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1. Introduction Note that the RS-conditions (3), (5) and (7) for the system with

time delays appear as conditions on the delay-free systems only. (5)
and (7) follow from a property of y (Doyle 1982) since D is a unitary
matrix.

The dynamic behavior of many industrial processes contain inherent
time-delays. Time-delays not only make it difficult to achieve satisfac-
tory performance but also greatly complicate the analytical and com-
putational aspects of system design. A few authors have worked on
robust control of time delay systems, e.g., Laughlin et al. (1987) who
studied robust performance of the SISO Smith predictor within the
IMC structure. In this paper, the robust performance of Smith predic-
tor is addressed using the structured singular value (#). By employing
the properties of the Smith predictor, this time-delay design problem is
converted to a corresponding delay-free problem. This conversion not
only makes the analysis and synthesis easier, but also avoids problems
due to rational time delay approximations.

2. Robust Performance of Time-Delay
Systems Using Smith Predictor

In Fig. 1, Gy(s) = {§.~je‘§"i’} is the actual plant, G(s) = {gi;e~%°}
is the nominal model, and Go(s) = {gi;} is the delay-free part of G. All

Nominal Performance (NP)

Nominal performance is here defined in terms of the weighted sen-
sitivity matrix

NP & &wpS)<1l, Vw (8)

However, we want to obtain a delay-free design procedure. We then
have to define performance in terms of the corresponding delay-free
system

NP & 6’(“)}?()5[]) <1, Yw (9)

Here the subscript 0 in wpo is used to explicitly show this weight is on
delay free sensitivity function.
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Of course, N P is our real objective, and we will try to achieve this

these transfer function are assumed to be stable. The overall controller
K(s) includes the “primary” controller Ko(s) for the time-delay free
system and the Smith predictor, G—Go. Besides the sensitivity matrix

§=(I+GK)™! (1)
we also introduce the delay-free sensitivity matrix

So = (I + Goky)™ ) (2)

Nominal Stability (NS)

The time delay control system with Smith predictor shown in Fig. 1
should be internally stable. Because the plant is assumed stable this
is equivalent to the nominal stability of the corresponding delay-free
control system, So.

Robust Stability (RS)
If nominal stability holds, then
1. Robust stability will be guaraﬁteed for additive uncertainty
bounded by wa(s) if and only if
! IIAA(w.,gKoSo) < 1, Vw (3)
2. Robust stability will be guaranteed for input multiplicative uncer-
tainty bounded by wy(s) if and only if
MAI(’(U]K()S()G) <1, VYw (4)

If we assume G = GoD, D = diag{e~%*}, i.e. the time delays are
on the inputs only, then (4) is equivalent to

pa, (wiKeSeGo) < 1, Vw (5)

3. Robust stability will be guaranteed for output multiplicative un-
certainty bounded by wo(s) if and only if

ﬂ.Ao(’wOGKoSo) <1, Vw (6)

If similarly we assume G = DGy, D = diag{e~%°}, i.e. the time
delays are on the output only, then (6) is equivalent to

[JAO('U)OGQI\’()S()) <1, Yw (7)
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by satisfying N Po. We need to obtain a reasonable weight wpp. Ide-
ally, we want to select wpo such that NP and N P, are equivalent, that
is, such that &{wpoSo) = a(wpS). However, this is not possible before
we start the design, because Sp and § are unknown at this point. Intu-
itively, we expect that we must use tighter performance specifications
on Sg than on S, that is, wpe must be larger in magnitude than wp.
This is confirmed by considering the following equality

§=(I-GG3Y)+ GGy 5 (10)

We want § small. The first term in the right side of Eq. (10) is an
“ynavoidable error”, and the second term is a “delayed” error of the
delay free system.

For the case with time-delays on the plant outputs only we have
G = DGy, where D = diag{e=%*} and GG5' = D. It then follows
that

§=(U-D)+ DS (11)

and

5(8) - a(So)l < a(/ - D) (12)

So for the case of output time-delays (and for SISO systems in gen-
eral), the difference between 5(S) and &(So) is relatively small, and

by selecting
lwpgl < lwp'l - (I = D) (13)

NP is satisfied if NPo is satisfied (we may modify wpg at high frequen-
cies to make it physically more reasonable).

For the general MIMO case Eq. (10) yields
3(S) < 5(I - GG3') + 3(GGg")5(So) (14)
By choosing
lwphl < (lwp'] - ol - GG5))/3(GGg") (15)

NP will be satisfied if NP is satisfied. With this weight NPy is
only a sufficient condition for NP, and it may result in a too tight
performance weight if 5(GGg') is large (> 1).
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Robust Performance (RP)
Robust performance is here defined as
RP & &(wpSp) <1, Vw, VAs,ArorAp (16)
where 8, is the sensitivity function for the case with model error
Sy =(I+GK)™? (17)

The corresponding je-test in terms of the system with time-delay (K,
G and uncertainty) is

RP & pupp=suppa(N)<1 (18)

where A Is the block structure including both uncertainty and perfor-
mance block, N can be derived from the standard ‘N — A’ structure
and is different for different kind of uncertainty.

For the same reason as mentioned for nominal performance, we
would like to have p-tests on the delay-free system which guarantee
RP. One approach is to first define RFP, of the delay-free system

RP & 5(11}):'05,,0) <1, Vw, VAu,AjorAp (19)
where

Spo = So(I+ wal g Ko(I + GoKo)™')™?
So(! + ’U)]GUA[I(U(I-F GoI\"o)-l)—l
So(1 + wohoGoKo(I 4 Goltg)™1)™ (20)

We then get the following equivalent pu-condition
RPy ¢ jipp, = sup pa(No) < 1, (21)

where Np is in terms of Ko, Gy and uncertainty.

Unfortunately, RFy is not in general equivalent to RP except for
SISO systems even for cases when NP and N Py are equivalent. How-
ever, we can still specify ILF, to satisfly RP. We have for additive
uncertainty

Sp SUI+(Gp-G)K(I+GK)™)!
S(I + ’wAAAI[-o(I + Go]i'o)_l)_l

(I = GG (T + wad aKo(I + Goko) ™)™ + GG 5,622)

The last equation is the same as Eq. (10) except that the first term on
the right hand side is changed by a factor
(I+walA 4 Ko(I + Gok)~")~!. By choosing

|wpol < (IWFI|—1‘7(1~GGEI)5((1+WAAAK0(I+GOK0)'1)"))/5(?@3?1)
23

RP will be satisfied if R P, is satisfied. Comparing (23) with (15), we
see that it requires a tighter performance weight wpy to satisfy RP
than to satisfy NP, since 6((I + waAaKo(I + GoKo)~1)1) is always
larger than 1. Although &((J + wadA 4 Ko(I + Gokp)~1)~1) involves
the controller Ky, it is generally independent of K at low frequencies
(for example, a controller with integrator), so we may be able to select
a reasonable wpy before we start the design.

If 6((1 + wal (I + GoKo)~1)~1) is not too large (compared to
1), or equivalently if a(I + waAARo(I + Golo)~1) is not too small
(cornpared to 1), then the “unavoidable error” will not be much differ-
ent from the nominal case. o(f+waA 4 Ko(I+ Golio)™1) is indeed not
small in SISO systems, but it may be very small in MIMO systems,
particularly when A is structured. However, in practice our design ap-
proach in terms of R P may work well even for general MIMO systems.
This follows since large o(I + wal 4 Ko(1 4+ Golp)™1) is sufficient but
not necessary. Similar results exist for input multiplicative uncertainty
with input time-delay and output multiplicative uncertainty with out-
put delay.

3. Design Example

Here we consider the same SISO example as Laughlin et al. (1987).
The plant model is

ko g _k
syl Cols) = Ts+1
The nominal values of k,7 and 6 are all equal to 1. We use the same
multiplicative uncertainty weight w;(s) as Laughlin et al. which was
derived by considering 50% uncertainty in the parameters k, and §.

s+41 )(1—0.253)
0.5s+17"1+ 0.25s

G(s) =

(24]

wr(s) = 1.5( 1 (25)

We use the following performance weights

13.3978 +1 1 3.

2 3.397s 1.5 3.2s
The weight wp(s) is also from Laughlin et al. (1987), whereas the
performance weight wpo(s) on the delay free sensitivity function S,

was chosen to match the equality in (23) at low frequencies. Note that
the allowed peak on the sensitivity function is 2 for § and 1.5 for S,.

wp(s) = (26)

For the time-delay free process with uncertainty we obtained (using
“D — K iteration” and order reduction) a 4-order p-optimal primary
controller Ko, with peak value prp, = 0.9679. With this controller the
corresponding robust performance for the real system with time delay
is prp = 0.9965. On the other hand, the pgp values of the “u-optimal
controller” and the Smith predictor controller given by Laughlin et al.
(1987) are about 1.08 and 1.1 (observed from their plot), respectively.
Clearly, the ppp value of the u-optimal controller should be less than
ours (0.9965) which was designed based on the delay-free system. The
reason for their higher value may be that the software they used is not
50 good. Indeed, using the newer 4 software (Balas et al., 1991), we are
able to get a 14'th order p-optimal controller, K, with ugp = 0.9771.

In order to synthesize the u-optimal controller, one need to approx-
imate the time-delay by a rational function. Laughlin et al. used a
fourth order Pade approximation, and so did we. Generally, one would
believe that a fourth-order Pade approximation should be sufficiently
accurate, but when we calculate the p-curves with the p-optimal con-
troller, Iy, applied to the plant with the real time-delay, we find that
te u-plot contains several large peaks which locations are identical with
the peaks of Pade approximation error. The bandwidth of our system
is about 0.2, while the fourth Pade approximation is quite accurate
for frequencies less than 5. However, if we consider the p-plot, we find
that p for robust performance is very flat up to frequency of about 100;
this requires the approximation to be good at least up to frequency
100. This means that robust performance problem may put much more
severe restriction on approximation of time-delay. To overcome it, one
may add a filter to the p-optimal controller or combine the approxima-
tion error explicitly into the model uncertainty. One simple methods
is to let the uncertainty weight approach infinity at high frequency
(whereas wy(s) levels off at 4). Since the method proposed in this
paper is completely delay-free, it does not suffer from those problems.
This is another advantage of our method.
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Figure 1. Smith predictor control structure
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