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Abstract

; By controllability (dynamic resilience) we generally mean the best closed-loop perfor-
] mance achievable using any controller. In this paper we limit us to linear single-loop
(decentralized) controllers and study controllability in this case.

To evaluate controllability without actually having to design an optimal control system
we need controller-independent measures. One such measure which has found widespread
use is the relative gain array (RGA). We shall use as our main tools the frequency-
dependent RGA, A;;(s) = g;;(s)[G~(s));i, and the Closed Loop Disturbance Gain (CLDG),
Sik(s) = gii(s)[G(3)~' Gu(s))x.

If [A] or |6] are large at crossover frequencies then performance using single-loop con-
trollers is expected to be poor. The values of 0;x may tell the engineer which disturbance
k will be most difficult to handle under feedback control. This may pinpoint the need for
using feedforward control, or for modyfying the process by including, for example, a buffer
tank for the feed. The paper is focused on applying these measures to distillation column
control and fluid catalytic cracker (FCC) control.

“Author to whom correspondence should be addressed. E-mail: SKOGE@KJ EMLUNIT.NO, phone: 47-7-
594154, fax: 47-7-591410




1 Introduction

The relative gain array (RGA) has found widespread use as a measure of interaction and
as a tool for control structure selection for single-loop controllers. It was first introduced
by Bristol (1966). It was originally defined at steady-state, but it may easily be extended
to higher frequencies (Bristol, 1978). Shinskey (1967,1984) and several other authors have
demonstrated practical applications of the RGA. Important advantages with the RGA is
that it depends on the plant model only and that it is scaling independent. The advent
of the computer has largely removed the need to develop simlified tools in order to save
computation time. However, there are still a need for simple tools to yield insight and to
assist the engineer in prescreening the large number of alternative control structures, and
to get initial estimates of a systems achievable performance. The RGA is an ideal tool
in this respect; it may be computed using only limited information and one calculation
is sufficient for screening a large number of alternatives. However, there are of course
limitations with such a simple tool, and more powerful and exact methods must be used
after the initial screening.
For a 2 x 2 plant G(s) the RGA-matrix is
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For n x n plants the RGA is defined by the ratio of the “open-loop” and “closed-loop”
gains between input j and output ¢

(ayi/auj)yz;t.

Thus, the RGA matrix can be computed using the formula

A = gi;(8)[G71(8)];s (2)

A(s) = G(s) x (G™Y(s)T (3)

where the x symbol denotes element by element multiplication (Hadamard or Schur prod-
uct). The RGA matrix has some interesting algebraic properties (eg., Grosdidier et al.,
1985):

a) It is scaling independent (eg., independent of units chosen for u and y). Mathematically,
A(D1GD;) = A(G) where D, and D, are diagonal matrices.

b) All row and column sums equal one.

¢) Any permutation of rows or columns in G results in the same pertubations in the RGA.

Another important usage of the RGA is that pairing on negative steady-state relative
gains should be avoided. The reason is that with integral control this yields instability
of either 1) the overall system, 2) the individual loop, or 3) the remaining system when
the loop in question is removed. It is also established that plants with large RGA-values,
in particular at high frequencies, are fundamentally difficult to control irrespective of the
controller used (poor controllability).

A measure related to the RGA is the relative disturbance gain, RDG, introduced by
Stanley et al. (1985). It was given a performance interpretation and extended to other




frequencies than zero by Skogestad and Morari (1987a). For loop 7 and a particular dis-
turbance z;, the RDG, f, is defined as the ratio of the change in u; needed for perfect
disturbance rejection, to the change in u; needed for disturbance rejection only in the
corresponding output y; (with all the other manipulated variables constant). We have

(Ouif/0zk)y, _ (GG ik
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This formula also applies to non-zero frequencies. The RDG is also scaling independent
and depends on the model of the plant and its disturbances. Note that the RDG has to be
recomputed whenever another choice of pairings is selected, whereas the RGA need only
be rearranged in accordance with the rearrangement of G.

A closely related disturbance measure, the closed loop disturbance gain (CLDG), was

recently introduced by Skogestad and Hovd (1990). For a disturbance & and an output 1,
the CLDG is defined by

bik(s) = Bik(5)gdir(s) = gii(8)[G(8) " Gu(s)]ix (5)

The reason for the name CLDG will become clear later. A matrix of CLDG’s may be
computed from

A= {6ik} = GG—IGd (6)

The CLDG is scaling dependent, as it depends on the expected magnitude of disturbances
and outputs. Actually, this is reasonable since CLDG is a performance measure, which
generally are scaling dependent.

Notation

The controller C(s) is diagonal with entries ci(s) (see Fig. 1). This implies that after
the variable pairing has been determined, the order of the elements in y and u has been
arranged so that the plant transfer matrix G(s) has the elements corresponding to the
paired variables on the main diagonal. Let y(s) denote the output response for the overall
system when all loops are closed and let e(s) = y(s) — 7(s) denote the output error. The
closed loop response becomes

e(s) = =S(s)r(s) + S(s)Ga(s)z(s); S=U+GC)™? (7)

where S(s) is the sensitivity function for the overall system , and z(s) denotes the distur-
bances. G is assumed to be a n X n square matrix, but G4 may be nonsquare. The matrix
consisting of only the diagonal elements of G(s) is denoted G(s), i.e., G = diag{g;;}. The
Laplace variable s is often omitted to simplify notation.

2 Performance relationships

Assume that G and G, have been scaled such that 1) the expected disturbances, |zx(jw)],
are less or equal to one at all frequencies, and 2) the outputs, y; are such that the expected
setpoint changes, |r;(jw)|, are less or equal to one.

Consider the effect of a setpoint change r; and a disturbance z; on the offset e;. With
all loops closed the closed-loop response becomes (Fig. 1)

ei = —[S)ijr; + [SGalik 2k (8)




For w < wp we may usually assume § = (I + GC)~! = (GC)~!. Provided the correspond-
ing cofactor of G is nonzero,', and ¢; is sufficiently large, this approximation will also hold
for individual elements

G~Y;; G~1Gy);
[S}j = [ c‘]J; [SGalix = (67 Gl - d £ w<wp (9)
With this approximation (8) becomes
1 1
ei = —[G7;—r; + [G'lGd]ikc—Zh w<wa (10)
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If g;i(s) # 0 and gii(s) # 0 the definitions of the RGA and CLDG yield [G™)i; = Aji/9g5i
and [G1Gy)ik = 6ix/gi; and we have
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Using S = (I + GC)~') =~ diag{1/(gi;ic;)} this may be written on matrix form
ex —SGG'r + SGG™'Gyz; w< wp (12)

where GG™!Gy = A is the CLDG matrix. From (11) we see that the ratio A;;/(giici) gives
the magnitude of the offset in output 7 to a setpoint change in this output. This ratio
should preferably be small. That is, on a conventional magnitude Bode plot (log-log), the
curve for [A;;| should lie below |g;;c;| at frequencies where we want small offsets. If we want
e; to be small when considering a change in setpoint ¢ (small cross-interactions), we must
also consider the offdiagonal elements in GG!.

For process control disturbance rejection is usually more important than setpoint track-
ing. From (11) we see that the ratio 6;;/(giic;) gives the magnitude of the offset in output
i to a disturbance z;. That is, the curve for |6;;| should lie below |g;ic;| at frequencies
where we want small offsets. A plot of |6;x(jw)| will give useful information about which
disturbances & are difficult to reject.

Note that for input disturbances, i.e. G4 = G, we get ;5 = g;i- Thus, large di-
agonal elements in G (when appropriately scaled) may imply difficulties rejecting input
disturbances.

Comparison with all loops open. To get a better physical interpretation of the
RGA and RDG consider the response &; to a setpoint change r; and a disturbance zx when
all the other loops are open. We get

&= —(1+4 giic)) " ri + (1 + giici) ™ gain 2 (13)
At low frequencies we have |g;;c;| > 1 and derive
1 i
€ R — 7 + -gd—k-zk; w < wpg (14)
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Comparing (14) and (11) we see for a setpoint change r; in loop ¢ that A;; gives the
approximate change in offset caused by closing the other loops. Similarly, for loop ¢ and
disturbance z; we see that the the open-loop disturbance gain, ggix, is replaced by the
closed- loop disturbance gain, 6;x. Also note that for disturbances B;r = 8;x/gqix gives the
approximate change in offset caused by closing the other loops.

!Cofactors of G identically equal to zero are relatively rare for transfer function matrices with dimension
higher than 2 x 2, except for triangular transfer matrices.
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2.1 Limitations of (11)

The main limitation with (11) is that it applies only to lower and intermediate frequencies.
Furthermore, the issue of stability is not adressed.

Another limitation which we shall discuss in more detail here, is the assumption that
all elements in G(s) are nonzero. In particular, it is clear that relations involving |giici|
in the denominator are not meaningful when g;; = 0. Furthermore, it is well known that
the RGA may be misleading for triangular G(s), which have A = I. To better understand
these limitations we shall consider the 2 x 2 case in detail. We have

(GCY ! = 1 ( ga2C2  —g1202 ) (15)

0102(911922—912921) —g2101 4111

5= 1 1+ gooc2  —G12¢2 (16)
c1¢2(g11922 — g12921) + 1 + g1 + gazc2 —go1c1 14+ gna

All elements nonzero. In this case the approximation 5 = (GC)™! holds for all ele-
ments of S at frequencies where |g11c1| 3> 1 and |g22¢2| > 1, which are then prerequisites
(necessary conditions) for (11) to hold. The setpoint relationships in (11) become

A A A
e A — 11”_9_11 21r2:— “(r1+g—12-r2)
g1 g21 q11¢1 g1 g22
A A A
B L i Ry (L 4 19) (17)
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Zero diagonal elements in G. Without loss of generality consider the case g11 = 0 (and
M1 = A2 = 0,02 = Ay = 1. Then (11) for loop 1 in terms of g11c1 is meaningless.
Furthermore, to derive (11) for loop 2 we assumed lg11e1] > 1 in (9), but this of course
not possible for g11 = 0. We therefore conclude that if g1 = 0 then (11) does not apply
neither to loop 1 or 2. For (9) to hold in this case we must require

2
lgazea| > 15 | > |——'g 2| (18)
912921

The performance relationships for setpoint tracking to replace (17) become

g2 1 11
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The last term puts a requirement on the product of the controller gains. This is
reasonable since with ¢g;; = 0 input u; can only affect output by the indirect action of
control loop 2. For disturbance rejection, (11) holds provided (18) holds.

Zero offdiagonal elements in G(s) (G(s) triangular). (17) (with A1; = 1) holds also in
this case. The important point to note is that interactions may cause poor performance
in spite of the fact that A = I. For example, when g12 =0 interactions from r; to ez may
be severe if |g21/g11] is large.




2.2 Summary

Let us at this point summarize some results we shall use in the examples:

Pairing Rule 1. Avoid pairings ¢j with negative values of the steady-state RGA, A;;(0)
(Grosdidier et al., 1985).

Pairing Rule 2. Prefer pairings which yield the RGA-matrix close to identity (the rule
follows from considering overall stability, note that it is not sufficient to check only if the
diagonal elements are close to 1, see Hovd and Skogestad (1990).

Pairing Rule 3. Prefer pairings ¢j where g;;(s) puts minimal restrictions on the achiev-
able bandwidth for this loop (the rule follows from (11) above).

Rule 3 is the conventional rule of pairing on variables “close to each other”. Rules 1-3 will
in many cases determine the best choice of pairings for decentralized control. To evaluate
controllability we shall use:

Controllability Rule 1. Avoid plants (designs) with large RGA-values (in particular at
frequencies near cross-over). This rule applies for any controller, not only to decentralized
control (Skogestad and Morari, 1987b).

Controllability Rule 2. For decentralized control avoid control structures (an entire
set of pairings) with large values of |6;x| in the crossover region, and in particular if the
achievable bandwidth for the corresponding loop i is restricted (because of gii(s), see
pairing rule 2) (the rule follows from (11) above).

3 Distillation Control

From a control point of view distillation columns may be considered as a 5 x 5 system with
inputs u and outputs y.
w=(L,V,D,B,Vr)T (20)

y= (yDaxByMD,MBaP)T (21)

The model in terms of deviation variables is
y(s) = G(s)u(s) (22)

The number of possible pairings for single-loop control is very large. However, in most
cases condenser duty, Vr, is used to control pressure, p, and we have a 4 x 4 control
problem. The 4 x 4 RGA-matrix for this case has a 2 x 2 identity matrix in the lower right
corner, and a 2 x 2 full matrix in the upper left corner. Intuitively, one would then expect
the pairings suggested by the order of (20) and (21) to be preferred. This would yield the
LV-configuration where L and V' are used for composition control. However, industrial
experience have suggested that other options may be preferable, and this is studied below.

The term configuration used below refers to the two independent variables used for
composition control. The two level loops are assumed to be closed, and with perfect
control. Note that the RGA of the remaining 2 X 2 problem for composition control (with




level loops closed) in general is quite different from the RGA-matrix of the original open-
loop system in (22).

We shall next-study the following: 1) Compostion control with LV configuration, 2) Top
part of column for DV-configuration, 3) Composition control with other configurations.

3.1 Example 1: Composition control with LV configuration

In order to demonstrate the use of the frequency dependent RGA and CLDG for control
structure selection and evaluation of expected control performance, a binary distillation
column with 40 theoretical trays plus a total condenser is considered. This is the same
column as studied by Skogestad et al. (1988), but we use a more rigorous model which
includes liquid dynamics in addition to the composition dynamics. The model has a total of
82 states. Disturbances in feed flowrate F (z;) and feed composition zf (z2), are included
in the model. The LV configuration is used, that is, the manipulated inputs are reflux L
(u; = L) and boilup V (uz = V). Outputs are the product compositions y¥p (y1) and B
(y2). The model then becomes

( o ) = G(s) ( tu ) + Gals) ( i ) (23)

The steady state gain matrices are
87.8 —86.4 11.8 17.6
Go) = ( 108.2 —109.6 ) P Gal0) = ( 17.6 224 ) (24)
The disturbances and outputs have been scaled such that a magnitude of 1 corresponds
to a change in F of 30%, a change in zp of 20%, and a change in zp and yp of 0.01
molefraction units.

Pairings. Rule 1 dictates that one should use uy to control y; and uz to control yz, as
indicated by (23). This is in agreement with industrial practice.

Analysis of the model. Fig. 2 shows the open-loop disturbance gains, gadik, a8 @ function
of frequency. These gains are quite similar in magnitude and rejecting disturbances z1 and
zo seems to be equally difficult. However, this conclusion is incorrect. The reason is that
the direction of these two disturbances is quite different, that is, disturbance 2 (zF) 18 well
aligned with G and is easy to reject, while disturbance 1 (F') is not (Skogestad and Morari,
1987a). This is seen from Fig. 3 where the closed-loop disturbance gains, 2, for 22 are
seen to be much smaller than §;p for z1.

Observed control performance. To check the validity of the above results we used the
single-loop PI controllers by Skogestad et al. (1990).

The loop gains, |giici|, with these controllers are also shown in Fig. 3. The loop
gain for the top composition is smaller than the closed-loop disturbance gain, 1611}, at
frequencies close to crossover, while the bottom composition loop gain is larger than |62k
at all frequencies. Closed-loop simulations with these controllers are shown in Fig. 4. The
simulations confirm that disturbance 2 is much easier rejected than disturbance 1. They
also confirm that with these controller settings, a disturbance in F has a larger effect on
yp than on zp. In summary, there is an excellent correlation between the analysis based
on |6 in Fig. 3 and the simulations. This is not surprising when one considers Fig. 5
which shows the accuracy of the approximation (S (s)G4(8))ik = ;I—ft'fs(é)m which was used
to derive Eq.(11) and which formed the basis for the analysis in Fig. 3. The approximation




is very good at low frequencies, but as expected poorer at frequencies around the closed
loop bandwidth.

-

3.2 Example 2: Top part of column with DV-configuration

[n order to demonstrate that acceptable control may be achieved even with pairings corre-
sponding to Aii = 0, consider control of the top part of a distillation column. It is desired
to control the top product composition (yp) and the level in the condenser (Mp). The
manipulated inputs are the distillate flowrate (D) and the reflux flowrate (L). The vapor
flowrate entering the top of the column is considered to be the only disturbance (V).
After scaling, the resulting transfer functions are

dyp \ _ [ O 100 dD F1005 4V 25
(dMJ‘(% 2 ) a )L .

This pairing corresponds to A1 = Ay = 0 atall frequencies. This pairing may be preferred
in some cases, for example, if the reflux is large such that constraints on the distillate
flowrate make level control with this input difficult. We shall show that stability and
performance may be achieved even with this pairing. The achieveabe bandwidth is limited
by unmodeled measurement delay in yp of one minute and and valve dynamics in L
equivalent to a time delay of 0.1 minute. The chosen controllers are

14 10s
10s '

ai(s) =05 ca(s) = =5 (26)
Stability of the individual loops and overall stability is achieved. To check performance,
the controllers and the bounds (17) for the case with zero diagonal elements are shown in
Fig. 6. As the ratio of |gz2¢2| to |621] is constant (= 5) and does not approach infinity at
steady state, a step in the disturbance will not be perfectly rejected in loop 2. The bounds
in Fig. 6 indicate that interactions put no serious limitations on achievable performance.
In Fig. 7 we show responses to changes in setpoints and 7, and in disturbance z. In the
simulations a first order filter with a time constant of one minute is used for both setpoints,
and a one minute time delay in the measurement of 1 and a 0.1 minute time delay in
manipulated variable ug are approximated with first order Padé approximations. The
observed control performance is satisfactory, although there is an undesirable interaction
from setpoint 72 to output 1. This interaction cannot be predicted from Fig. 6, as Eq.
(9) does not hold in the crossover region where the interactions occur.

3.3 Example 3: Composition control with other configura-
tions

The model for various configurations
LV,DV, (L/D)(V/B), DB,LB

was obtained from (22) by closing the level loops assuming perfect control. For example,
for the DV-configuration we need D instead of L as an independent variable. Perfect
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control of condenser level gives:

- L(s) = V(s) - D(s) (27)

The different configurations are described in more detail in Skogestad et al. (1990)
where controller tunings also are given. The RGA-values for the five configurations are
shown in Fig. 8. In Fig. 9 we show the CLDG’s together with the loop gains obtained
by Skogestad et al. (1990). Overall, the CLDG’s are not very different for the various
configurations, but the loop gains are different because of the effect of interactions (e.g.
A11) on stability. Comparing Fig. 9 with the closed-loop simulations in Fig. 10 we note an
excellent agreement. From the CLDG’s we can easily identify the worst disturbance for each
configuration: Feed rate for LV, feed composition for (L/D)(V/B) and similar sensitivity
to feed rate and feed composition disturbances for DB. The LB and DV configurations
combine the closed loop disturbance gains of the LV and DB configurations in two different
ways. The top composition in LB is sensitive to disturbances in F (similar to LV), the
bottom composition is equally sensitive to disturbances in F and zf (similar to DB). For
DV the CLDG’s for the top composition are similar to those for DB, and the CLDG’s for
the bottom composition are similar to those for LV.

4 Example 4: Control of a Fluid Catalytic Cracker

The Fluid Catalytic Cracking (FCC) process is an important process for upgrading the
heavy components of crude oil in refineries. A overview of a typical FCC is shown in Fig.
11. Typically, the control problem is to use as manipulated inputs

F, - flow rate of air to the regenerator

F, - flow rate of regenerated catalyst to the riser reactor
to control the outputs

Oy - the amount of oxygen in the flue gas

T - some temperature
The amount of oxygen in the flue gas needs to be controlled to avoid combustion of carbon
monoxide to carbon dioxide in the piping and equipment downstream the regenerator,
which can result in a large temperature rise and cause structural damage. In addition
either the riser exit temperature T,; or the regenerator temperature Trg i used to control
the cracking reaction in the riser in order to get the desired product split. Advanced Model
Predictive Control (MPC) type of control is known to be installed on some FCC units, but
many units still use traditional decentralized control. Where decentralized control is used,
the pairings indicated above are most often used.

4.1 Modeling of the FCC process

Unlike what is the case for distillation columns, relatively little has been published on the
modeling and control of FCC’s. The main reason for this is that licensing companies and
operating companies have been reluctant to give out much information about the process.
It is therefore difficult to assess how well the limited number of published simulation models
describe the behaviour of actual FCC processes. We shall use the model of Lee and Groves
(1985), as we believe this is the model which best describes modern FCC’s. Readers are
referred to this paper or to Ljungquist (1990) for 2 complete description of the model, as




the objective of this example is to demonstrate the use of the RGA and CLDG, and not
to describe models for simulation of the FCC process.

The model of Lee and Groves has been implemented in 2 simulation program and
numerical differentiation is used to obtain a linear model.

4.2 Choice of control structure

Two different control structures for control of FCC’s have been proposed. They are:

1. Conventional control structure: F, (flowrate of regenerated catalyst) is used to control
T,; (the riser exit temperature).

9. Kurihara control structure: Fl is used to control Trg (the regenerator temperature)
(Kurihara, 1967).

Both structures use Fo to control Oy (the concentration of oxygen in the flue gas). In the
model used in this work, only the oxygen concentration in the regenerator 0, is available,
and it is therefore used instead of the concentration in the flue gas. The same simplification
is implicit in much of what has been published previously on the control of FCC’s.

For the model used in this work, the transfer function matrix from manipulated vari-
ables to outputs for the conventional control structure has transmission zeros at 0.02min~"
and 0.2min"t, whereas the transfer function matrix for the Kurihara control structure has
a transmission zero at 0.3min~!. Since the smallest (in magnitude) RHP-zero limits the
achievable closed-loop bandwidth, the Kurihare structure is perferable from this point of
view and we decided to use the Kurihara structure in the following.

4.3 Choice of pairings

Note that the term «control structure” as used above includes both the choice of controlled
ouputs (T = T,; for conventional structure and T = Ty for Kurihara) and the choice of
pairings (both structures above use F, to control O4 and F to control T').

Interestingly, we found that both propoz;ed control structures correspond to pairing on
negative relative gains, that is, do not satisfy pairing rule 1. 2 This means that for the
Kurihara control structure, one of the control loops must be unstable by itself for the whole
control structure to be stable. Since stability of the individual loops is highly desireable,
we decided to also study the Kurihara structure with reverse pairings.

Furthermore, the Kurihara structure also violates pairing rule 3, as the transfer function
from F, to Trg has a rhp zero at 0.0011min~! and the transfer function from Fo to O4 has
a rhp zero at 0.2min~t. With the reversed pairing there are 1o rhp zeros in either of the
transfer function pairings within a realistically achieveable bandwidth.

4.4 Analysis using frequency dependent RGA and CLDG

In the following consider the Kurihara case and let y; = Od and y2 = Trg- The transfer
functions for the process and disturbances were scaled to make the maximum expected
setpoint changes and the maximum magnitude of disturbances all equal one. The maximum
changes in the setpoints (i) assumed in this example 1s

2We are somewhat surprised to find that both these industrially used control structures correspond to pairing
on negative Ai;(0). It is not clear whether this is really the case or the result of errors in the model used in this
work.
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1. yis - OXygen concentration in regenerator: 0.001 molefraction.
2. Y2s - regen:‘e.rator temperature: 3 K.

The maximum magnitudes of the disturbances (k) are assumed to be
1. Temperature of air t0 regenerator: 9 K.
9. Flowrate of gas oil to riser: 2 kg/s.
3. Rate of formation of coke: 2.5% relative to original value.
4. Temperature of gas oil to riser: 5 K.

For A;; and bik the subscript ¢ refers to the number of the setpoint or measurement and
the subscript k refers to the number of the disturbance as listed above.

Kurihara structure with reverse pairings.

In this case uq = Fj and ug = Fo. Figures 12a and 12b show Xi(Gw), §;x(jw) and the
loop gains for loop 1 (i = 1) and loop 2(i=2), respectively. It is clear that with the chosen
scalings, disturbance 2 (the oil flowrate) is the most difficult to reject, and disturbance 1
(the air temperature) is the easiest to reject in both outputs. Also shown in figures 122
and 12b are the loop gains for loop 1 and 2 respectively, and Aii(jw) which is equal for
both loops. The (scaled) controllers used in this work are:

(166.7s + 1)
(10605 7)

er(s) = =50 Tgg7s (28)
166.7s + 1
CZ(S) = 10(———1—6—6—7—5—‘) (29)

where the integral time is given in minutes. Comparing the loop gains to the &;x(jw)’s
indicates that disturbance 2 could have some effect on ¥ (the oxygen concentration),
whereas the other disturbances appear easy to reject.

Kurihara structure.

In this case w1 = Fa and uy = Fs. The CLDG’s of the Kurihara control structure are
not shown here, but such a plot would again show that disturbance 2 is most difficult to
reject and a disturbance 1 is easiest to reject. Also, for the controller parameters used by
Lee and Groves (1985), disturbance 2 would affect y2 more than y1.

4.5 Comparison with simulation results

Figures 13 and 14 show simulations for disturbance 1 (an increase in the air temperature
of 5 K) and disturbance 2 (an increase in the oil flowrate of 2 kg/s), respectively. The solid
lines are for the reverse Kurihara structure with controller tunings given above, whereas the
dotted line are obtained using the Kurihara control structure with the controller parameters
of Lee and Groves (1985).

The predictions based on the CLDG are in excellent agreement with the results from
the simulations. For both control structures disturbance 2 is much worse than disturbance
1. As predicted by the CLDG’s, disturbance 2 mostly affects ¥1 for our controller and y2
for Lee and Groves’ controller.

The performance of both controllers are comparable; Lee and Groves’ controller achieves
better control of y1 (the oxygen concentration) whereas our controller controls ¥2 (the re-
generator temperature) better. The reason is that the transmission zero at 0.3min~" is
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mainly in the direction of the second input, Fs. Thus it mainly limits the achievable band-
width for yo with the Kurihara control structure, whereas it mainly limits the achievable
bandwidth for yr with our reverse Kurihara structure. One important additional advan-
tage with our controller is that it remains stable if one of the control loops is taken out of
service, whereas for the Kurihara control structure with the controller parameters used by
Lee and Groves the regenerator temperature control loop is unstable by itself.

5 Example 5: Limitations with performance re-
lationships

This example is intended to {lustrate that the performance relationships derived above
may be misleading as constraints and stability considerations are not included. Consider
the the following process

1 -01 ) (30)

1
10s +1 (0.1 1

with A;; at all frequencies equal to 0.99. We shall consider using both this pairing (denoted
pairing A) and the reverse pairing (denoted B). Assume that the control problem is to reject
input disturbances. Then the CLDG-matrix is equal to G, and one might conclude that it is
best to pair on small elements in G and that pairing B is preferred. This conclusion follows
if one designs controllers for the two cases with the same bandwidth in the individual loops.
For case A

G(s) =

10s +1 (31)
10s

For the reverse pairing, B, we get 10 times higher gains in the controller. The responses
are simulated in Fig. 15, and we see that the responseé in terms of offset (y) is indeed
best for the reverse pairing, B. However, the response is strongly oscillatory, and would
probably be unstable in practice because of time delays etc. We also note that the inputs
are much larger and one might hit input constraints in case B. There is also a large peak
in the sensitivity function as seen in Fig. 16.

The reason why the response with the reverse paining, B, is better (at least in terms
of offset) is as follows: The individual loops are tuned to be equally fast. For the original
pairing the loop gain is essentially unaltered as the two loops are closed simultaneously.
However, the reverse pairing corresponds to A1 = 0.01, that is, interactions between the
loops cause the offective loop gains to be about 100 times larger when both loops are closed.
This increased loop gain gives better disturbance rejection.

However, in practice the reverse pairing will probably not be used. First, it goes against
pairing rule 2 and will most probably yield instabilty (unless the tunings are changed, for
example, by making one loop fast and one slow). Second, it may not perform as well in
practice because of input constraints.

ci(s) =1

6 Conclusions

In the paper we have derived performance relationships for the overall system in terms of
the individual loops. Importantly, the relationships depend on the model of the process
only, that is, are independent of the controller. This means that frequency-dependent
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plots of A and §;; may be used to evaluate the achievable closed-loop performance (con-
trollability) under decentralized control. Plants with small values of these measures are
preferred. Furthermore, the values of 8 may tell the engineer which disturbance k will
be most difficult to handle using feedback control. This may pinpoint the need for using
feedforward control, or for modifying the process. For example, in process control adding
a feed buffer tank will dampen the effect of disturbances in feed flowrate and composition.
Plots of &;x may be used to tell if a tank is necessary and what holdup (residence time)
would be needed.

The bounds may be used to obtain a first guess of the controller parameters. However,
as the derivation of the bounds depends on approximations which are valid at low frequen-
cies only, undesirable effects may occur at frequencies around the closed loop bandwidth.
Thus the behavior of the closed-loop system must be checked using other methods, and
the controllers possibly redesigned.
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Nomenclature (also see Section 1 and Fig. 1)

e = y— T - vector of offsets

gi; = [Gij - iJ’th element of G

dik = [Gd]ik - ik’th element of G4

Gii . G with row i and column j removed

r - vector of reference outputs (setpoints)

u - vector of manipulated inputs

y - vector of outputs

Y = g—ﬁ% - Rijnsdorp or Balchen interaction measure for 2 X 2 system
- - vector of disturbances

Bix - ik’th element of RDG matrix

bix = gii[G_lcd]ik = [G‘G“Gd]gk = beta;kGdik - Closed Loop Disturbance Gain
Xi;(G) = gi;1G~")ji - 15'th element in RGA-matrix A

A - RGA matrix

w - frequency

wp - closed loop bandwidth

Subscripts

i - index for outputs or loops

j - index for manipulated inputs or setpoints
k - index for disturbances
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FIGURES
1. Figure 1. Block diagram of decentralized control structure.
2. Figure 2. Open loop disturbance gains, Jdiks for LV configuration.

3. Figure 3. Closed loop disturbance gains, dik, and loop gains, giiCi, for LV configu-
ration. Top: top compoasition. Bottom: bottom composition.

4. Figure 4 Responses to a 30% increase in Fatt=0anda 20% increase il ZF at
¢ = 50min. Solid curve: top composition, ¥D- Dashed curve: bottom composition,

TB.
5. Figure 5 Check of approximation (9) for Example 1. The figure shows the magnitude
of [SGalik/(2%)

guiCi
6. Figure 6 Bounds on controller and loop gains for Example 2.

7. Figure 7 Responses for Example 2 to unit step changesinrpatt = 0,inrgatt= 40,
and in z; at t = 80. Solid line: y1, dashed line: 2.

8. Figure 8 RGA-values, | A1 (jw), for the five configurations.
9. Figure 9 Closed loop disturbance gains, &ik, and loop gains, giiCi, for various config-

urations. Top: top composition. Bottom: bottom composition.

10. Figure 10 Responses to a 30% increase in F'at t = 0 and a 20% increase in zp at
{ = 50min. Solid curve: top composition, ¥D- Dashed curve: bottom composition,

IB-
11. Figure 11 Overview of typical FCC plant.

12. Figure 12 Closed loop disturbance gains, dik, relative gain A;; and loop gain giiCi for
example 4. Figures 122 and 12b show the bounds for 1 = 1 and i = 2 respectively.

13. Figure 13 Response to an increase in the air temperature of 5 K.
14. Figure 14 Response to an increase in the feed oil flowrate of 2 kg/s.

15. FiFure 15 Responses to a unit step disturbance in input 1 for pairing A and input
2 for pairing B. Top: output responses. Bottom: input responses.

16. Figure 16 Sensitivity functions for pairing A (top) and pairing B (bottom).
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