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Abstract-Two-point composition control using the LY-configuration is examined. In spite of high 
steady-state RGA-values it is shown for seven example columns that the LY-configuration may yield 
acceptable robust performance using single-loop controllers provided measurement delays are not too 
large. 

In order to investigate the level of modelling detail that is required for effective control, five process 
models of different complexity are studied. It is demonstrated that flow dynamics should he included in 
a column model which is to be used for controller design. 

The structured singular value (Mu or p) is used as a robust performance index. To use this index one 
must define performance using the N, framework. The issue of selection of performance and uncertainty 
weights is critical in this procedure, and is discussed in detail in the paper. 

1. INTRODUCTION 

Distillation is one of the most common unit opera- 
tions in the chemical industry, and is probably the 
most extensively studied from a control point of view. 
Still, most distillation columns in industry are not 
operated under automatic feedback control of both 
top- and bottom-composition (two-point control) 
which would bc optimal from an economic point of 
view. Rather, control of only one composition (one- 
point control) is used on most industrial columns. In 
this paper we will examine if it is possible to achieve 
good control of both compositions using the LV- 
configuration. Secondly, since the structured singular 
value is used as a performance index, we shall attempt 
to give some guidelines on how to formulate a 
meaningful problem statement within this frame- 
work. 

The LV-configuration involves using reflux L and 
boilup V for composition control with the top and 
bottom levels controlled by distillate D and bottoms 
B (Fig. 1). This configuration is commonly used in 
industry for one-point composition control. How- 
ever, it is well-known that severe interactions often 
make two-point control difficult with this configura- 
tion. The interactions are caused by the fact that L 
and V affect both compositions in a similar manner. 
One measure often used to quantify the interactions 
is the relative gain array (RGA), (Bristol, 1966). The 
steady-state RGA-elements are often very high for 
the L V-configuration indicating severe problems with 
interactions. However, the RGA-elements are much 
lower at high frequency, indicating that control may 
not be that difficult after all. 

Some questions we would like to answer with 
respect to two-point composition control using the 
L V-configuration are the following: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

Is it possible to achieve good control behavior 
(good performance) with the L. V-configuration 
when model uncertainty and possible changes in 
the operating point are included? 
Is it possible to avoid the severe interactions 
with a proper design of the controller? 
How much achievable performance is lost by 
insisting on using single-loop PI- or PID- 
controllers? 
What factors in the model arc important to 
include in order to design a controller which 
retains its performance when applied to the real 
column? 

(i) the steady-state and dominating dynamics 

(51); 
(ii) the dynamics of the internal flows (T*); 

(iii) the high-frequency flow dynamics (0,); 
(iv) other high-frequency dynamics such as 

measurement delays? 
Is there a correlation between large steady-state 
RGA-values and achievable robust perfor- 
mance when single-loop controllers are used? 
Do the same controller tunings work satisfacto- 
rily both for two-point and one-point control? 
Is it possible to find any simplified tuning rules 
for the SISO PID-controller case? 

We will attempt to answer most of these questions 
in this paper. Some of the issues mentioned above, for 
example the effect of model uncertainty and changes 
in operating point, have been addressed previously by 
Skogestad et al. (1988) and Skogestad and Morari 
(1988a). This paper is partly a continuation of the 
latter work, but here models which also include flow 
dynamics will be used. Arkun and Morgan (1988) 
considered the effect of various sources of model 
uncertainty for distillation columns and concluded 
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Fig. 1. Single-loop two-point control using the LV- 
configuration. 

that use of the structured singular value reduces the 
conservativeness compared to using singular values. 
McDonald et al. (1988) represented nonlinearity 
caused by changes in operating point as mode1 uncer- 
tainty. However, as pointed out by Skogestad and 
Morari (1988a) this approach is not rigorous and 
may easily be very conservative, as is also clear from 
the results of McDonald et al. In this paper we will 
therefore consider only one operating point for each 
column, and the uncertainties represent “true” uncer- 
tainty or neglected dynamics (and not nonlinearity). 
The effect of changes in operating point may be 
counteracted by using logarithmic compositions 
(Skogestad and Morari, 1988a, b). 

In this paper we design and analyze controllers by 
computing the structured singular value ~1 introduced 
by Doyle (1982) which is a measure of robust 
performance. This means that the best controller is 
the one that gives the best worst-case response. By 
worse-case we mean the worst combination of 
possible disturbances, setpoint changes and model 
errors. The main advantage with ~1 is that it provides 
a rigorous and simple way of comparing the robust 
performance of different controllers without having 
to perform a large number of simulations. We will not 
discuss the theory of robust control in this paper, and 
readers not familiar with p-analysis are recom- 
mended to consult the paper of Skogestad et al. 
(1988). However, we shall try to give some insight 
into the practical use of the method, in particular, on 
how to choose reasonable performance and uncer- 
tainty weights. 

An important reason for using robust performance 
as a measure for comparison is that the control 
behavior of the LV-configuration may be very sensi- 
tive to model error. This was shown by Skogestad 

and Morari (1988a) for two example columns (A and 
C). They found that although an inverse-based con- 
troller (using a dynamic decoupler) gave excellent 
nominal response (perfect decoupling and very fast 
response), the response with 20% uncertainty on the 
manipulated inputs gave extremely poor response. 
This result has been known qualitatively for a long 
time, but one advantage with the p-analysis is that it 
confirmed this result in a rigorous manner. One 
lesson to learn was therefore that mode1 uncertainty 
should be included in the problem definition in order 
to penalize this kind of inverse-based controllers. 

Another result of the paper by Skogestad and 
Morari (1988a) was that simple PI-controllers seemed 
to perform quite well, but it was claimed in that paper 
that they were somewhat more sluggish than the 
p-optimal controller. Actually, it turns out that the 
PI-controller used by Skogestad and Morari (1988a) 
was not very well tuned, and the results presented in 
the present paper demonstrate that simple PI- or 
PID-controllers may be tuned to give robust perfor- 
mance (that is, pRp < 1) and that these controllers 
seem to be close to the best achievable using a full 
linear multivariable controller. 

The RGA has traditionally been evaluated at 
steady-state only, but more recently the usefulness of 
the RGA as a function of frequency has become 
clear. For example, Skogestad and Morari (1987) 
argue that large values in the RGA at frequencies 
close to the system’s closed-loop bandwidth indicate 
a plant that is fundamentally difficult to control (with 
any linear controller). Nett (1987) argues that for 
single-loop control the diagonal elements of the RGA 
should be close to one at frequencies corresponding 
to the closed-loop bandwidth. The usefulness of the 
frequency-dependent RGA as a measure of expected 
control quality is demonstrated in this paper. 

2. PROBLEM DEFINITION 

2.1. Uncertainty 

To evaluate robust performance with the struc- 
tured singular value we have to define performance 
and uncertainty. One source of uncertainty which 
always occurs in practice, and which generally limits 
achievable closed-loop performance (e.g. Skogestad 
er al., 1988) is input uncertainty. This is the only 
source of uncertainty included in this paper. At 
steady-state the input error may typically be about 
20%, but it increases at higher frequency and 
eventually exceeds 100% because of uncertain or 
neglected high-frequency dynamics, such as valve 
dynamics or time delays. Let t denote the allowed 
steady-state relative error on each input. In addi- 
tion, let 0 be the allowed time delay error (may 
also represent neglected dynamics corresponding 
in phase lag to a time delay of 0). If a time delay 
e-(Is is neglected, that is, modelled as 1, then a 
close upper bound on the magnitude of the relative 
error (e-O” - 1)/l is given by es/(1 t&/2) (using a 
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Fig. 2. Uncertainty weight lw,(io)l [equation (I)] with 
E = 0.2 and 0 = 1 min. 

first-order Padt approximation). Adding this with 
the constant term E and assuming .C 6 2 yields the 
following weight for the overall multiplicative (rela- 
tive) input uncertainty: 

0 - S-t1 
6 

WI(S) =c-. 
e (1) 
7s+I 

We use the same weight as Skogestad and Morari 
(1988a) and choose e = 0.2 (20%) and 8 = 1 min. 
The weight is shown graphically as a function of 
frequency in Fig. 2. 

We would like to stress that an input uncertainty 
of 20% by no means is large in a practical situation. 
It is often argued that input uncertainty may be 
reduced by measuring the tIows accurately. This is 
correct, but only to a limited extent: (1) reliable 
measurements of flow during changing conditions in 
industrial operation is difficult; (2) the uncertainty is 
on the change in the flow and not on its absolute 
value. This means that we might have 20% input 
error even if the absolute error is much smaller. As 
an example, assume we want to increase L from 100 
to 110. However, because of 1% measurement error 
the actual change is from 101 to 109, that is, the 
actual change is eight instead of the believed 10, 
corresponding to a gain error of 20%. 

2.2. Performance 

Performance is defined in terms of the H, -norm of 
some transfer function. This may be viewed as a 

I I 

Fig. 3. Block diagram of conventional feedback system. 

direct generalization of the frequency domain perfor- 
mance specifications used in classical control for 
single-input-single-output (SISO) systems. Since this 
norm is not well-known for most readers, some 
discussion on its significance and also on the selection 
of reasonable performance weights is included. 

2.2.1. General H,-norm. A block diagram of a 
conventional feedback system with disturbances d 
and setpoints ys is shown in Fig. 3. The most general 
way to define performance in the H, -framework is to 
consider the H,-norm of the closed-loop transfer 
function E between external normalized inputs a, 
(disturbances, noise, setpoints) and normalized errors 
(outputs) io (may include y - ys, manipulated inputs 
u which should be kept small, etc.). The weights are 
usually chosen such that magnitude (in terms of the 
two-norm) of the normalized external inputs are less 
than one at all frequencies, i.e. max, ][6’,(jw)l] 2 = 

Ild I1 , 5. < 1, and such that for acceptable performance 
the normalized errors are less than one at all frequen- 
cies, i.e. II&, 11 n; < 1. With G,, = EdI this is equivalent to 
requiring: 

max B[E(jo)] = llEl/ ~ -=z 1. (2) 

Use of the m&imum singular singular value 15 (E) 
guarantees that the worst-case direction of E satisfies 
the performance criteria. For the system in Fig. 3 we 
would have to define weights W,, , W,, W, and W, in 
order to normalize the signals to magnitude 1 and the 
transfer function E would be given as shown by the 
dotted box in Fig. 4. W, might be a diagonal matrix 
of constants specifying how well a specific output 
should be controlled. W, may be close to a pure 
differentiator (s) if we want to penalize fast changes 
in the inputs. Note that it is only the magnitude of the 
weights that matters; they should therefore be stable 
and minimum phase. 

2.2.2. Bounds on the sensitiuify function. The ap- 
proach above is general and may be needed in some 
cases, for example, if it is important to penalize one 

E 

Fig. 4. Example of transfer function E used for general H,-performance 
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or more of the input signals directly (though use of 
input uncertainty will penalize large inputs indi- 
rectly). However, in many cases it is simpler and 
more instructive to translate the desired performance 
specifications into an upper bound l/(w,] on the 
frequency plot of the magnitude of the sensitivity 
function S: 

where 

d(SW)l -e IIIWP(jW)I, VW, (3) 

.S(.iw) = [I + G(jw)C(jw)]-‘. (4) 

This performance specification may equivalently be 
formulated as a bound on the N,-norm of the 
weighted sensitivity function w,S: 

maxa[w,S(jw)] = ]]w,Sll ,-c 1. 
w (5) 

The concept of bandwidth, which is here defined as 
the frequency where d(S) (or possibly its low- 
frequency asymptote) first crosses one, is closely 
related to this performance specification. In addition, 
most classical frequency domain specifications may 
be captured by this approach. 

Classical fhquency domain specifications--For 

example assume that the following specifications are 
given in the frequency domain: 

1. Steady-state offset less than A. 
2. Closed-loop bandwidth higher than or,_ 
3. Amplification of high-frequency noise less than 

a factor M. 
These specifications may be reformulated in terms of 
equation (3) using: 

wp(s) = i 
tps + 1 

Mz,s + 

. For example, 
one may use different bounds on the sensitivity 
function for various outputs. Assume we want the 
response in channel 1 to be about 10 times faster than 

Fig. 5. Asymptotic plot of l/w, = M (r,s + A/M)/(r,s + I) 
where TV = I/MC+, [equation (6)] IS(jw)/ should lie below 
1 /It+. 1 to satisfy classical frequency-domain specifications in 

terms of A, M and ws. 

. 
1 

ITP2 O8 T$* ,1 Frequency 
PI (log scab) 

Fig. 6. Asymptotic plots of I/w+, = Mr,,s/(r,,s + 1) and 
l/w, = M T~~s(T~~s + l/a)/(rPzs + I)‘. 

that in channel 2. Then we might use the performance 
snecification: 

II~,SII,<l; w,= (w;l wOJ. (7) 

with or,,, = lOw,,, . In this paper we shall use the 
same performance specifications for all channels, that 
is IV,= w,l. 

Specifications on disturbance rejection -To illus- 
trate how specifications on disturbance rejection may 
be reformulated as bounds on the weighted sensitivity 
consider Fig. 4 and evaluate the transfer function 
from normalized disturbances to normalized errors: 

d = W,SG, W,d. (8) 

Consider the following special monovariable (SISO) 
case: (i) W, = I (that is, the allowed error is the same 
at all frequencies and scaling has been applied to 
G and G, such that an error 2 of magnitude 1 is the 
largest we can accept); (ii) disturbance model 
Gd = kd (1 + T~s); (iii) disturbances at any frequencies 
are allowed, that is W, = 1; and (iv) G, has been 
scaled such that disturbances d are less than one in 
magnitude. The performance specification is then 
11 W,SG, W, Ilm = II GdS II cc = )I w,S 1) oc < 1. In addition 
to disturbance rejection we may require: (1) integral 
action, and (2) that the amplification of high- 
frequency disturbances (noise) is less than M, where 
M > 1. This may be done by increasing the perform- 
ance weight (“tightening the specifications”) at low 
and high frequencies by: (1) extending the slope of G, 
at low frequencies such that wP contains an inte- 
grator; and (2) setting wP = l/M at high frequencies. 
The overall weight becomes: 

17p,s+l 
WPl(S) =-p with zd 

M tp,s ’ =I7 = k,M’ (9) 

This weight is identical to the weight obtained before 
from direct specifications on S [equation (6) with 
A = 01. We see that ] S 1 at intermediate frequencies 
should increase with a slope of about one (on a 
log-log frequency plot). The frequency where the 
asymptote of the weight crosses one (bandwidth 
requirement) is wa, = 1/(1W7~,) = k,/r,. In addition, 
we shall consider a weight wP2 where ISI should 



increase with a slope of about 
frequencies: 

W&.*(S) =i 
(TFpZS + l)* 

M~,s(T~~s + l/a)’ 
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two at intermediate 2.2.3. Prefiilter for setpoints, c,. The requirements 

on how to best shape S for disturbance rejection 

are generally different from those for command 

(setpoint) following. To account for this one 

should take advantage of the fact that the setpoint 
y, is known and use a prefilter cy (two degrees of 
freedom controller, see Fig 3). In particular, there 

is generally no requirement for distillation columns 
to track fast setpoint changes in composition. In 

the simulations we therefore use a simple first-order 
filter: 

with a r 1. (10) 

Such a weight could have been derived by selecting 
II’, = l/s in the above procedure. It may be more 
appropriate for step disturbances which affect the 
outputs initially as ramps. The bandwidth require- 
ment in this case is waZ = l/(fi7,2). 

In the multivariable case it is more appropriate to 
use matrix-valued weights, that is, the performance 
measure is 11 W, SC, // m where G, is a vector express- 
ing the effect of the disturbance d on the outputs. In 

this case ti[SG,(jw)] may be significantly smaller 
than d[S(jw)]8[G,(jw)] when Cd is in the “good” 
direction corresponding to the large plant gains (see 
Skogestad et al., 1988), and the bandwidth require- 

ment imposed by disturbances is less than that given 
above. Furthermore, if the column elements in Cd are 
different in magnitude then the bandwidth require- 
ments for each loop become different. However, for 
the example columns used in this paper, we decided 
to use a simple scalar weight (and use 11 w,S 11 o. as the 
performance measure) even though our distillation 
example is a multivariable problem. 

Weights used in examples-For the distillation 
column example we shall use the performance weights 
wp, and wpz above with numerical values M = 2, 
a = 4, TV, = 10 min and tp2 = 16.7 min (unless other 
values for 7’p specified). This choice for 7- makes 
lwp2(j~)l almost identical to lwr, (iw)l at high fre- 
quencies, but different at low frequencies. This is 

shown in Fig. 7 where l/w,, I and l/lw,,l are shown 
as functions of frequency. The first weight wpi is 
identical to the one used by Skogestad et al. (1988) 
and Skogestad and Morari (I 98&a). Both weights 
require a controller with integral action, give a band- 
width requirement of about wa = 1/20min-‘, and 
have a maximum allowed peak M = 2 for IS(. The 

second weight requires somewhat more preformance 
at low frequencies. However, the difference is not 
large since the value of a is rather small. 

Fig. 7. Performance weights I /wp, (TV, = 10 min) and 
1 /WPZ (9.2 = 16.7 min) used in examples. 
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1 
c&) = - 

5s + 1 ’ 

which means that we do not require the system to 

track setpoint changes with a time constant less than 
5 min. This leads to more moderate initial control 

actions, for example, when there are step changes in 

y,. Note the prefilter cr is not used in the p-analysis 
or in the controller design which is based on minimiz- 

ing the H, -norm of w,S. 

2.3. Robust stability and performance 

Robust stability (ES)----The system is said to be 

robustly stable if it is stable for all uncertainties 

defined by the uncertainty description. In this case it 
means that the system should be stable for all the 

possible input errors defined above. Mathematically, 

this may be tested by computing at each frequency ,u 
of the matrix Nas = w, CSG with respect to the struc- 

ture of the uncertainties (a diagonal 2 x 2 matrix) 

(Skogestad and Morari, 1988a). This value should be 
less than one at all frequencies for the system to have 
RS. 

Nominal performance (NP)-To test for NP 

we simply compute a(w,S) as a function of fre- 
quency. It should be less than one at all frequencies 

(or equivalently 11 w,S 11 ocl < 1) for NP to be 
satisfied. 

Robust performance (RP)-This is satisfied if the 

above-mentioned performance criterion is satisfied 
for all possible model errors. Mathematically, this 

is tested by computing p of the matrix NRp (see 
Skogestad and Morari, 1988a): 

NRP = 
w,CSG w,CS 
w,SG > w,S ’ (12) 

~(Nar) should be less than one at all frequencies for 

RP to be satisfied. The peak value of ~(Nar) will be 
denoted pap. Note that satisfying NP and RS is a 

prerequisite for satisfying RP. 

2.4. Modelling 

The objective of this paper is to evaluate the 
achievable robust performance of distillation 
columns using the LV-configuration. As example 
columns we will use the seven columns A-C used by 

Skogestad and Morari (1988b). Steady-state data for 
those columns are summarized in Table 1. These 
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Table 1. Steady-state data for distillation column examples. All columns have liquid feed (qF = 1) 
Column + a N NF 1 -Yo x0 DIF LIF 11, 

A 0.5 1.5 4: 21 0.01 0.01 0.500 2.706 35. I 
B 0.1 1.5 21 0.01 0.01 0.092 2.329 47.5 

C 0.5 1.5 40 21 0.10 0.002 0.555 2.737 7.53 

D 0.65 1.12 110 39 0.005 0.10 0.614 I 1.862 58.7 

E 0.2 5 15 5 0.0001 0.05 0.158 0.226 2.82 

F 0.5 15 10 5 0.0001 0.0001 0.5cm 0.227 499 
G 0.5 1.5 80 40 0.0001 0.0001 0.500 2.635 1673 

columns are chosen to represent a reasonable sample 
of high-purity distillation towers which from the 
literature (e.g. Shinskey, 1984) one might expect are 

difficult to control using the LV-configuration. The 
steady-state RGA-values are also shown in Table 1. 
They are in the range from 3 to 1700 for the seven 

columns. 
The results in this paper are based on the following 

assumptions: binary distillation, constant molar 
flows, constant relative volatility, negligible vapour 

holdup and vapour-liquid equilibrium as well as 
perfect mixing on all stages. Note that the liquid flow 
dynamics are not neglected, and a simple linear 
relationship is used: AL?(t) = Alcr,(t)/r,. This gives 
for each tray two ordinary differential equations, one 
for composition and one for liquid holdup. All stages, 
including reboiler and condenser, are assumed 

to have identical holdups M,/F = 0.5 min, TV = 
e,/(N - 1) is assumed equal for all trays. The value 
of the overall liquid lag 0L is given in Table 2. We also 
assume perfect control of levels and pressure, i.e. 

constant MD, MB and p. This assumption is justified 
by considering the fast dynamic response of levels 
and pressure compared to the response of composi- 
tions. Furthermore, the behavior of the LV- 

configuration is insensitive to the level control. 
A linear model, which is denoted the “full” linear 

model in the following, is obtained by linearizing the 

nonlinear model around the nominal steady-state. In 
addition, the following simplified linear model (two- 
time constant model with flow dynamics) is used 
(Skogestad and Morari, 1988b): 

Table 2. Data used in simple model of distillation columns, 

eouation 113) 

A 
87.8 -86.4 

108.2 - 109.6 
> 194 15 2.46 

B 
174.79 -171.7 

( > 
90.191 -90.5 

250 15 2.86 

C 
16.023 - 16.0 

( > 
9.29 -10.7 

24 10 2.44 

D 
24.585 - 24.2 

( > 
21.270 -21.3 

154 30 1.54 

E 
203.4 -131.5 

( > 
22.47 -22.5 

82 30 II.06 

- 
F ( 10,740 10,730 > 

9257 -9267 
2996 4 7.34 

G 
8648.94 -8646 

1 I,34705 - 11,350 
> 20.333 30 5.06 

k,, dy,=- 
( 

k,, + k,, 

1 +T,S 
dL+ ~ 

1 +r,s 
-&--)dV 

dx, = 
k 

” pgl(s)dL + 
kx + k,, 
~ 

1 +z,s 1 +z,s 
-&s)dV. 

(13) 

This simple model includes the liquid flow dynamics 
and the differences between changes in external and 
internal flows. k, denotes the steady-state gain 
around the normal operating point. These values are 
easily obtained from steady-state simulations, but 
were obtained here by linearizing the model. T, and 
t2 are the time constants associated with changes in 
external flows and internal flows, respectively. g&) 
expresses the liquid flow dynamics: 

1 

gL(s) = [I + &/n>sl” ’ (14) 

where 0, is the overall liquid lag from the top to the 
bottom of the column. n in equation (14) should be 
equal to the number of trays N - 1 in the column, but 
is throughout this paper chosen to be five to avoid a 
model of unnecessary high order. Data for the simple 
model (13) are given in Table 2 for the seven example 
columns. Note that all gains used in this paper are for 
scaled (logarithmic) compositions: 

(15) 

Here xg and l-y”, are the amounts of impurity in each 
product at the nominal operating point. The use of 
logarithmic compositions scales the outputs in a 
comparable manner for performance, and in addition 
linearizes the plant. 

To study the effect of modelling accuracy on the 
results we shall design controllers for four special 
cases of equation (13) in addition to the full linear 
model: 

Nl: 

N2: 

Fl: 

F2: 

Full: 

~~ = r, , 8, = 0. Simplest model with only the 
dominating time constant 7, and neglected 
flow dynamics. 
f& = 0. Two-time constant model with ne- 
glected flow dynamics. 
Q = 5,. One time-constant model with 0, as 
in Table 2. 
Two time-constant model with TV, r2 and eL 
as in Table 2. 
Model obtained by linearizing the full nonlin- 
ear model. 
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Here N is used to indicate “no flow dynamics”, F 
means “flow dynamics”, and 1 and 2 means that the 
model uses one or two time constants, respectively. 

2.5. Controllers 

We use two different approaches to tune the con- 
trollers. 

Approach I-In the first approach we tix the 
performance specification and minimize pro, [the peak 
value of ,u(NRp)] by adjusting the controller tunings. 
The performance requirement is satisfied if par is less 
than one, and lower flu,-values represent a better 
design. Physically, a p a,-value of say 0.7 means that 
both the uncertainty weight and performance weight 
may be increased by a factor of l/O.7 at all frequen- 
cies and still have robust performance with the new 
problem definition. Approach 1 with the simple per- 
formance weight w r1 [equation (9)] is used in the 
majority of the cases in this paper. 

Approach 2-A more meaningful approach is 
probably to fix the uncertainty and find what perfor- 
mance can be achieved for this plant. In the second 
approach we therefore adjust the time constant rp in 
the performance weight (or equivalently adjust the 
bandwidth wa of the weight) to make the optimal 
pap-value equal to one. The optimization problem is 
then: 

min 1 b-f” pRP cc, ?P)l - 1 1. (16) 
ZP 

Different designs may then be compared based on 
their maximum achievable bandwidth. Two disad- 
vantages with this approach are: (I) it introduces an 
outer loop in the p-calculations; (2) it may be impos- 
sible to achieve ,uRP equal to one by adjusting rp in the 
performance weight. This may be the case if the 
high-frequency specification (value of A4 in the 
weight) is limiting. A more difficult case arises when 
the system is not even robustly stable (pRs > 1), and 
even adjusting M would not help. 

p-optimal controller-The term “p-optimal con- 
troller” is used to denote a linear multivariable 
controller with an “unlimited” number of states 
obtained by minimizing the peak of p(NRP), that is, 
a controller designed to give the best possible perfor- 
mance for the worst combination of uncertainty, 
disturbances etc. 

PZD controllers--“Optimal PID-settings” denote 
the parameter settings for single-loop PID-controllers 
found either by minimizing ,uar according to Ap- 
proach 1, or by minimizing the performance weight 
time constant rr according to Approach 2. These 
settings are found by a general optimization routine 
and since there are many local minima there is no 
guarantee that the settings presented in this paper 
really are the true optimal. However, since a large 
number of optimizations have been performed we 
believe it is unlikely to find setting with significantly 
lower pR,-values (or r,-values), than those presented 
here. 

The PID-controllers considered in this paper are 
on the cascade form with the derivative action as- 
sumed to be effective over one decade: 

1 +r,s 1+ rus 
C,,,(s) =k- 

=1s 1 +O.lr,s’ (17) 

It is assumed that reflux L. is used to control top 
compositions y, and boilup V is used to control 
bottom composition xa. Subscripts x and y on the 
tuning parameters are used to denote the respective 
loops. The gains k, and k, are for scaled compositions 
as described by equation (IS). 

2.6. Simulations 

The robust performance analysis using p is the 
main basis for comparison and simulations are only 
intended to illustrate these results. All simulations are 
for column A using the full non-linear model with 
flow dynamics. Since all simulations using single-loop 
controllers which generally are insensitive to steady- 
state input errors (Skogestad and Morati, 1987), no 
steady-state input error is included in the simulations 
(although 20% is allowed for in the uncertainty 
description). However, to penalize fast controller 
actions all simulations do include a “time delay” 8 
in each channel [actually, it is a fifth-order lag 
l/( 1 + Qs/~)~] as allowed for by the uncertainty de- 
scription. 8 = 1 min unless specified otherwise. All 
simulations with step changes in setpoints include the 
prefilter cr [equation (1 l)] which has a time constant 
of 5min. 

3. RESULTS 

3.1. Results for Column A 

RGA -analysis of models--In Fig. 8 we plot the 
magnitude of the diagonal elements of the RCA as a 
function of frequency for the five different models of 
Column A (note that A,, = A,, for 2 x 2 plants). The 
true plant (as given by the full model) has large 
RGA-values at steady state, but at high frequencies 
;i,, is equal to one. The simple model Nl gives a 
constant value of I,, = 35 at all frequencies. Including 

Fig. 8. II,,1 vs frequency for all process models of 
Column A. 
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Table 3. p,,-optimal PID tunings for different models of Column A (weight wp,, rp, = IOmin, 
Atmroach I j 

Model 

Nl 

Pap 

I .32 

k, 

4.38 
k, 

1.30 

TIP =Ir +m TD1 
(min) (min) (mitt) (min) 

179 I .a7 0.32 0.23 
N2 0.84 0.65 0.45 12.2 4.3 1 0.51 0.47 
FL 0.91 0.85 0.38 7.77 3.61 0.8 1 1.11 
F2 0.80 0.38 0.36 6.49 5.80 1.13 0.91 

Full 0.86 0.22 0.32 3.51 4.71 1.22 0.61 

the flow dynamics (Fl) gives RGA-values similar to 
the true ones, and including also T* (F2) improves the 
model somewhat at intermediate frequencies. 

PZD tunings -for all models--Optimal PID-tunings 
and the corresponding p,,values are shown in 
Table 3 for all five models of Column A. Note that 
pRp decreases when flow dynamics and/or r2 are 
included in the model. The reason for this is that both 
these effects make the process less ill-conditioned 
(smaller RGA-values), and thereby less sensitive to 
the uncertainty on the inputs and therefore simpler to 
control (Skogestad and Morari, 1987). Figure 9 
displays ~(Nsr) for the controller settings of Table 3 
when applied to the firIZ linear model, and the corre- 
sponding pap values are summarized in Table 4. 

These results tell how well-suited the simplified 
models are for designing controllers for the actual 

plant. As expected, model Nl gives a controller with 
poor performance when applied to the full model, 
while model F2 yields a controller which performs 
well; the controller based on F2 yields a p,,-value of 
0.95 which is reasonably close to the optimal value of 
0.86 obtained by designing the controller for the full 
model. Simulations of a setpoint change in y, using 
the controllers based on: (i) the simple model F2; and 
(ii) the full model are shown in Fig. 10. The results 
confirm that model F2 is adequate for controller 
design for Column A. 

Comparison with p-optimaI controller-Skogestad 
and Morari (1988a) report the “~-optimal” con- 
troller (multivariable) for model N2 to give 
pR, = 0.955. As shown in Table 3 it is possible to 
achieve p,, equal to 0.843 using two single-loop 
PID-controllers. The reason for these contradicting 

I 

0.0 ,,#,I I,,,,,, ,_t .m,,m. ’ ,,,,,I 
10-j 10-i 10-1 1 10 lb= 

Y 

Fig. 9. p(N,,)-plots for different PID controllers (Table 3) 
applied to the full linear model of Column A. 

results is simply that the software package used by 
Skogestad and Morari was still at the development 
stage and did not yield the true optimum. 

One might wonder if there is any benefit in 
introducing multivariable effects in the controller 

for Column A. To test this we optimized the 
parameters in a multivariable controller C(s)= 
C(sZ - A)-‘B + D with four states (including two 
fixed integrators). This controller has 18 adjustable 
parameters (using a canonical form as shown in 
Fig. 11). Note that this controller is not equal to a 
conventional “multivariable PID-controller” which 
would have six states and 12 parameters (or 16 
parameters if the range of the derivative action is not 
fixed). We were able to reduce pRp from 0.843 (two 
single-loop PIDs) to 0.832 (general four-states con- 
troller) for model N2, and from 0.799 to 0.766 for 

model F2. These results indicate that the performance 
achieved by using two single-loop controllers is close 
to the optimal for Column A. 

Comparison of PI- and PZD-conZrolZers-Table 5 
shows the PI- and PID-tunings and corresponding 
p,,-values for model F2. We see from these results 
that there is a significant improvement by introducing 
the derivative action. In fact this is true for all the 
studied columns except Column E, which is only 
marginally improved. 

Choice of performance weight and optimization ap- 
proach-To study this effect we obtained PID tunings 
for model F2 using both weights wp, and wp2 and 
using both Approaches 1 and 2. The result for the 
four cases are shown in Table 6. When Approach 1 
is used we see that the different weights result in 
somewhat different tunings; the main difference is 
that weight wp2 gives higher controller gains than w,,, . 
This is not surprising since weight wp2 requires more 
performance than wr, (see Fig. 7). If we use Approach 
2 (rr in the weight is minimized such that the optimal 
pRP is one) then the difference between the two 
weights is only minor. This is seen from the last two 
rows of Table 6. The values of the minimized time 

Table 4. hRp- values for controller settings of Table 3 

when applied to the fill linear model of Column A 

Controller kP Irw 
(Table 3) Original Full model 

NI I .32 2.53 
N2 0.84 I.11 

FI 0.9 I 1.17 

F2 0.80 0.95 

Full 0.86 0.86 
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Fig. 10. Goodness of model F2 for controller tuning. 
Closed-loop simulation of s&point-change in yn for PID- 

controllers (Table 3) based on the full linear model (-) 
and based on model F2 (- - -). 

constant in the weights are, of course, different 

(T r, = 3 min and rp2 = lOmin), but the optimal PID 
tunings are similar. This is confirmed by simulations 
in Fig. 12 which show the response to a simultaneous 
step disturbance in feed composition and feed Aow 
using these two controllers. Figure 12 also shows that 
good disturbance rejection may be obtained using the 
weighted sensitivity function w,S as a performance 
measure. 

Eflect of detuning controllers-The RGA-plot 
shows that interactions are most severe at low fre- 
quency, and that they may almost disappear if it is 
possible to have the closed-loop bandwidth suffi- 
ciently high. This suggests that if a well-tuned con- 
troller (high bandwidth) is detuned then interaction 
will become more severe. This is indeed confirmed by 
the simulations in Fig. 13 where the controller gain 
k for both loops has been reduced by the same factor. 
The intuitive reaction for an operator who encounters 
large interactions is probably to detune the con- 
trollers. In this case this is seen to yield exactly the 
opposite effect of what is expected. 

Eflect of measurements delays (uncertainty 
weigh<)-The RGA-plots also suggest that large 
measurements delays may be detrimental for the 
L V-configuration, because a large delay forces one to 
operate with a low closed-loop bandwidth and one 
gets into the region where the interactions are large 
which makes performance even worse. This is con- 
firmed by increasing the allowed time delay 0 in the 
uncertainty weight [equation (1)] from 1 to 6 min, and 
computing the achievable closed-loop time constant 
7p, according to Approach 2. The results are summa- 
rized in Table 7. We must see that increasing the time 

! .____ ._... _-____________ .___,_ _ .___ _-.. 

C 1 D 

Fig. 11. Canonicai form of multivariable controller 
C(s) = C(sZ - A)-‘/3 + D with four states (including two 
fixed integrators). Zeros and ones are constants, d’s are 

adjustable parameters. 

delay from 1 to 6 min implies that 7,, must be 
increased from 3 to 55 min, that is, achievable perfor- 
mance is expected to be seriously affected if, for 
example, measurement delays are present. The simu- 
lation results in Fig. 14 which show disturbance 
responses for the two controllers tuned for a 1 and 
6 min time delay, respectively, clearly demonstrate 
that this is the case. 

One-point control and decentralized tuning-PID 
tunings for one-point control (when only one output 
matters in the nm objective function) were obtained 
with Approach 2 with weight wp2 and the results 
summarized in Table 8. The results show that it is 
possible to achieve very tight control of the individual 
loops; we find for both single loops 7pz < 1.8 min. We 
note that the p-optimal integral time is 3-4 times 
longer than would be obtained using Ziegler-Nichols 
tuning rules, but the gain and derivative time are 
quite similar [for a process 100 e-“‘/( 1 + 194s) which 
includes a time delay 8 ( = 1 min), the Zieger-Nichols 
tuning rules yield approx. k = 1.8/8( = 1.8), r, = 20 
( = 2 min), and 7D = t?/2 ( = 0.5 min)]. 

The most interesting question is if these “one- 
point” tunings may be used for two-point control. 
Recall that for two-point control the best achievable 
performance (Approach 2 with both loops optimized 
simultaneously) corresponds to or* = 10 min (last en- 
try in Table 6). We note that these “two-point” 
tunings have both k and r, about half of those 
obtained for “one-point” tuning (Table 8). When we 
hold rpz = 10 min fixed (Approach I), and evaluate 
how the “one-point” tunings perform when both 
loops are closed simultaneously, we obtain pRP = 
1.18, which is only 18% higher than the optimal 
“two-point” tunings. This is somewhat surprising 
since the large RGA-values (35.1 at steady-state, see 
Table 1) are supposed to indicate large changes in the 
gains as we open or close loops (Bristol, 1966). The 
reason why the difference is small is again that the 
closed-loop bandwidth is sufficiently large, such that 
RGA-values in the frequency range of importance are 
close to one. However, the closed-loop system based 

Table 5. flc,,-optimal PI- and PID-tunings for model F2, Column A (weight sup,. Approach 1) 

kv k, k. 

0.94 0.14 0.62 

0.80 0.38 0.36 

=I, TIT =D, TDr 
(min) (min) (min) (Ilk) 

2.74 13.1 

6.49 5.80 1.13 0.91 
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Table 6. @,,-optimal PID-tunings for Column A, model F2. Effect of performance weight (w,., , wpl) and tuning approach 

=1.x ‘D, TDr 
Atmroach Weieht (lIzI, UPD k. k_ 

TlY 
(mitt) (min\ (min) (min\ 

I WI IO 0.80 0.38 0.36 6.49 5.80 1.13 0.91 

I %v 16.7 0.9 I 0.74 0.55 6.09 4.46 I .a4 0.74 

2 WPl 3 I 0.67 0.72 3.58 4.34 1.34 0.76 

2 WP2 10 I 0.86 0.69 4.6 I 3.76 I .22 0.59 

“one-point” . close to instability 

TTas > 0.8) and th:U’~~~~po%” gains should be de- 
tuned somewhat to achieve acceptable robustness. 

3.2. Results for all columns 

Robust performance with L V-co@gurarion -The 
optimal PID-settings for all Columns A-G are shown 
in Tables 9 and 10 for models N2 (no flow dynamics) 

and F2 (flow dynamics) respectively. Except for one 
case, all pRp- values are less than one. These results 

show that robust performance is indeed possible with 
the LV-configuration for a wide range of columns 

when the measurement delays are limited to about 
1 min. 

Relationship to RCA-Note especially Columns F 

and G which have good performance even though 
they have extremely high RGA values at steady-state. 
This shows that there is no direct relation between the 
RGA-value at steady-state and achievable control 
performance. However, if we consider the RGA in 
the crossover region (frequency about 0.1 min-’ ) 

there is a much better correlation. For mode1 N2 the 
RGA at high frequency is approximately equal to 

L/F (Skogestad and Morari, 1988b) which correlates 
well with the pRp - values in Table 9. For mode1 F2 the 
RGA at high frequency is low for columns with large 
t+; again this correlates well with the par-values in 
Table 10. 

Eflect offlow dynamics on performance--Including 

flow dynamics gives a more complicated mode1 and 
also introduces an effective dead time from the top to 
the bottom of the column. Still, we find that including 
flow dynamics makes PID-control simpler for 

Fig. 12. Effect of different performance weights with 
Approach 2. Closed-loop simulation of simultaneous 
disturbances in F( + 30%) and zr( + 20%). PID-controllers 

tuned using wp, (solid line) and wez (dotted line). 

Columns A, D and G. This may also be explained in 
terms of the lower RGA-values when flow dynamics 
are included. The largest improvement is found for 
Column D which also has the largest reduction in 
RGA-values. 

Tuning rules-It is not possible directly from 
Tables 9 and 10 to derive any simple tuning rules in 
terms of the time constants of the process given in 

Table 2. Though some conclusions can be made. 
There is definitely no relationship to the dominant 
time constant T, . It is also difficult from our data to 
find any correlation with 8,. There seems to be some 
correlation between the integral time r1 and r2. A 
more careful analysis based on loop shaping argu- 
ments (e.g. Doyle and Stein, 1981) shows that at low 
to intermediate frequencies the controller should try 
to give large gains in the low-gain direction, o,,,(G). 
For the simple mode1 N2 this direction has a pole at 
l/r, and it is optimal to choose the integral time =I 

approximately at this location to counteract for its 
effect. A good rule seems to be ~~ = r,/2 provided 
r, > 38, where 0 is the dead time. For the full column 
model (and model F2) the situation is more compli- 

cated. There is still a pole close to l/r,, but also poles 
and zeros at higher frequencies and their positions 
affect the optimal tuning of 7,. However, comparing 

Table 9 with Table 10 shows that including the flow 
dynamics generally has the effect that ‘5, can be 
decreased and thereby improving the performance. 

For the derivative time it is a common rule of 
thumb to choose rn = f3/2 (e.g. Ziegler-Nichols for 
first-order process with dead-time 0). This value is 
indeed close to what was obtained by optimizing the 

Fig. 13. Effect of detuning. Closed-loop simulation of set- 
point-change in y, using PID-tunings from entry “full” in 
Table 3. Solid lines = original settings; dotted lines = gains 

reduced by a factor of IO. 
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Table 7. p,,-optimal PID-tunings for Column A, model F2, for diff&znt values of B in the uncertainty weight 
(weight wplI Approach 2) 

0 C?l T11 +I% % TDr 
(min) (min) f+P k., k (min) (min) (min) (min) 

1 3 I 0.67 0.72 3.58 4.34 1.34 0.76 

6 5s I 0.14 0.12 16.6 14.3 3.17 3.54 
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PID parameters with respect to robust performance 
(see Tables S-10). 

4. DISCUSSION 

The control performances of the controllers and 
columns was compared based on robust performance 
using the structured singular value cc. This provides a 
simple and rigorous means for comparison which 
does not depend on a number of arbitrary choices as 
is the case for the traditional simulation approach. 
We have also used simulations to illustrate the valid- 
ity of the p-analysis, and the correction has generally 
been good. However, one should note that the simu- 
lations shown are for specific choices of setpoint 
changes, disturbances and model error. One should 
not necessarily expect a correlation between a single 
simulation and the worst-case response (worst-case 
combination of setpoints, disturbances and model 
errors) for which p is a measure. One of the main 
advantages with the p-analysis as opposed to simula- 
tions is that one does not have to search for the worst 
case--p finds it automatically. 

We would like to stress that the problem formula- 
tion used in this paper using weighted sensitivity 
(IIwpS 1) ,) for performance and only input uncer- 
tainty, was derived by looking for something simple 
which is also physically meaningful. In general, one 
may for performance also include noise on the 
measurements, include disturbances and setpoints 
directly, and penalize the magnitude of the input 
signals. Furthermore, other sources of uncertainty 
could be included. These additional specifications 
may easily be included in the .u-analysis. However, 

Fig. 14. Effect of increased measurement delay 8. Closed- 
loop simulation of simultaneous disturbances in F ( + 30%) 
and zF( + 20%). Solid line: 0 = 6 min; dotted line: 
0 = 1 min. Optimal PID-tunings for the two cases from 

Table 7. 

for the present problem we believe that the most 
important aspects are captured by the very simple 
problem definition used here. The reasons are: (1) 
that the input uncertainty seems to be the most severe 
uncertainty for this system; and (2) that most perfor- 
mance specifications may be captured using weighted 
sensitivity. 

In the paper we have represented time delays as 
input uncertainty using equation (I). In most cases 
this time delay is caused by delayed composition 
measurements. Two things might be questioned: (1) 
is it reasonable to model time delays as model 
uncertainty? and (2) is it reasonable to model 
measurement delays which occur at the ouput as input 
uncertainty? The answer to the first question is “yes”, 
and the reason is that the time delay in almost all 
cases will be the “worse-case” error which can be 
modelled by the uncertainty bound. The answer to 
the second question is in general “no” because uncer- 
tainty at the inputs usually limits performance more 
than does uncertainty at the outputs (e.g. Skogestad 
et al., 1988). However, since we in this paper analyze 
only single-loop controllers (C is diagonal) it is 
acceptable because the uncertainty in each loop may 
be “shifted” through the controllers without adding 
conservativeness. 

One major difficulty in obtaining PID tuning rules 
for the example columns is that there is a large 
number of parameter values which yield about the 
same p-value. This of course also makes the parame- 
ter optimization very difficult. In particular, we 
observed that making one loop faster and the other 
slower generally only had a small effect on the 
optimal value of p. In fact, for some of the columns 
with large interactions, e.g. model Nl, the best choice 
is to make one loop fast and the other slow, and one 
gets about the same optimal p-value irrespectively of 
what loops one selects as the fast one. These issues, 
which also imply that the optimal solution is 
nonunique for certain problems, is discussed in more 
detail by Skogestad et al. (1989). 

In the paper we found that the LV-configuration 
may yield acceptable performance provided measure- 
ment delays are not too large (less than l-2 min); for 
the columns studied it is possible to obtain closed- 
loop time constants less than 10 min in spite of the 
fact that the dominating open-loop time constant (r,) 
may be hundreds of minutes. This does not imply that 
the LV-configuration is the best structure to use- 
others may even be better. For example, the 
(L/D)( V/B)-configuration is probably better in most 
cases, and in particular for columns with Large reflux. 
We also found that for the LV-configuration a 
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Table 8. p,,-optimal one-point PID-tunings for Column A, model F2 (weight wp2. Approach 2) 

ClOSed- 
loop 

Top 
Bottom 

=P 
(min) 

1.75 
1.80 

TI, 

k k (min) 
=1;c 

(mto) 
=?Y 7D.T 

kP (mm) (min) 

I 2.07 6.42 0.49 
I I .46 8.46 0.48 

Table 9. p,,-optimal PID-tunings for model N2 (weight wp, , Approach I) 

COlU~ll 

A 
B 
C 
D 
E 
F 

llRP k, kr 
0.84 0.65 0.45 
0.84 0.41 0.66 

% 5.x +rJ, %x 
(min) (min) (min) (min) 

12.2 4.31 0.51 0.47 
3.16 10.7 0.71 0.36 

0.86 0.60 0.48 4.88 4.93 0.48 0.42 
1.13 5.76 5.78 15.0 15.0 0.32 0.32 
0.74 0.13 0.88 15.1 15.2 0.50 0.47 
0.77 0.043 0.059 5.92 4.66 0.8 I 0.49 

i3 0.87 0.69 0.61 22.0 12.4 0.4 I 0.36 

Table 10. p,,-optimal PID-tunings for model F2 (weight wplr Approach 1) 

COIUYIIII 

A 

PRP 

0.80 

k, 

0.38 

kr 
0.36 

TI, =rr %y KDr 
(l&-h) (min) (min) (min) 

6.49 5.80 1.13 0.9 I 
B 0.85 0.51 0.36 9.33 4.21 0.79 0.72 
C 0.87 0.32 0.40 2.99 5.22 1 .oo I .02 
D 0.91 2.65 1.02 7.45 2.78 0.87 0.20 
E 0.75 0.15 0.66 17.8 21.1 0.50 0.43 
F 0.81 0.044 0.093 6.06 8.96 1.82 0.39 

G 0.77 0.35 0.37 11.9 11.8 1.31 0.79 

well-tuned PI- or PID-controller may be close to the 
best you can do. Again, we stress that this conclusion 
does not necessarily apply to other configurations. 
For example, for the DV-configuration, multi- 
variable controllers which include decoupling effects 
may be much better than using single-loop PID- 
controllers. 

It is obvious from our results that time delays 
impose serious limitations on performance when 
using the LV-configuration. To obtain good control 
quality with this configuration it is therefore critical 
to minimize delays due to composition measure- 
ments, for example, by estimating (inferring) compo- 
sitions from temperature measurements. 

5. CONCLUSION 

We shall summarize our conclusions with regards 
to two-point distillation control using the LV- 
configuration by briefly answering the seven ques- 
tions raised in the Introduction. 

It is possible to achieve good control behavior 
using the LV-configuration for two-point com- 
position control provided measurements delays 
are not too large (typically less than l-2 min). 
The severe interactions and poor control often 
reported with the LV-configuration may be 
almost eliminated if the loops are tuned suffi- 
ciently tight. Again, this is possible only if the 
measurement delays are relatively small (less 
than l-2 min). 
Because of model uncertainty single-loop con- 
trol using PID-controllers seems close to the 
best multivariable controller for the LV- 
configuration. 

4. 

5. 

6. 

7. 

The most important model characteristic for 
controller tuning is the high-frequency dynam- 
ics (initial response). For example, it is critical 
to include flow dynamics (6,) and measurement 
delays (0). The dominating dynamics (steady- 
state gains and dominant time constant r, ) 
are much less important for controller design. 
Including the effect of changes in internal 
flows (t2) improves the controller design some- 
what. 
There is no correlation between the steady-state 
RGA-value and the achievable control perfor- 
mance. On the other hand, the RGA-values at 
high frequency correlate quite well. 
Provided the loops can be tuned sufficiently 
tight, the same controller tunings may work 
satisfactory, both for one-point and two-point 
control. 
The optimal PID-tunings are not at all related 
to the slow dynamics as represented by the 
dominating time constant rI. The integral time 
is generally smaller and choosing it as tr/2 is 
reasonable in many cases provided this value is 
at least three times the dead time. The derivative 
time may be chosen as approximatley half of the 
effective dead time in each loop. 

The structured singular value (,u) was used as a tool 
for evaluating the achievable control performance. 
Performance was defined in terms of the H, -norm of 
the weighted sensitivity function wr S, and the issue of 
selecting an appropriate weight wr was discussed in 
detail. It was shown: 

1. Most performance specifications, including dis- 
turbance rejection, may be handled using a 
simple scalar weight wr. 
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2. In this particular example with the LV- 
configuration and PID-controllers the exact 
shape of the weight (wpl or wp2) is not criticaL 
This implies, for example, that the results do not 
depend on whether the disturbances (or set- 
points) appear at the outputs as steps or 
ramps. 

3. However, the results (in terms of optimal PID 
tunings) do depend on the choice of the par- 
ameters in the weight wp. The last sensitivity 
may be avoided by adjusting the parameters in 
wp such that the best achievable performance for 
a given uncertainty is obtained (“Approach 2”). 

NOMENCLATURE? 

C(s) = Controller 
G(s) = Linear model of column 

k,, = Steady state gains for column 
RCA = Relative gain array, elements are a, 

S(s) = [I + G(s)C(s)]-‘, sensitivity function 
w, = Uncertainty weight 
wp = Peformance weight 
xs = Mel fraction of light component in bottom 

product 
y. = Mel fraction of light component in distillate (top 

product) 

Greek symbols 

IIA If_ =max,a[A(jo)] = H,-norm of matrix A 
A,,(@) = [l -g,,t~w)g,,(~~)/g,,(~~)szzciw)]-’ = 1, l 

element in RGA. 
w = frequency (min-‘) 

6, c,,,~,, = Maximum and minimum singular values 
p = Structured singular value 

tSee also Figs 1 and 3. 

pap = max,p(N,) = peak value of p for robust perfor- 
mance 

+, = Dominant time constant for external flows 
(min) 

rt = Time constant for internal flows (min) 
0 = Measurement delay (min) 

0, = Overall lag for liquid response (min) 
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