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Abstract

The paper reviews existing and presents some new
results for the frequency- dependent RGA. It is shown
how frequency-dependent plots of the relative gains, A,
and the closed-loop disturbance gains, §, can be used to
avaluate the achievable performance (controllability) of
a plant under decentralized control. These controller-
independent measures give constraints on the design of
the individual loops.

1 Introduction

The relative gain array (RGA) has found widespread use as
2 measure of interaction and as a tool for control structure
selection for single-loop controllers. It was first introduced
by Bristol(1966), and Shinskey (1967, 1984) and several other
authors has demonstrated its practical application. Impor-
tant advantages with the RGA is that it depends on the plant
model only and that it is scaling independent. Tt is straight-
forward to generalize the RGA from single-loop controllers
to block-diagonal controllers by introducing the block relative
gain (BRG) (Manousiouthakis et al, 1986), and most of the
results presented in this paper may be generalized in such a
manner. However, to simplify the presentation, and because
single-loop coutrollers are most common in practice, we shall
consider only the RGA in this paper.

Most authors have confined themselves to use the RGA
al steady state, and a thourough review of the use and in-
terpretation of the steady-state RGA is given by Grosdidier
(1985). A frequency-dependent interaction measure A, which
is equivalent to the RGA for 2 X 2 systems, was introduced by
Balchen (1958) and is discussed for n X n systems in Balchen
and Mumme (1988). Balchen also gives some performance in-
terpretation to his measure. The RGA was extended to higher
[requencies for 2 X 2 system by Witcher and McAvoy (1977)
and for larger systems by McAvoy (1983). Their definition is
consistent with Bristols original definition of the RGA and is
used in this paper. Most authors consider mainly the mag-
nitude of the RGA-elements as a function of frequency, but
Balchen (1958) and Slaby and Rinard (1986) also discuss use
of the phase angle.

Other definitions of a dynamic RGA have also been pro-
posed. Witcher and McAvoy (1977) proposed a time domain
definition of the RGA, as did Tung and Edgar (1981). Arkun
(1987, 1088) has proposed measures (DBRG and Relative Sen-
sitivity) which include the controller. Balchen and Mumme
(1988) also include the controller in their measure A. How-
ever, one then looses one of the main advantages of the RGA
which is that it depends on the plant model only. These al-
ternative definitions are not considered in this paper.

A measure related to the RGA is the relative disturbance

gain, RDG, introduced by Stanley ot al. (1985). It was given a
performance interpretation and extended to other frequencies
Iy Skogestad and Morari (1987a). It is also scaling indepen-
dent and depends on the model of the plant and its distur-
bances.

The objective of this paper is to derive measures which
may be assist the engineer in selecting the best control struc-
ture and in designing single- loop controllers such that the
overall system has acceptable performance. We shall prove
that the frequency-dependent RGA and RDG are very useful
tools in this respect. A number of interesting properties are
already known about the RGA. We shall give a review of some
of the most inportant ones, which we believe are significant
for engineering applications. Furthermore, we shall present
some new results, for example, one that relates the RGA and
RHP-zeros.
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Fig. 1. Block diagram of control system.

2 Definitions and Notation

2.1 Notation

The notation follows that of Skogestad and Morari (1989).
The controller C(s) is diagonal with entries ¢i(s) (see Fig.l).
This implies that after the variable pairing has been deter-
mined, the order of the elements in y and u has been arranged
so that the transfer function matrix G has the elements cor-
responding to the paired variables on the main diagonal. The
matrix consisting of the diagonal elements of G(s) is denoted
G. Let y(s) denote the response for the overall system when
all loops are closed. f(s) denotes the response of the individ-
ual subsystems, that is, ;(s) is the response when loop 1 is
closed and the other loops are open. The sensitivity function
S and complementary sensitivity function H for the overall
system are defined by

e(s) = —S(s)r(s) + S()Gu()d(s); §=U+GO) (1)



y(s) = H(s)r(s); H=GCUI+GC)™? (2)

We also have § + H = I. G is assumed to be a n X n square
matrix, but G4 may be nonsquare. The bandwidth of the
system, wp is defined as the frequency where the asymptote
of 3(5(jw)) crosses one. The freuqency range near wp will in
the paper be denoted “crossover region” or sometimes simply
“high frequency”. The closed-loop transfer functions for the
individual loops may be collected in the diagonal matrices §
and A:

&(s) = =5(s)r(s) + 5(s)Ga(s)d(s) 3)
S = (I-I— G_'C)_l = diag{.?;}; 3; = (1 + g,‘iC;)_l (4)
3(s) = A(s)r(s); H=GCU+GC)™! (5)

Note that the elements in § and H are not equal to the diag-
onal elements of $ and H. The following relations apply

§=8(I-EsS)'GG™Y;,  Es=(G-G)G! (6)
H=GG'H(I+ ExgH)™Y Ey=(G-G)GT (1)
§=8(I+Eg)! (8)
(H-H)A~'=-SEy=(I-SEs)*SEs 9)

2.2 RGA

Consider a n x n plant G(s).

y(s) = G(s)w(s) (10)

When all other outputs are uncontrolled, the gain from input
u; to output ; is gi;(s). Solving Eq. (10) for u, it can be seen
that the gain from u; to y; with all the other y’s perfectly
controlled is 1/[G~!(s)];. The relative gain is the ratio of
these two gains. Thus a matrix of relative gains, the RGA
matrix, can be computed using the formula

A(s) = G(s) x [GT1(s) (11)

where the x symbol denotes element by element multiplica-
tion (Hadamard product). The inverse G~!(s) may be non-
proper or non-causal, and a physical interpretation in terms
of perfect control is of course not strictly meaningful except at
steady-state. This has caused many authors to discard use of
a dynamic RGA, or to restrict its use to plants with no RHP-
zeros (Manousiouthakis et al, 1986). This is unfortunate as
the dynamic RGA as defined above proves to have a number
of useful properties. Furthermore, we shall mainly consider
the A(s) as a function of frequency, s = jw, and in this case
A(jw) may be computed for any plant G provided it has no
jw-axis zeros.

The RGA matrix as defined above has some interesting
algebraic properties (eg., Grosdidier et al., 1985):
a) It is scaling independent (ie., independent of units chosen
for w and )
b) All row and eolumn sums equal one
¢) Any relative pertubation in a element of G results in the
same pertubation in the RGA matrix A.
These properties are easily proven from the following expres-
sions for the individual elements of A

Aij(s) = gi; ()G (8))s (12)

" (e = i+ 9ii(8)det(GY(s))
Aij(s) = (-1)* PO (13)

Here G*/ denotes the matrix G with subsystem ij removed,
that is, row ¢ and column j is deleted.

2.3 RDG

For disturbances, an analogue to the Relative Gain Array is
found in the Relative Disturbance Gain (RDQ) introduced by
Stanley et al. (1985). For a particular disturbance z, the
RDG is defined for each loop ¢ as the ratio of the change in u;
for perfect disturbance rejection, to the change in u; needed
for complete disturbance rejection in the corresponding output
y; when all the other manipulated variables are kept constant.
A matrix of relative disturbance gains can be calculated from
(Skogestad and Morari, 1987a):

G-1Gy
RDG = 1, (14)

The division in this case denotes element by element division.
Here -Gy is the open loop transfer matrix from disturbances to *
outputs, and G consists of the diagonal elements of G. The
RDG matrix is scaling independent. Individual elements of
the RDG matrix are given by

e [G—' Gk
' Gdir/ i
Note that the RDG has to be recomputed whenever another

choice of pairings is selected, whereas the RGA need only be
rearranged in accordance with the rearrangement of G.

3 Use of steady state RGA

3.1 The RGA and integral action

(15)

A well established rule for pairing inputs and outputs is that if
integral action is required, pairings corresponding to negative
steady state relative gains should be avoided.

Theorem 1 Consider a control system using single-loop con-
trollers with integral action. A pairing of outputs and manip-
ulated inputs corresponding to a negative steady state relative
gain will give a closed loop system with at least one of the fol-
lowing properties:

(a) The closed loop system is unstable.

(b) The loop with the negative relative gain is unstable by it-
self.

(c) The closed loop system is unstable if the loop with the neg-
ative relative gain is removed.

The proof is given by Grosdidier et al. (1985) and is based
on using (13) at steady state, combined with the fact that
integral action with positive feedback leads to instability.

4 Use of frequency-dependent RGA

4.1 The RGA and right half plane zeros

Bristol (1966) claimed in his original paper that there was a
relationship between RHP-zeros and negative values of A;(0),
but Grosdidier et al (1985) showed with a counterexample
that this is not true. However, as we shall see there proves to
be a relationship if we assume that the loops have been paired
such that A;;(00) is positive.

Theorem 2 Assumelim,_. Aij(s) is finite and different from
zero. Let g;i(s)det(G*(s)) have zo, zeros at the origin, zg,



zeros in the right half plane, po, poles at the origin and prn
poles in the right half plane. Similarly, let det(G(s)) have
204 2er0s at the origin, zpy zeros in the right half plane, pog
poles at the origin and ppy poles in the right half plane. De-
fine 2o = Zon — Z0d, Po = Pon — Pods ZR = ZRn — ZRd4, GNd
PR = PRn — PRa- Then the net change in the phase of Ai;(jw)
as the frequency goes from 0 to o is 3(po— 20) + 7(PR — 2R)-

Proof: Appendix. If all elements of G(s) are stable (all
poles in the closed left half plane), then any net change in
phase must have been caused by a different number of RHP
zeros in g;;(s)det(G¥(s)) and det(G(s)). The direction of the
phase change will then tell whether the numerator or denomi-
nator of (13) has the most RHP zeros. The theorem is useful,
« for example, if the frequency-response is known, but not the
plant realization such that the zeros can be computed. The
following Corollary is even more useful since it only requires
knowledge about the diagonal RGA-elements at w = 0 and
w = oo which may be avaialble even when the detailed dy-
namics are unknown.

Corollary 1 Assumelim,_,c Aij(s) 1s finite and different from
zero. Constder a transfer matriz with stable elements and no
zeros or poles at 3 = 0. If A;j(joco) and Ai;(0) have different
signs then at least one of the following must be true:

a) 9i;(8) has a RHP zero.

b) G(s) has a RHP transmission zero.

¢) GY(s) (ie., the subsystem with input j and output i re-
moved) has a RHP transmission zero.

All of these options may be detrimental for the control of
the system. However, note that there may RHP-zeros present
even if the RGA elements do not change sign. For example,
adding a time delay or RHP-zero to an individual input or
output channel will not effect the RGA as it may simply be
viewed as a kind of scaling. In most cases the pairings are
chosen such that Aj(oco) is postive (usually close to 1, see
pairing rule 4 below) and this confirms Bristols claim that
negative RGA-elements imply presence of RHP-zeros. In the
case when the process does contain zeros or ploes at s = 0 the
Corallary still applies if A;;(0) is corrected by adding Z(po—20)
to the phase angle.

Example 1. Consider a plant

G(s>=ml+1<“1” 3;4) (16)

We have Aj1(c0) = 2 and A;;(0) = —1. Since none of the
diagonal elements have RHP-zeros we conclude from Corollary
1 that G(s) must have a RHP-zero. This is indeed confirmed
as G(s) has a transmission zero at s = 2.

4.2 RGA and individual element uncertainty

Systems with large RGA values are sensitive to small relative
errors in the individual elements of the system transfer matrix

G(s).

Theorem 3 The (complez) matriz G becomes singular if we
make a relative change —~1/\;; in its ij-th element, that is, if a
single element in G is perturbed from gi; to gpij = gi;(1— 11-;)

(We have stated the theorem as a matrix property, but it
will of course also apply to G(s).) This is actually a quite

amazing algebraic property of the RGA which seems to be

largely urknown. The theorem was originally presented by
Yu and Luyben (1987). However, their proof is somewhat
difficult to follow, and a much simpler proof is presented here.
Proof. Let G(s) denote G(s) with gp; substituted for g;;.
Using (13), we find by expanding the determinant of G,(s) by
row i or column j that

det(G)

(_—T)T*W(G"J')(—l)iﬂ'dﬁ((;‘j) =] 0

det(G,) = det(G) -

(17
Example 2. Consider the matrix
39 51
4 2 76
A= 1187 (26)
52 40

This matrix is non-singular as det(A) = 634. The 2,4-element
of the RGA is Ay(A) = 2.5836. Thus the matrix becomes
singular if azq4 = 6 is perturbed to ay4 = 6(1 — 1/2.5836) =
3.6777. This is indeed confirmed since the resulting matrix
has det(Ap) = 0.

Theorem 3 is primarily an important algebraic property of
the RGA, but it also has some important control implications:

1) The RGA-matrix A(jw)is a direct measure of sensitivity
to element-by-element uncertainty. If the relative uncertainty
in an element at a given frequency is larger than |1/A;;(jw)|
then the plant may have jw-axis zeros and RHP-zeros at this
[requency. This is of course detrimental for control pefor-
mance. However, as noted by Skogestad and Morari (1987b)
the assumption of element-by-element uncertainty is usually
poor from a physical point of view because the elements are
always coupled in some way. The importance of Theorem 3 as
a “proof” of why large RGA-elements imply control problems
is therefore not as obvious as it may first seem. However, for
process indentification the result is definitely useful as shown
next. ’

2) Models of multivariable plants, G(s), are often obtained
by identifying one element at the time, for example, by using
step or impulse responses. From Theorem 3 it is clear this
method will most likely give meaningless results (eg., wrong
sign of det(G(0)) or non-existing RHP- zeros) if there are large
RGA-elements within the bandwidth where the model is in-
tended to be used. Consequently, identification must be com-
bined with first principles modelling if a good multivaraible
model is desired in such cases.

4.3 RGA and diagonal input uncertainty

We stressed above that the element-by-element uncertainty
generally is a poor uncertainty description. However, a kind
of uncertainty that is always present, and which often limits
achievable performance, is input uncertainty. We shall in this
section allow C(s) to be a full multivariable controller. Let the
nominal plant model be G, and the true (perturbed) plant be
G, = G(I + A). A is a diagonal matrix consisting of the
relative uncertainty (error) in the gain of each input channel.
The true open loop gain G,C can then be written in terms of
the nominal loop gain GC and an "error term” GAC.

G,C = GC + GAC (19)

If a diagonal controller C(s) is used then we simply get G,C =
GC(I+A) and there is no particular sensitivity to this uncer-
tainty. On the other hand, with an inverse-based controller,



C(s) = G™Y(s)K(s), where K(s) is a diagonal matrix we get
Gp(s)C(s) = (I + G(s)AG™(s))K(s). Here the diagonal el-
ements of the error term prove to be a function of the RGA
(Skogestad and Morari, 1987b)

(GAG™ )i = Tha Ai(G)A; (20)

Thus, if the plant has large RGA elements and an inverse-
based controller is used, the overall system will be extremely
sensitive to input uncertainty.

Control implications. Consider a plant with large RGA-
elements in the frequency-range of importance for feedback
control. A diagonal controller is robust (insensitive) with re-
spect to input uncertainty, but will be unable to compensate
for the strong couplings (as expressed by the large RGA- ele-
ments) and will yield poor performance (even nominally). On
the other hand, an inverse-based controller which corrects for
the interactions may yield excellent nominal performance, but
will be very sensitive to input uncertainty and will not yield
robust performance. The physical reason for the problems
with the inverse-based controller is that the controller tries
to apply large input signals in certain directions to match
weak directions in the plant. The input uncertainty changes
these directions and ruins the desired match. In addition,
stability problems are also expected for the inverse-based con-
troller. In summary, plants with large RGA-elements around
the crossover- frequency are fundamentally difficult to con-
trol, and inverse-based controllers should never be used for
such plants.

5 RGA and RDG and control perfor-

mance

Design objectives. When model uncertainty is not explicitly
taken into account the following nominal (N) design objectives
may be considered for a decentralized control system:
1) Performance (NP): Performance of overall system
2) Stability (NS): Stability of overall system )
3) Loop performance (NLP): Performance of individual loop
4) Loop stability (NLS): Stability of individual loop
5) Subsystem performance (NSP) and stability (NSS): Be-
havior of remaining system when some loops are removed (or
possibly detuned)

In this paper we consider only NP, NS and NLS. For 2 x 2
systems objective 5 is a special case of objectives 3 and 4, but
not otherwise.

5.1 Performance Relationships

Performance requirements. Assume that G and G4 have been
scaled such that 1) the expected disturbances, z are less than
one at all frequencies, and 2) the outputs y; are such that the
expected setpoint changes, ;, are less than one. As a NP per-
formance specification we shall require for any disurbance at a
frequency w that the offset |e;(jw)| < 1/|wqi(jw)| where wq;(s)
is a scalar performance weight, and for setpoints changes that
lei(jw)] < 1/|wri(jw)|. Typically, both weights |wg(jw)| and
|wri(jw)| are large at low frequencies where small offset is de-
sired. wy; is usually about 0.5 at high frequencies to guarantee
an amplification of high-frequency noise of less than 2. Thus
we have a number of performance specifications we want sat-
isfied simultaneously. In process control the requirements for
set-point tracking are often lax and performance is mainly
determined by disturbance rejection.

Setpoints. The closed loop relationship between setpoints
and offset is e(s) = —3(s)7(s). For w < wp we have (I +
G(s)C(s))™! = (G(s)C(s))!. From the definition of the RGA
we have [G=1(s)];; = Aji(s)/g;i(s), and the offset in output i
to a setpoint change for output j becomes

Asi(s)

—_—r.8); w<wp 21
gii(8)ei(s) el @)
For loop ¢ we note that |A;| gives the approximate increase

in offset caused by closing the other loops. For acceptable
setpoint tracking it is required that

ei(s) = =[8(s)ijri(s) = ~

lgiici(jw)| > |Ajiwni(jw)l; w <wp (22)

We see that a large value of |Aj;| indicates poor response in
output ¢ to a setpoint change r;.

Disturbances. The closed loop relationship between dis-
turbances and outputs is e(s) = (I 4+ G(s)C(s))"1Gy(s)z(s).
For w < wg we have (I + G(5)C(s))~! = (G(s)C(s))~t. We
get from the definition of the RDG that [G(s)~'Gu(s)lix = ~
Bik(8)gdik(8) /gii(s). Consequently, we have for each output ¢;
and each disturbance z:

’BL(SM“(S); w <wp

gii(s)eils)
(23)

For loop ¢ and disturbance k we note that |G| gives the ap-
proximate increase in offset caused by closing the other loops.
For good disturbance rejection, we require |e;(jw)wq;(jw)| <
1, that is

|giic(jw)l > 1Birgairwai(jw)l; w <wp (24)
We see that a large value of |Bikgaix| indicates poor response
in output ¢ to a disturbance di. The important product
8ik(8) = Bir(s)gaix(s) is henceforth termed the Closed Loop
Disturbancé Gain (CLDG). A plot of |§;x(jw)| will give useful
information about which disturbances k are difficult to reject.
If |6ik| is large, a poor response in loop i to disturbance k may
be expected.

e;(s) = [§(8)Ga(8))irzk(s) =

5.2 Comparison with previous work.

Mathematically, the performance specification used above is
[N[WrS WaSG4](jw)llmaez < 1,Vw where the maz-norm used
spacially (channels) is the largest element in the matrix (some-
times called the spacial co-norm). W, = diag{w,;} and W, =
diag
{wai} are diagonal matrices specifying the desired performance
in in each output. This performance specification is very sim-
ilar to the usual Ho,-norm, but in the latter case the induced
2-norm is used spacially. Consider the special case where
W, = Wy = Wp and we have the H,, performance specifi-
cation

d(Wp[S S§G4(jw)) < 1,Vw (25)

Skogestad and Morari (1989) have shown how one from the
NP-condition (25) may derive the tightest possible bounds on
the individual loops, for example, in terms of bounds on |A|,
|si] or |giic|. These results are very powerful, but unfortu-
nately the same bound is used for all loops, and this may be
conservative. It is possible to derive different and less conser-
vative bounds by introducing additional adjustable parame-
ters (“weights”), but it is not all obvious how this should be
done a priori (see Nett and Uhtgenannt, 1988). Using the
maz-norm for the matrix as in (22) and (24) makes it is much
simpler to derive tight bounds on the individual loops.



5.3 Implications for controller design

Above we derived bounds on the designs of the individual
loops

|giiei(jw)| > bi(w) (26)
which when satisfied yield performance of the overall sys-
tem (NP). For setpoint following (Eq.22) the bound b;(w) is
given by the relative gains, Ay, and for disturbance rejection
(Eq.(24) by the closed-loop disrurbance gains, é;g. It is desir-
able that the bound b; be as small as possible because a large
b6(w); requires a large bandwidth in loop i. Since our design
approach requires stability of the individual loops (NLP), this
may be impossible if g;i(s) contains time delays, neglected or
uncertain dynamics, or thp-zeros, which limits the achievable
bandwidth, wj;, for loop t.

5.4 Implications for control structure selection
(loop pairing)

Note that all the above equations apply to a particular choice
of pairings. However, since a rearrangenent of G gives the
same rearragement in the RGA matrix, the following is clear
from (22) for an input-output pair ji:

Pairing Rule 1. Avoid parings with large RGA-values |);;]
(in particular at frequencies near cross-over).

Pairing Rule 2. Prefer pairings where g;;(s) puts minimal
restrictions on the achievable bandwidth w;.

Rule 2 implies that one should prefer loops with minimum-

phase behavior and without uncertain high-order uncertain
dynamics, and is consistent with common engineering prac-
tice (eg., Balchen and Mumme, 1988, p.48). Rule 1 is also
consistent with common design practice. However, note that
(22) actually seems to imply that one should prefer pairings
with as small values of |);;| as possible. This is not consis-
tent with the usual rule of preferring pairing with A;; close to
1. The reason is that (22) is a performance (NP) condition
only and does not guarantee stability (NS) of the overall sys-
tem. Note that the loop gain |g;c;i| increases approximately
with a factor [1/A;] as the other loops are closed, and intu-
itively it seems obvious that small values of |A;;| may create
stability problems. These issues are discussed in some more

detail below. The comment in Rule 1 regarding frequencies
near crossover should be stressed since a number of authors
indicate that large values of the RGA at steady-state is not
acceptable (eg., Shinskey, 1984). Since there is generally no
limitation on large loop gains at steady-state, Eq.(22) does
not require small A;;(0) for a pairing to be acceptable. In-
deed, a study on control of distillation columns (Skogestad et
al., 1990) has confirmed that even pairings corresponding to
infinite A;;(0) may be acceptable provided it approaches 1 at
high frequencies. However, we might at this point add one rule
which does apply to the steady-state RGA (recall Theorem 1):

Pairing Rule 3. Avoid pairings with A;;(0) < 0.

To use §; for control structure selection one has to compute
a separate RDG for each choice. Since there are n! possi-
ble single-loop alternatives for a n x n plant this is quite a
formidable task for large systems. One cannot use a large
value of 6;; to eliminate a particular loop pairing. However,
one may conclude that

Pairing Rule 4. A control structure (an entire set of loops)

should be avoided if it has large values of |6;x| at high frequen-
cies, and in particular if the achievable bandwidth wj; for the

corresponding loop ¢ is restricted (because of g;;(s), see rule
2).

5.5 Overall Stability (NS)

The relationships for performance derived above requires sta-
bility (NS) as a prerequisite. Since the stability of the individ-
ual loops (NLS) does not gurantee overall stability (NS) this
issue has to adressed separately. Actually, most of the papers
on interactions measures (eg., Grosdidier and Morari, 1986a)
address this issue. Assuming G and G have the same num-
ber of unstable poles and using Eq.(8), Grosdidier and Morari
(1986) derive the following “small gain” stability condition:

NS if p(EgH(jw)) < 1w (27)

Grosdidier and Morari used this condition to derive the tight-
est possible bound on the singular value of the individual de-
signs: &(H) < 1/u(Eg) where p(Ey) is the SSV interaction
measure. However, here we are looking for a relationship be-
tween the NS-condition (27) and the RGA. There does not
seem to be any simple relationship between the elements in
Ey and A. One exception is the 2 X 2 case where we have (we
are here considering the more general case of two blocks)
g 0 GuGﬁlﬁl
byl = (GzlGQ_ZIHZ 0 ) (28)

Use the fact that p (g ‘3) = /p(AB) to derive

NS if p(GraG H1GuGyy Ha(jw)) < WVw  (29)

Note that this condition may be weakened by using singular
values to rederive Nett and Uthgenannt’s (1988) condition for
the optimally scaled SSV interaction measure. Our deriva-
tion is clearly much simpler. For scalar blocks the stability
condition becomes

e TLT g11922 A
NS if |hihe| < |!]12_(]21| = |1_ )\11| Yw (30)

The bound is obviously trivially satisfied if Ayy = 1. At
low frequencies the product |k ho| is approximately 1, but
it may have a peak value of p > 1 around crossover. At
low frequencies (30) is then satisfied if 0.5 < Ay; < oco. At
crossover the requirement is —}_T < Ay < $H, for example,
with p = 2 we have 0.67 < A;; < 2. Note that (30) may
be conservative as it neglects phase information: The tight-
est NS-condition is that the overall system has no RHP-poles,
where the pole polynomial is 1 — h1hog12921/(g11922)(s) = 0
(Balchen, 1958). For example, it may be shown for 2 x 2 sys-
tems with A1(0) = h2(0) = 1 that the lower bound on A;;(0)
should be 0 rather than 0.5. However, at higher frequencies
the phase of hqhy may take on almost any value and the above
results give justification to the following rule:
Pairing rule 5. Prefer pairings with Aj;(jw) close to 1, in
particular, for w in the crossover region.
One implication of pairing rule 5 when applied to high {requen-
cies is to prefer pairing on elements gi;(s) with a low-order
transfer function (“pair on variables “close” to each other”).
Again, this is in agreement with engineering practice.

Note that the diagonal elements in the matrix Es are equal
to (1 — Ay). Nett (eg. Minto and Nett, 1989) has used this
fact together with Eq.(9) to show that large changes in (H —



H)H ' will result if | A;;— 1| is large at high frequencies. These
results provide further justification for rule 5 above. Again,
we want to stress the importance of the high-frequency region.
For example, McAvoy (1983) reports on control of a head-box
in paper manufacturing. The chosen pairing corresponds to
X;i = 0 at steady state. However, at high frequencies A;; = 1
and control proved successful.

6 Example

In order to demonstrate the use of the frequency dependent
RGA and RDG for evaluation of expected control performance
and control structure selection, a binary distillation column
with 40 theoretical trays plus a total condenser is consid-
ered. This is the same example as studied by Skogestad et
al. (1988), but we use a much more rigorous model with both
composition and liquid dynamics. Using model reduction, the
number of states in the model was reduced from 82 to 22.
Disturbances in feed flowrate F' (21) and feed composition zp
(22), are included in the model. The LV configuration is used,
that is, the manipulated inputs are reflux L (u;) and boilup V
(ug). Outputs are the product compositions yp (31) and zp
(y2). The model then becomes

d d dz
()-cw(im)re() o

The disturbances and outputs have been scaled such that a
magnitude of 1 corresponds to a change in F of 30%, a change
in zp of 20%, and a change in zp and yp of 0.01 molefraction
units.
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Fig. 2. Open loop disturbance gains.

Pairings. Rules 2, 3 and 5 dictate that one should use uy
to control y; and u to control y,, as indicated by (31).

Analysis of the model. Fig. 2 shows the open-loop distur-
bance gains, gaik, as a function of frequency. These gains are
quite similar in magnitude and rejecting disturbances z; and
29 seems to be equally difficult. However, this conclusion is
incorrect. The reason is that the direction of these two dis-
turbances is quite different, that is, a disturbance in 2z, is well
aligned with G and is easy to reject, while a disturbance is
21 is not (Skogestad and Morari, 1987a). This is seen from
Fig. 3 where the closed-loop disturbance gains, 3, for z; are
seen to be much smaller than §;; for z,. The relative gains for
the loops are also included in Fig.3 (note thet Aj; = Agp for
2 x 2 plants). We see that rejection of disturbance z (as in-
dicated by |6;1]) and setpoint following (as indicated by [A;])
put similar bounds on the loop gain |gii¢;]. Assuming that
the performance requirement around crossover corresponds to
performance weights |we(jws)| = |w,(jws)| & 1 we find that
the bandwidth requirement for both loops is about 0.5 min~?.

Observed control performance. To check the validity of
the above results we designed single-loop PI controllers by
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Fig. 3. Bounds on individual loops.
optimizing robust performance using (25) as the performance
specification.

The loop gains, |giic;] with these controllers are shown
in Fig. 3. The loop gains are seen to be larger than the
closed-loop disturbance gains é; at all frequencies up to the
crossover. Closed-loop simulations with these controllers are
shown for disturbance 1 and 2 in Fig. 4 and 5. These sim-
ulations confirm that disturbance 2 is much easier rejected
than disturbance 1. Note from Fig. 3 that é5’s for loop 2
are higher than the &8,4’s for loop 1. This indicates poorer
control of y; than of y;, but this is not confirmed by the simu-
lation in Fig.4. The reason is that the controllers are designed
such that |geacs] > |g11€1], that is, loop 2 is faster, and this
compensates for the larger disturbance gain in loop 2.
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Fig. 4. Response in Ay (t) (solid line) and

Ays(t) (dotted line) to z; (a 30% increase in feed

rate).
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Fig. 5. Response in Ay (t) (solid line) and

Ay(t) (dotted line) to z» (a 20% increase in the
if‘;:ﬁtmn of the more volatile component in the



In summary, there is an excellent correlation between the
analysis based on Fig. 3 and the simulations. This is not sur-
prising when one considers Fig. 6 which shows that accuracy
of the approximation [S(s)G4(s)ix &~ ﬁ‘;"% which was used
to derive Eq.(24) and which formed the basis for the analysis
in Fig.3. The approximation is very good at low frequencies,
but as expected poorer at frequencies around the closed loop
bandwidth. From Fig. 6 we see that the actual disturbance
rejection in this frequency range is better than the approxi-
mation (however, for other examples this may be different).
In particular, the deviation is large for ik = 12, and this ex-
plains why the effect of 2; on y; in Fig. 5 is even smaller than
expected from Fig. 3.
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Fig. 6. The magnitude of [S(s)Ga(3)]u/ (G4ks)

7 Conclusions

In the paper we have derived bounds on the designs of the
individual loops. These bounds depend on the model of the
process only, that is, are independent of the controller. This
means that frequency- dependent plots of A;; and é;x may be
used to evaluate the achievable closed-loop performance (con-
trollability) under decentralized control. Plants with small

values of these measures are preferred. Furthermore, the val-
ues of &;x may tell the engineer which disturbance k will be
most difficult to handle using feedback control. This may
pinpoint the need for using feedforward control, or for mod-
ifying the process. For example, in process control adding a
feed buffer tank will dampen the effect of disturbances in feed
flowrate and composition. Plots of 6(jw) may be uséd to tell
if a tank is necessary and what holdup (residence time) would
be needed.

Nomenclature (also see Section 2 and Fig. 1)

e =y — 7 - vector of offsets

gij - tj’th element of G

gdij - 15 th element of G4

GY - G with row i and column j removed

r - vector of reference outputs (setpoints)

u - vector of manipulated inputs

wy; - performance weight for disturbance rejection in loop .

wy; - performance weight for setpoint following in loop .

y - vector of outputs

z - vector of disturbances

Bix - ik’th element of RDG matrix

bix = [G™'Galik/gii = Bikgaix - Closed Loop Disturbance
Gain.

A - RGA matrix

Aij - t7°th element of A

u(A) - structured singular value of matrix A

w - frequenc

wp - closed f;op bandwidth

p(A) - spectral radius of matrix 4

5(A) - maximum singular value (spectral norm) of matrix A

Subscripts
i - index for outputs or loops

'L - index for manipulated inputs or setpoints
- index for disturbances
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Appendix. Proof of Theorem 2. Consider Eq.(13) as a func-
tion of frequency, ie., let s = jw. Since lim,_.-A;j($) is finite
and different from zero, Eq.13 may be written as a fraction
of two polynomials in s where the numerator polyomial and
denominator polynomial are of the same order. The phase
change in A;;(jw) as w goes from 0 to oo must then be caused
by RHP-poles or zeros in ¢;;(s) , det(G¥(s)) or det(G(s)) and
the theorem follows.



