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Abstract

In the paper we study the control of identical parallel processes. Such pro-
cesses are quite commomn in industry, for example, in distribution networks
or when parallel units (reactors, heat exchangers, etc.) are used. For single-
loop control of such processes the interactions between the processes are gen-
erally such that DIC (decentralized integral control) is possible. For example,
this implies that taking loops out of service is not expected to cause stability
problems. When model uncertainty is included and performance is measured
in terms of the /. -norm (that is, the structured singluar value p is used
as a performance measure), then the optimal single-loop PI- or PID-tunings
are not necessarily equal for the individual loops. This is contrary to what
one intuitively would expect, and also implies that the optimal solution is
non-unique.
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1 Introduction

The paper is concerned with the control of identical processes in parallel which
interact with each other. This happens quite often in practice, for example, in
distribution networks, or when there are parallel units (reactors, heat exchangers,
etc.) in a chemical plant. With n identical parallel processes the n x n transfer
matrix of the plant may be written

g(s) i(s) i(s) ... i(s)

i(s) g(s) i(s) ... i(s)
G(s)= [ is) i(s) g(s) ... i(s) (1)

B i(s) i(s) i(s) ... g(s)

where the diagonal elements 9(s) denote the transfer function of the process, and the
offdiagonal elements i(s) denote the interactions. At a given frequency this transfer
matrix may be written

1 a(jw) a(jw) ... a(jw)
a(jw) 1 a(jw) ... a(]:w)
Gw) = g(jw) | a(jw) a(jw) 1 oo a(jw) (2)
a(]:w) a(]:w) a(]:w) e 1

where a(jw) = §( Jw)/g(jw) denotes the degree of interaction at a given frequency.

Our interest in this kind of processes was initiated by results we obtained for
a simplified distillation column model (Skogestad et al., 1988). The model used in
that paper is

1 0.878 —0.864)
LV _— - 3
G (s) = 755 + 1 (—1.082 1.096 (3)

Here the inputs are reflux (L) and boilup (=V) and the outputs are product com-
positions. This is of course not ap example of identical parallel processes, but it’s
model is quite close (with a = —0.986). Skogestad et al. (1988) studied robust
control using this model. They considered uncertainty with respect to the actual
value of the inputs L and V, and used the H*®-norm of the weighted sensitivity as
a performance criterjon. Note that the uncertainty and performance specifications

tured singular value trp (Doyle, 1982). A value of #Rp less than 1 implies that
the worst-case response satisfies the robust performance objective. For the process
in Eq.3 Skogestad et al. (1988) obtained a multivariable controller, denoted the
“p-optimal controller”, with pp = 1.06. This means that the px-optimal controller
does not quite satisfy the robust performance specification, but it is very close. They
also studied use of single-loop PID-controllers and were able to obtain brp = 1.34
by adjusting the six controller parameters (k¢, 77, 7p for each loop). Skogestad et
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al. (1988) did not publish the corresponding optimal controller parameters which
are:
Loop 1: K, =1.79, r; = 28.9 min, 7p = 0.31 min (4)

Loop 2: K, = 0.47, 77 = 1.38 min, 7p = 0.27 min (5)

We note that the integral time for loop 1 is about 20 times larger than that of
loop 2, and also the gains are different by a factor of 4. Intuitively, one would
expect for single-loop control of jdentjcal parallel processes that the optimal tunings
would be identical for all loops. However, the results over suggest that this may
not be the case. Furthermore, it suggests that the optimal controller is not unique
since we may simply interchange the controllers for the two loops and get the same
overall performance. Skogestad and Lundstrém (1990) have obtained results for
other distillation column models which support these findings.

Based on these results we decided to study identical parallel processes more
systematically and some results are presented in this paper. First we give some
examples of processes that may be written on the general form in Eq.1 and 2 above.
Note that we so far have only been able to find examples where at steady-state
~1/(n-1)<a<1. We also study the frequency behavior of the special matrix in
Eq.2, and present some general results for these kind of matrices, which we denote a
parallel matrix. Finally, we study design of single-loop controllers for such processes
and confirm the results obtained for the distillation column example above.

2 Examples of parallel processes

We have not performed any extensive search in the literature for examiples on parallel
processes and for properties of such processes, and would therefore very much wel-
come possible references. Speciﬁcally, we suspect that there might exist literature in
the area of distributjon networks, and in control of large-scale systems in general. It
is quite common in the chemical industries to have units in parallel, either because
one single unit would be too large or to add flexibility. Typical examples of parallel
units include reactors, heat exchangers and compressors, and some examples may
be found in the books of Shinskey.

Ezample 1. Flow splitting. One example is the control of flow in parallel streams
from a single source as shown in Fig.1 (Shinskey, 1979, p-201). Opening valve 1
causes q; (flow 1) to increase and 92 (flow 2) to decrease because of the consequent
reduction in header pressure p. If there are two parallel steams the steady-state value
of a is expected to lie between 0 and -1. The value of 0 would be obtained if the
source was a large tank such that the header pressure was unaffected by increasing
- flow 1, and the value of -1 would be obtained if the source was a pump with constant
total flow q. For n parallel streams from a single source similar arguments yield

~1/(n-1)<a<0 (6)

The lower bound is obtained by considering constant total flow. In this case a change
Aqi in flow 1 would yield Agz = Agg = -+ = Ag, = ~Aq/(n - 1). A value less




than the lower bound —=1/(n - 1) would imply that the total flow is reduced by
opening a valve and does not seem to be possible in a practical situation.

Ezample 2. Parallel reactors with combined precooling. In Fig.2 is shown the
cooling system for n identical mixing tank reactors in parallel. The cooling medium
comes from a single source which is split into n streams and then completely evapo-
rated by heat exchange with the reactors. The streams are then combined and this
stream is superheated by precooling the reactor feed. At steady state all temper-
atures and flows in the parallel streams are assumed equal. Consider the transfer
matrix G(s) between the valve positions (inputs) and the reactor temperatures (out-
puts). By neglecting the dynamics of the evaporator and the superheater, the model
G(s) can be shown (Appendix) to be on the form

l a a a
- k a l a a
= 1 a 7)
G(s) Ts+1 (.1 N . (
a'a a ... 1

where £ and a are real constants and 7 is the time constant for holdup in each of
the reactors. Based on physical arguments we have

—l/(n-1)<a<1 (8)

The lower limit is obtajned by considering the case with no precooler (UA = 0 in the
model) and assuming constant total flow (recall the parallel flow example above).
The upper limit is obtained by considering the case with no evaporator (AH.,,,,, =0
in the model). In this case the cooling streams are split and then recombined without
changing their temperatures, and an increase in any cooling stream will affect all
reactor temperatures equally and we have qa = 1. Independent control of the reactor
temperatures is clearly not possible in this case.

We have looked for other examples of parallel processes with a outside the bounds
given by Eq.8, but have so far not found any. We would be very thankful if someone
could direct our attention to such examples, ‘

In the example above the processes were parallel but the control objectives
(eg., to keep the individual reactor temperature constant) were otherwise decou-
pled. There are also interesting examples of control of parallel processes where the
control objectives are coupled. For example, consider again the stream split example
in Fig.1 and assume the control objective is to keep the total -flow 2.:¢i at a fixed
value g, subject to the constraint that the individual flows should be equal, that is,
91 =92 = --- = q,. The requirement of equal flows may be needed, for example,
to avoid overheating of tubes in a burner with parallel passes (Shinskey, 1984, p.
104). Since the equal flow objectives yield n — 1 objectives of the form 42— q =0,
there are a total of n contro] objectives which may be collected in the output vector
y. Subsequently, the coniro] problem may be solved with standard methods from
linear control theory, but note that the overall transfer function from inputs (valve
positions) to outputs ¥ is no longer an example of an identical parallel process as
defined in Eq.1.




/
[

I
.r
I
i

~

3 Results from matrix theory

Consider a complex square n X n matrix P of the form

[

1 a
a
a

Q -~

a
a a
1 a 9)

_aaa--'lJ

where the constants a and k ip general can be functions of frequency. We have not
found any name for this matrix in the literature, but we shall refer to it as a parallel
malriz in the following.

3.1 Classification of the matrix P

The parallel matrix P is symmetric matrix which belongs to a subclass of both
circulant matrices and symmetric Toeplitz matrices. The general form of a circulant
matrix C is:

r Ci Cy C3 +-- Cp
Cn € Cp -~ Cn-1
C = Cn-1 Cq € - Cn-2 (10)
Co C3 €4 ~-+- (6] J

The general form of a Toeplitz matrix 7 is:

!- tO tl t2 din tn—l ]
t—l to tl “se tn—2
T=|1, t_,1 to I (11)
| t—(n—l) t_("_g) t—(n—a) e to 1
It can easily be seen that if co=kand ¢ =¢c3 = -.. = ¢a = ak then P = C.
Similarly, if g = k, t; = tiand &) =ty = ... = tnoi = ak then P = T. The

results in this section on circulant and Toeplitz matrices are from Bellman (1970)

and Davis (1979).

3.2 Properties of the matrix P
Determinant.
detPoyn = k™ [1+ (n —1)aj(1 — a)™! - (12)

Proof: The determinant js unaltered by adding c¢ times one column (row) to an-
other column (row). Subtract the first row from all the other rows. Thereafter, add
columns 2 to n to column 1. The result is a triangular matrix, and the determinant
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is the product of the elements on the diagonal.

Relative Gain Array (RGA) (Bristol, 1966).

;= po - yx-n) _ [14(n—2)q]

Aii = pi det(Paxn)  [1+ (n—1)a](1 - a) 1
1—X; —a’
Mt = (n=1) " [ +(nr-Dad—a "
Inverse. pp L+ (n—2)a I (15)
S e e

P...,. — —a l—ﬁ (16)

_— [ ]u.t#: = 1+ (n — Da](1 - a)k "~ ak

Eigenvalues, eigenvectors and singular value decomposition.

Let r; be a root of the equation r™ = 1. From the theory of circulant matrices (Davis
1979, Bellman 1970) we then know that the matrix P has eigenvalues \; given by
the formula:

Ailk=14a(ri+r24... 401 (17)
However, since
Lhritrl 4o aP = 0for iy # 1 (18)
the matrix P will have at most two distinct eigenvalues. These are given by
M =(14+(n-1)a)k (19)
A2=A3=..-=An=(1—a)k (20)

This means that the matrix P will always have eigenvalues in the right half of the
complex plane if k is a positive constant. The eigenvector corresponding to J; is:

1‘]_1'- = [1 T 1‘.2 ‘e r?_l]T (21)

Since the equation r™ = 1 has n distinct roots, P will always have a complete set of
eigenvectors, and will thus always be diagonalizable. In fact, all circulant matrices
of the same order have the same eigenvectors, and are therefore diagonalized by the
same matrix, the Fourier matrix.

As P is symmetric, the eigenvectors will be the same as the vectors resulting
from singular value decomposition, and the singular values will equal the modulus
of the eigenvalues (o; =| A |). ‘

3.3 Combinations of parallel matrices

If A and B are parallel matrices and k; a scalar, then AT AH kA + k;B, AB,
Y ki A are parallel matrices and A and B commute, that is, AB = BA. Note that
A1 s also a parallel matrix.

For example, if a process with a parallel transfer function G is controlled by n
equal single-loop controllers (ie., C = cI), the sensitivity function S = (I + GC)?

and the complementary sensitivity function T = I — S are both parallel matrices.
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4 Limits on interactions for single-loop control

The results in this section are based on the general results from matrix theory
presented above,

4.1 Conditions for DIC

When single-loop controllers are used it is highly desirable that the system corre-
sponding to the chosen pairing is Decentralized Integral Controllable (DIC). If t.hIS
is the case then there exist stabilizing single- loop controllers with integral action
(no offset) such that the gains of the individual loops can be reduced independently
without introducing instability. A set of necessary conditions for DIC are presented
by Skogestad and Morari (1988). Essentially these conditions are tests for whether
the steady-state gain of the system may change sign as the controller gain fo.r othfar
loops are changed. Assume G(s) is open-loop stable. Two of these cond.it.lons in
terms of the steady-state gain matrix G(0) corresponding to the chosen pairing are

L. Xi(G(0)) < 0 for some i = not, DIC
2. min; Re{)\;(G*(0))} < 0 = not DIC

Here G*(0) is the steady-state gain matrix with signs of inputs adjusted suc}f 1.:ha.t
all diagonal elements are positive. In words the first test tells us to avoid pairings
on elements corresponding to negative RGA-elements, and the second test says th?.t
DIC is not possible if G*(0) has eigenvalues in the left half plane. The system v.wll
also not be DIC if any of the two tests fail for the subsystems obtained by deleting
a row and corresponding column in G(0).

Consider a parallel steady-state gain matrix of the form in Eq.2. At steady
state a and & are real numbers, and assuming k > 0 yields that the diagonal RGA
elements are negative for

- <a< — or a>1 (22)
n-—2 n-—1

One or more eigenvalues of G*(0) are in the left half plane for

a< —! or a>1 (23)

n—1
Equations 22 and 23 give regions for a for which DIC is not possible. Combining the
regions for a excluded by the two conditions gives the region in Eq.23, that is, the
eigenvalue condition is the more useful in this case. Applying the eigenvalue test to
the submatrices corresponds to choosing n smaller and this does not exclude more
values of a. In summary, we see that to guarantee DIC we must at least require that

<a<l (24)‘.

n—1

This condition is nhecessary and probably also sufficient for DIC, However, !:he
suffiency remains to be proven rigorously. It is interesting to note that the region

7




for which DIC is possible according to £q.24 is exactly the same region we f01.1nd
that a should be in for our example processes. This implies that DIC is possible
for all the examples of parallel processes we have studied so far. This is of course a
relief for the practicing engineer, but frorn a theoretical point of view we would very
much welcome example processes with a outside this region.

4.2 Magnitude of RGA-values at steady state

It is known (eg., Skogestad and Morari, 1987) that large RGA-elements at fre-
quencies corresponding to the desired closed-loop bandwidth imply that the plant
is fundamentally difficult to control. For a in region given by Eq.24 above.: A at
steady state is always larger than 1. Aiiis 1 for @ = 0 and it approaches infinity as a
approaches its lower limit —1/n —1 or upper limit 1. Provided the steady-state be-
havior is representative for the behavior af high frequency we may conclude that the
system is difficult to control (regardless of what controller is used) if a approaches
these limits. In particular, it is known that inverse-based controllers (eg., decou-
plers) should not be used for plants with large RGA- elements because the system
will be extremely sensitive to small input errors.

In this section we have established that single-loop control seems to be a rea-
sonable control strategy for controlling identical processes. Firstly, we established
that the requirement of DIC is always satisfied, at least for the examples we have
studied. Secondly, we established that the RGA-elements are always larger tha\'.n 1
in magnitude at steady-state. This implies that multivariable controllers that might
be used to reduce the effect of interactions will have robustness problems.

v

5 Design of single-loop controllers for parallel
processes

9.1 Example process

In this section we consider tuning of single-loop controllers for a 2 x 2 paralle] process

with transfer function ) .
- a ’ (25)
G(s) = 1+ 7s (a 1)
where a is a real constant. This plant has a constant value of the RGA given by
A =1/(1-a?). An example of such a plant may be cooling of two parallel reactors
with combined precooling (Example 2) as shown in Fig.2. We shall consider the
following parameter values:

® a:0,0.827, 0.949, 0.984, and 0.995 (corresponding to Ay = 1, 3, 10, 30, and
100)

¢ 7: 10 and 100 min,

/
e




The value of  should be compared to the value of the dead time 6 of 1 min
allowed by the uncertainty weight (see below). Also note that for the special case of
2% 2 plants the sign of a does not matter, that is, the same results, for example with
respect to optimal tuning parameters, would be obtained with ¢ = 0.9 or @ = —0.9.
The reason is that changing the sign of input 1 and output 1 changes the sign of the
off-diagonal elements, but keeps the diagonal elements unchanged. This is not the
case for 3 x 3 plants or higher.

As controllers we shall consider PI- and PID-controllers on the cascade form with
derivative action effectjve over one decade.

I1+7s 147ps (26)
CHD(s) =k T1s 14 0.1mps

The contreller parameters k, 71, 7p for each loop are optimized with respect to robust
performance of the system in F ig.3 as described in detail below.

5.2 Mu-optimal tuning procedure

Model uncertainty. One source of uncertainty which always is present and which
generally limits achievable closed-loop performance js input uncertainty. Let the
relative input error be ¢ at steady-state, and assume it increases with frequency such
that it reaches 1 (100%) at a frequency of about 1/0. For example, this increase of !:he
error with frequency may be caused by neglecting a time delay 0. The corresponding
input weight is then

8
58 + 1
We use the same weight as Skogestad et al. (1988) and Skogestad and Lundstrém
(1989) and choose for both inputs € = 0.2 (20%) and 6=1 min.

Performance. Assume that the following performance specifications are given:
1) Steady-state offset less than A; 2) Closed-loop bandwidth higher than wpg; 'and
3) Amplification of high-frequency noise less than a factor M. These specifications
may be reformulated as a bound on the weighted sensitivity function

wr(s) =e

F(wpS(jw)) < 1 Vw ' (28)
(which is equivalent to requiring {JwpS||e, < 1) using the following weight

) _ 1 1ps+1
wp(s) = M7ps + AJM’
We shall for both outputs use A = 0 (no offset) and M = 2 which are the same
values as used in previous studies. This gives

with 7p = 1/ Muwg (29)

wp(s) = 0.5 P

Previously (Skogestad et al., 1988) 7p has been fixed at 10 min, but we shall use it
as an adjustable parameter.




Robust Performance (IEP). This is satisfied if the above-mentioned performance
criterion is satisfied for all possible model errors. Mathematically, this is tested by
computing u of the matrix Nrp (see Skogestad et al., 1988a).

_ (wiCSG w,CS) 31
NRP - ( prG pr ( )

#(Nrp) should be less than one at all frequencies for RP to be satisfied. The peak
value of u(Npp) will be denoted IRP.

Controller tuning. In previous papers (Skogestad et al., 1988) we have obtained
the optimal parameters by minimizing ppp with fixed uncertainty and performance
weights (7p = 10 min). An optimal prp-value different from 1, say 0.7, then means
that both the uncertainty and performance weight may be increased by a factor of
1/0.7 and still have robust performance. In most cases it seems more reasonable
to fix the uncertainty and find the best achievable performance (that is, adjust the
performance weight such that Krp = 1). This is the approch taken here, and the
parameters in the controller C'(s) are obtained by solvi ng the following optimization
problem (denoted “Approach 2” in Skogestad and Lundstrém, 1989):

min || min jp(C, 7p) — 1] (32)

The optimal parameters are obtained using a general optimization routine and
since there are many local minima there is no guarantee that the settings presented
really are the true optimal.

5.3 Optimal tuning parameters

The results of the parameter optimizations for different combinatjons of the pa-
rameters a and 7 are presented in Tables 1-4. The tables give the best achievable
performance (as expressed by the value of 7p in the performance weight) for the
specific plant as well as the corresponding controller settings. Small values of Tp are
good as they imply that fast response may be achieved, even in presence of model
uncertainty. '

Table 1 present the optimal Pl-settings when we require the two single-loop
controllers to be identical and Table 2 present the results when the tunings are
allowed to be different. For the case with 7=10 min there is only a very small
improvement by allowing the controllers to be different. However, for the case
with 7=100 min we note that the achievable closed- loop time constant 7p may
be significantly reduced. This is especially the case for “intermediate” values of a
coresponding to RGA-values between 10 and 30. For example, with 7=100 min and
a=0.949 (A11=10) the value of 7p may be reduced from about 26 to 19 min. We
also note that for the cases where the improvement is largest, that the integral time
for one loop is at about the open-loop time constant T while the integral time for
the other loop is much smaller. .

Similar results are found when PID-controllers are used as illustrated by Tables
3 and 4.
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To understand better what is going on consider the case with 7 = 100 and
A1 = 10. The optimal Pl-settings when both loops are required to be identical are:
Controller ¢: k=39.7, 7,=65.1
and when the loops are allowed to be different:
Controller ¢;: k1=46.3, ;=101
Controller ¢,: ky=22.8, 7,,=3.15
Results for the identical controllers (c) are shown with solid lines in Figures
4-10, and with dotted lines for the case with different controllers (c1, ¢2). The p-
plots for RP with 7p in the performance weight fixed at 26 min is shown for the
two cases in Fig.4. The plots are quite similar at high freqeuncy, at intermediate
frequencies the performance with identical controllers is better, but at low frequency
the performance with different controllers is best. Next, consider the magnitude of
the contrellers shown in Fig.5. We see that controller ¢; is quite similar to ¢, while
controller ¢, has significantly higher gain (the gain is lower at high frequencies, but
this is outside the bandwidth when both loops are closed which is at frequency of
about 0.02 min~1), However, this high gain does lead to a more oscillating response
as is clear from the plot of the nominal (no uncertainty) sensitivity functions |S|
for the individual loops in Fig.6. Note that the sensitivity function should be as
small as possible to have tight control and a peak generally signifies an oscillating
response. The nominal sensitivity function in the worst direction with both loops
closed simultaneously, a(S), is shown in Fig.7, and we do not from this plot see
much difference between identical or different controllers. Comparing Fig.6 and 7
demonstrate how the interactions reduce the closed-loop bandwidth with about one
decade.
The findings above are confirmed by simulations of setpoint changes. Note that
a dead time of 1 min in each loop has been included in these simulations, but there
is otherwise no model error. In Fig.8 is shown the reponse of the individual loops
and we find as expected that loop 2 is more oscillatory, but there is otherwise no
improvement from the higher loop gain. In Figures 9 and 10 are shown responses
with both loops closed, and with a setpoint change in the “easy” and “difficult”
direction, respectively. The easy direction, which corresponds to increasing both
outputs simultaneously, is even faster than found for the individual loops. However,
for the difficult direction, corresponding to decreasing y, and increasing y,, we see
that the responses are much slower. We also see here that the higher gain in loop
2 does make a difference, as the response with different controllers approach the
steady-state significantly faster in this case.

a

6 Discussion

The results above demonstrated that when robust performance is used as a perfor-
mance measure, the optimal PI- and PID-tunings for single-loop controllers are not
necessarily equal even though the problem statement is completely symmetric. In .
particular, this implies that the solution is not unique as we may simply interchange
controller 1 and 2 and get the same optimal p-value.
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Physically, the reason for why the optimal controllers are different is related to
the fact that plant is ill-condioned (large RGA-values). The loops then interact
such that it is difficult to control both outputs well at the same time. In some way,
the optimal controller tries to find a balance between the conflicting objectives of
having fast response and avoiding interactions. The optimal PI-controller in the one
example above seemed to be able to reduce the interactions at steady-state, but at
the expense of a poorer initial response.

It should be noted that although the problem statement is indeed identical as
seen from any loop, the model uncertainty does actually allow the parallel processes
not to be identical. The results with different tunings may be related to this fact.

The fact that the optimal tunings for the loops are not identical is of course a
very interesting result from a theoretjcal point of view, but it has real practical im-
plications only if there is a real improvement by using different controllers. Though
we saw in the example that the performance measured in terms of the H,,-norm
may be improved quite a bit, the results from the time domain simulations were l_ess
convincing (though we clearly see that the response is improved at higher simulation
times in that the outputs return to their setpoints sooner). However, one should
note that simulations can only be performed for specific choices of setpoint changes
and model errors, and one should not necessarily expect a god correlation between
a single simulation and the worst-case response for which u is a measure. There
will therefore most likely be cases where clear improvements in performance may be
seen also in time domain simulatjons.

For most of the cases where performance may be improved by having different
tunings, the optimal p-value is actually quite insensitive to the tuning parameters,
that is, we may get very similar yi-values for a large range of, for example, integral
times. This is of course of some interest from a practical point of view because it
implies that exact tuning is not critical. However, it does also make the numerical
optimization with respect to optimal controller parameters very difficult.

These results demonstrate that the p-optimal single-loop controllers do not have
to be equal for identical parallel processes when we use PI- or PID-controllers.
However, it is not at this point obvious if this is caused by the limited number of
degrees of freedom in these controllers, or if the “true” optimal single-loop controllers
(with no restrictions on the number of adjustable parameters) are indeed different

for each loop. Qur conjecture at this point is that they will be different, but this
still remains to be investigated.

7 Conclusion

In the paper we have studied the control of identical parallel processes. For single-
loop control of such processes we have found:

1. The interactions between the processes are generally such that DIC (decentral-

ized integral control) is possibe (this is a fortunate circumstance which makes -

life easier for the engineer). For example, this implies that taking loops out of
service is not expected to cause stability problems.
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2. When model uncertainty is included and performance is measured in terms‘of
the H.,-norm, the optimal single-loop PI- or PID-tunings are not necessarily
equal for the individual loops. This is contrary to what one intuitively would
expect. It also implies that the optimal solution is non-unique.

NOMENCLATURE (also see Fig.3)

C(s) - controller

G(s) - linear model of process

RGA - Relative Gain Array, elements are A
S(s) = (I + G(s)C(s))™!, sensitivity function ‘
wr - input uncertainty weight

wp - performance weight

Greek symbols

llAlloc = max, 7(A(jw)) - Ho-norm of A
A - eigenvalye '

An(jw) = (1 - %;—:}%&%})‘1 - 1,1-element in RGA.
w - frequency (min-1)
0 - maximum singular value

# - structured singular value
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APPENDIX
Model of cooling of parallel reactor system (Example 2)

The flow diagram is shown in F ig.2. Each reactor is cooled by a heat exchanger,
which acts as an evaporator for the cooling medium. The evaporated cooling medium
is then superheated by heat exchange with the incoming feed. )

The following assumptions have been made when developing the dynamic model
of the system:

i) The cooling medium enters the evaporators at its bubble point and leaves at
its dewpoint 7}. L

ii) The dynamics of the evaporators have been neglected. This is justified by
assuming constant holdup of liquid and vapor in the evaporator and neglecting

accumulation of heat in the walls. . .
iii) The dynamics of the superheater are neglected. The arithmetic mean tem-

perature difference AT is used for the superheater.

iv) All'physical properties constant.

v) The reactors have constant volume V.

vi) The overall heat transfer coeflicient U in the superheater is constant.

Let m; (kg/s) denote the flow of the fluid (subscript f) through each reactor and
let g; (kg/s) denote the flow of coolant (subscript c) through each evaporator. The
energy balance for reactor no. i js:

d
d—t (ijCpr,') = m,'Cpf(Tm - T,) - inHuap (33)
The energy balance for the superheater:

2 miCp(Ty = T) = 3 G:Cpu(Th — Tu) = UAAT (34)

Fairly straight forward algebra then yields:

2G+F -1 2

L s — 1) — ¢iAH,., (35)
G+ 1 gy~ ) - alHe

d
7 (psVCpsTi) = miCpy(Ty

Where
Fr = ZimiCpy (36)
> q:Cp. '
_ 2imCpy : 37
G= =0 (37

This can be linearized to give :

4

di psV psVCpy " vy i
Where

. - H(Ty - T.
dAT,-=_iAT,--H(Tf L) ¥ Ay o HUTy ")Zqu (38)

__ 2miCp;  ¥imiCpy
"~ (2G+ F +1)?(; ¢:)°Cp.

Note that H = 0 for the special case with no superheater, ie., UA = 0. Let
u denote the vector of individual valve positions (inputs') using deviation vana.blo;,
and let Aq = P,u, where F, is a matrix which describe how the flowrate ¢; in
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stream j changes when the position u; of valve i changes. The equations can then
be expressed in matrix notation as:

& = Az + BP,u (40)
where z is a vecor of tank temperatures AT}, A is a diagonal matrix with diagonal

elements a;;, and B and P, are parallel matrices. The product BP, is also a parallel
matrix. Let the elements of F, be denoted p;;. Then we have

mg

- 41)
a4 = —— (
prV 1
bi = ~[H(T,; - Ty) + AH,, (42)
[H( J d) + p]PjVCpf
- b, = AT -T) (43)
PsVCpy
(BR); = bupi + (n — 1)bijpij (44)
[BE); = bipij + bizpis + (n — 2)bi;pi; (45)
Consequently, the process transfer function G(s) will be a parallel matrix given
by:
|4
G(s) = —T—BP,, where 7 =£/" (46)
Ts+1 m;
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Table 1. Identical Pl-controllers.

-
min.

10
10
10
10
10

100
100
100
100
100

()

0.000
0.827
0.919
0.984
0.995

0.000
0.827
0.949
0.984
0.995

Table 2. Different Pl-controllers.

T

min.

10
10
10
10
10

100
100
100
100
100

a

0.000
0.827
0.949
0.984
0.995

0.000
0.827
0.949
0.984
0.995

g
min.

1.30
6.15
13.2
42.2
133

1.33
7.86
18.9
51.2
103

TP

min.

1.30
6.20
13.3
43.0
133

1.33
8.37
26.0
61.5
104

5.57
3.95
2.98
2.94
2.93

95.6
35.3
46.3
51.8
38.2

16

9.57
3.86
2.91
2.95
2.93

95.6
41.7
39.7
38.5
37.3

9.57
3.81
291
2.90
2.93

95.6
36.2
22.8
13.1
36.0

TI

min.

11.5
9.39
3.03
3.19
3.13

111
53.9
65.1
39.8
19.3

™T
min.

11.5
5.89
3.21
3.15
3.13

111
90.1
101
86.5
19.6

TI2
min.

11.5
4.92
2.91
3.05
3.13

111
3.56
3.15
3.34
18.1



Table 3. Identical PID-controllers.

T

min.

10
10
10
10
10

100
100
100
100
100

« P

mit.

0.000 0.822

0.827 4.47
0.949  9.42
0.984 18.6
0.995 52.5

0.000 0.824

0.827 5.92
0.949 19.0
0.984 48.5
0.995 91.1

Table 4. Different PID-controllers.

T

min.

100
100
100
100
100

0.000
0.827
0.919
0.984
0.995

TP kl
min.

/\"2

min,

8.40
5.85
4.47
4.10
3.85

83.1 99.1
99.6 83.6
56.8  65.0
99.7  50.8
541  26.5

T

min,

0.824 83.1 83.1 99.1
3.50  56.6 514 121
13.2 674 303 95.7

13.1 629 25.1

88.0

884 758 26.3 51.3

17

11.0
5.52
2.13
1.90
1.60

T

Ti2

min.

99.1
3.63
1.90
4.90
8.09

™
min.

0.58
0.10
0.53
0.52
0.60

0.59
0.37
0.34
0.35
0.39

D\
min.

0.59
0.18
0.30
0.18
0.34

D2
nun.

0.59
0.56
0.55
0.11
0.37



