) is essentially always negative (Ap- 
pendix A). For constant molar flows (aD/aL) v =  - 1 and (ayD/ 
a t )  vis positive. However, due to the energy balance, the flows 
inside the column depend on the compositions and instability 
occurs if 

Using the material balances around the condenser ( VT= L + D )  
and around the column interior ( L  + V = L B +  VT)  yields: 

(s)v= - 1 + (z)v= - ($)v (28) 

and Eq. 27 is equivalent to: 

Table 5. Steady-State Solutions for Methanol-Propanol Col- 
umn with Boilup V = 4.5 kmol/min* 

L D Y D  XB 
kmol/min kmol/min 

T- I----- - 

o . w 1 > - . - .  I 
4.6 4.62 4.64 4.66 4.68 4 7  4.72 4.74 

F(r----;. /' 
4 6  4 6 2  4 6 4  4 6 6  4 6 8  4 7  4 7  4 7 4  

T - ~ -  ---- 

\ "I----- n s  

$ :' 
-" 02 

Q 
0 1  

046 4 6 2  

// 

. 
'1 

'1. 
L l I  

.. 
4 6 4  4 6 6  4 6 8  17 4 7  4 7 4  

L [kmol/min] 

methanol-propanol column. 
Figure 6. Multiple steady states for molar reflux L for 

Boilup V =  4.5 k m o l h i n  
Energy balance included 

Here V ,  denotes vapor flow from top tray to the condenser, 
and LB is liquid flow from bottom tray to the reboiler. This 
means that in the unstable region an increase in reflux will 
result in a decrease in liquid flows in the lower parts of the 
column. Figure 7 shows two liquid flow profiles in the unstable 
region for the methanol-propanol column. 

Neglecting changes in liquid enthalpy with composition yields 
the following relationship between boilup I/ and vapor flow 
from top tray VT (liquid feed): 

I 4.60 0.535 0.9324 2.474 X 
I1 4.70 0.505 0.9845 6 . 3 4 4 ~  
111 4.70 0.406 0.9993 0.1587 
IV 4.70 0.0866 0.9997 0.4526 

AHTP 
AHY,ap 

V,= - V 

*The energy balances are included in the model. The instability condition (Eq. 27) is equivalent to: 
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and we get 

(gJv= - 1 + (S) >o and top composition. Equation 34 indicates that there may be 
a positive slope between mass reflux L ,  and top composition 

if both I and I1 occur at the same time. However, Eq. 6 
for the case M2>M, shows that when (ayD/aL), is negative 

(31) 

-(T) dA H vap 

x = x T  
V (32) &)v=-' +   AH',"^)^ 

Assuming no multiplicity for the D V configuration implies 
that (ax,/aD), always will be negative (Appendix 1). Further- 
more, in most systems (dAHvap/dx) will be negative, i.e., the 
heat of vaporization decreases with fraction of most volatile 
component. From Eq. 32 we see that in this case instability 
will be most likely when the magnitude of (ax,/aD), is large 
and the magnitude of (ax,/aD). is small. This will happen 
when there are high purity in the top and a relatively unpure 
bottom product. This agrees with the results found for the 
methanol-propanol column (Table 5 and Figure 6), where insta- 
bility was found for top composition between 0.9984 and 
0.9996, and bottom composition between 0.3152 and 0.0580. 
In the case where (dA Hvap/dx) is positive, instability will be 
most likely when the bottom product is pure while the top 
product is relatively unpure. We also see from Eq. 32 that 
instability is favored by high internal flows (i.e., large V ) .  

Similar relations are obtained when considering changes in 
molar boilup. In this case, transformation between the LB and 
L V configuration is considered. Instability is equivalent to: 

($) L <o (33) 

We conclude that the multiplicity found for the L V config- 
uration is due to the interactions between flows and compo- 
sitions in the column. The flows affect compositions through 
the material balances, while compositions will affect the flows 
through the energy balances. In some regions, this interaction 
leads to an inversed response in compositions compared to 
that for constant molar flows [e.g., (ay,/aL),<O] and we get 
multiple steady-state solutions, one of which is unstable. Ra- 
demakar et al. (1975) claim that the influence of compositions 
on flow rates usually will be negligible. Our results show that 
the influence in many cases will be crucial, leading even to 
inversed gains and instability in some cases. 

Combination of Mass Inputs and Energy Balance 
The two types of multiplicity discussed may occur in the 

same region of operation for a column. Consider the L,V 
configuration. We have: 

(b) =($) (E) 
aL, aL, (34) 

Instability (negative slope between L ,  and yo) occurs when 
one of the elements on the righthand side of Eq. 34 is negative: 
I) there is a negative slope between molar reflux and mass 
reflux, or 11) there is a negative slope between molar reflux 

neither singularity nor negative slope exists between mass and 
molar reflux. This implies that the instability for the molar 
reflux usually is preserved when using mass reflux. 

Figure 8a shows solutions for the 
methanol-propanol column using the L ,  V configuration with 
the energy balance included. Mass reflux is in the range 57 to 
60 kg/min while keeping molar boilup at 2.0 kmol/min. Com- 
pared to Figure 1 which shows the corresponding results for 
the case of constant molar flows, the range of multiplicity in 
terms of mass reflux becomes narrower. The reason for this 
is that with the energy balance included we get a larger value 
of (ay,/aL), in the region of interest. Note that for this value 
of boilup there is no multiplicity between molar reflux L and 
top composition yo: (ay,/aL),> 0. 

Figure 8b shows solutions with mass reflux in the range 95 
kg/min to 103 kg/min while keeping boilup at 3.0 kmol/min. 
We now have two regions of multiplicity, and due to a partial 
overlap we get four solutions for mass reflux in the range 95.75 
to 96.2 kg/min. If we allow for negative product flows, we 
would get five solutions as the lower branch would also overlap. 
The two lower singular points are caused by a multiplicity 
between mass reflux L ,  and molar reflux L ,  while the two 
upper singular points (high purity in top) are caused by a 
multiplicity between molar reflux L and top composition yo. 
This may be seen from the plot of mass reflux vs. molar reflux 
in Figure 8b. The analysis presented earlier showed that mass- 
flow instability (type I) is most likely with relatively low purity 

Example 1 continued. 

5.6 

"1 5.4 A 

4 8  4'91 
......~~ 

4.7 

4.6 
3 4 5 7 8 9 

Tidy no 

Figure 7. Liquid flow profiles for two molar refluxes in 
the unstable region of the methanol-propanol 
column. 
Boilup V =  4.5 kmol/min 
-, original; - - - -, after increase in L 
Energy balance included 
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in the top, while molar flow instability (type 11) is most likely 
with relatively high purity in the top. The results in this example 
support this analysis. 

Discussion 
Global Stability. We have derived such conditions as Eq. 

8 to check the local stability of a certain operating point. 
However, it is not easy to tell if it is globally stable, that is, 
if it is at a point where we have uniqueness. For Example 1 
(Table 2), it is easily shown with the use of Eq. 8 that operating 
point I11 is unstable and operating points I, 11, IV, and V are 
(locally) stable. It is clear from Figure 1 that operating points 
I and V are globally stable (with L, and V), whereas I1 and 
IV are not. However, there exists no simple method to check 
this directly. To do this analytically one would have to apply 
some kind of Lyapunov function to the dynamic model, which 
is not at all straightforward due to the high order and com- 
plexity of a dynamic model of a distillation column. In fact, 
the easiest way to check for global stability is to obtain solutions 
in the whole range of operation specifying one input and one 
composition (e.g., boilup Vand top compositiony,) in a steady- 
state simulator and then generate a figure similar to Figure 1. 
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Subcooling. We have not discussed all issue\ that may be 
important for multiplicity and instability in dis* illation. For 
instance, subcooling of the reflux may be important as the 
degree of subcooling may depend on the temperature and 
thereby on the composition. The separation in the column is 
determined by the effective reflux L,,>L, which takes into 
account the additional internal reflux caused bq subcooling. 
The degree of subcooling will usually decrease as yo increases 
because the top part of the column cools down. With sub- 
cooling the second term in Eq. 7 is therefore reduced in mag- 
nitude, and we conclude that subcooling makes instability 
somewhat less likely for the L,V configuration. 

Multicomponent Mixtures. Introducing additional nonkey 
components will generally make multiplicity and instability less 
probable. The reason is that the “dead weight” of the nonkey 
components generally will reduce the effect of changes in the 
compositions of the key components on mole weight, M ,  and 
heat of vaporization, AHvap. 

We have not discussed volume inputs in 
particular, but the results obtained for mass inputs will in 
general apply to the volume case. For the case with ideal mixing 
we need substitute only the molecular weights with the molar 
volumes in the equations presented. For example, consider the 
L,V configuration. Similar to the mass case, V > V i s nec- 

Volume Basis. 
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essary for instability, and in this case the instability condition 
becomes: 

0.7 

X 0.65- 

0.61 

v2 yo+L - >- (2)" v,-v, 

- 

(35) 

For most mixtures, the difference in densities between the 
components are small, and very similar results will be obtained 
for volume inputs as those found for mass inputs. For the 
methanol-propanol example, we have a density of methanol 
of 795 kg/m3 and a density of propanol of 806 kg/m3 at normal 
conditions, and the results for volume inputs would be almost 
identical to what is found for mass inputs. For nonideal mix- 
tures, the volume of mixing must also be accounted for. 

As we have dis- 
cussed above, instability for the L,V configuration is likely to 
occur during operation if the reflux is large. Since the L,V 
configuration is commonly used in the industry, it is surprising 
that there have been no previous experimental reports of insta- 
bility. One possible reason is that multiplicity and instability 
always have been believed to be impossible in distillation, and 
consequently observations of instability during operation have 
been explained in other ways. 

During the operation, the presence of instability and multiple 
steady states with the L,V configuration may be observed as 
follows: 

A column may easily be operated at an unstable operating 
point by use of feedback, for example, by adjusting L,  such 
that a tray temperature is kept constant. The operating point 
is (open-loop) unstable if one observes that the steady-state 
effect of an increase in purity in the top is to decrease L,. If 
this column is switched to a manual mode, instability will 
occur. 

Multiple steady states may be observed when a column is 
operated with constant L, and V (manual control) close to a 
singular point. A small upset to the column may bring the 
column past the singular point, and one will observe cata- 
strophic behavior as the entire column profile is changed when 
the column moves to its new steady state on another branch 
(Figure 9). Hysteresis may also be experienced during opera- 
tion: if one takes an input (e.g., L,,,) through a singular point, 
the outputs of the column will jump to totally different values. 

Instability during Industrial Operation. 

1 0.8 

0.55 i 

i 

I 
0.5 
I l l 8  111.85 111.9 11195 112 112.05 112.1 11215 1122 112.25 1123  

Lw [kgimin.] 

Figure 9. Hystheresis with jump phenomena in distil- 
lation. 
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Figure 10. Input multiplicity in distillation. 
Mole fraction of intermediate component in distillate, y,, as a 
function of distillate flow rate, D.  
Column data: N =  11, N F = 6 ,  zr=0.3 ,  zM=0.3 ,  zH=0.4, 
aL,=aMH=2.0, V = 2 . 5  kmol/min 

However, resetting the input to its original value will not force 
the outputs back to their original values. This closed-loop 
hysteresis phenomenon with jumps at the singular points is 
well known from catastrophe theory (Poston and Stewart, 
1978), and is illustrated in Figure 9. 

All results above are for the case of 
output multiplicity. As mentioned in the introduction, we may 
also have input multiplicity in distillation columns, at least for 
multicomponent separations. As an example, consider a sep- 
aration of components L (light), M (intermediate), and H 
(heavy). Let z and y represent mole fractions in the feed and 
top product, respectively. Let V/F be fixed and consider the 
effect on y ,  of varying the top product rate, D. For large 
values of D (D= F )  , there is no separation in the top and we 
have y,= zM. As D is reduced, y, increases because component 
H is taken out in the bottom rather than in the top. For 
D = F( 1 - zH) we have the best separation between components 
M and H ,  and we have y,&=z,/(l - zH) >zM. However, as D 
is reduced beyond this value, the column starts separating 
between components L and M ,  and y ,  decreases, and for small 
values of D we have y,=O. Consequently, the relationship 
between D and y ,  has a maximum (see Figure 10). If y ,  is 
specified between zM and y,&, there exists two possible values 
for D: we have input multiplicity. To avoid this problem in a 
practical situation, one should redefine the outputs, for ex- 
ample, by specifying compositions in terms of ratios of key 
components. 

Input Multiplicity. 

Conclusions 
Two-product distillation columns may have multiple steady- 

state solutions as well as unstable operating points. These re- 
sults are independent of complex thermodynamics and are 
found even for single-staged, ideal binary distillation columns. 

The behavior may have been caused by two different effects: 
Possible singularities in the transformation from the actual 

independent flows to the molar flows L and Vwhich determine 
separation in the column. The relationship between mass and 
molar reflux is L,= LM. An increase in L will in most systems 
reduce the mole weight Mof the top product. If this reduction 

AIChE Journal April 1991 Vol. 37, NO. 4 509 



is sufficiently large, the overall effect may be a decrease in L,, 
and the operating point is unstable. This is most likely to 
happen when: the mole weight of  the light component is much 
smaller than that of the heavy component,  but  relative volatility 
is still reasonably close to 1;  the  bottom product is relatively 
pure [xB<<(l -yD)]; and L / D  ratio is large. 

Possible singularities between molar reflux L and top  com- 
positiony, due to interactions between flows and compositions 
in the column. The flows will affect compositions through the 
material balances while compositions will affect flows through 
the energy-balances. The total effect may  result in a negative 
slope between molar reflux L and top  composition yD, which 
corresponds to an unstable operating point. 

For both types o f  multiplicities, the following three operating 
regimes exist: 

Internal flows low: no multiplicity and no instability 
Internal flows intermediate: multiple steady states, one of  

which is unstable (in some cases there may  be two unstable 
states for the L,Vconfiguration due  to both molar- and mass- 
input multiplicity in the same area o f  operation) 

Internal flows high: no multiple steady states with all the 
operating points unstable. 

Notation 
B = bottoms flow, kmol/min 
D = distillate flow, kmol/min 
F = feed rate, kmol/min 

HL = liquid phase enthalpy, kJ/kmol 
HV = vapor phase enthalpy, kJ/kmol 

AHVaP = heat of vaporization, kJ/kmol 
L = reflux flow rate, kmol/min 

LB = liquid flow from bottom tray, kmol/min 
M = mole weight, usually of top product, kg/kmol 

Mi = pure component mole weight of most volatile component, 

M2 = pure component mole weight of least volatile component, 
kg/kmol 

kg/kmol 
N = no. of theoretical stages in column 

NF = feed stage location, 1-reboiler 
A p  = pressure drop, atm 
Q = heat input to reboiler, kJ/min 
QD = heat removal in condenser, kJ/min 

S = yD(1 - x B ) / ( ~  - Y D ) X B  separation factor (binary mixture) 
V = boilup from reboiler (determined indirectly by heating QB), 

V ,  = vapor flow rate from top tray (determined indirectly by 

Vi = pure component molar volume of most volatile component, 

V2 = pure component molar volume of least volatile component, 

XB = mole fraction of most volatile component in bottom product 
xi = mole fraction of most volatile component on tray i 

Y D  = mole fraction of most volatile component in distillate (top 

zF = mole fraction of most volatile component in feed 

kmol/min 

cooling QD), kmol/min 

m3/kmol 

m3/kmol 

product) 

Greek letters 
OL = (y,/x,)/[(l -y , ) / ( l  -xi)]  =relative volatility (binary mix- 

p = density, kg/m3 
ture) 

Subscripts 
q = flow rate, m3/min 
w = flow rate, kg/min 
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Appendix A: Sign of Gains (ay&D), and (ax&B)), 

1. Assume no multiplicity for  the DV configuration, i.e., 
neither output nor input multiplicity. No output  multiplicity 
(i.e., specifying D and Vuniquely determines x,) seems to apply 
generally. No input multiplicity (e.g., specifying Y and x, 
uniquely determines D) seems to always apply to  binary mix- 
tures and  multicomponent mixtures if we consider the com- 
ponents that  distribute to one product, i.e., not for intermediate 
components (see Figure 10). 

2. Let yD denote the mole fraction in the distillate of  the 
most volatile component. Then, 

limy, > zF; limy, = zF (All 
D-0 D-F 

A s  yD decreases when D goes f rom 0 to F, the  gain (ayD/ 
aD), must be negative for  some D. Assumption 1 then implies 
that  the gain is negative fo r  all D, 
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(%) V <o. 

Similar reasoning for compositions on other trays gives: 

(2) V CO. 

for all i. 
3. Assuming (a  V,/a V0 and (aL,/aL),, nonzero implies that 

the transformations between the D V and the LB configuration 
are nonsingular. Uniqueness for the DV configuration is then 
conserved with the LB configuration. 

4. A similar analysis as in step 2 above then yields: 

(2) L >o 

for all i. This also applies to the reboiler where xi=xE.  

Appendix B: Sign of Gains (ay&L)), and (ax& W), 
for the Case of Constant Molar Flows 

The gain (ayD/aL)v may be written as: 

For the case of constant molar flows (aD/aL)v= - 1, and Eq. 
B1 becomes (ayD/aL) v= - ( ayD/aD)v. From Appendix A it 
then follows that 

Similarly, we find: 

When the energy balance is included, the sign of the gains 
(ayD/aL)Vand (axE/av), may take either sign as shown in Part 
11. 
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