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Abstract

Temperature and low measurements are used to es-
timate the product compositions in a distillation col-
umm.  The problem is characterized by strong colin-
earity (correlation) between the temperature measure-
ments. Contrary Lo some claims in the literature, it is
found using a Kalman-Bucy Filter that the goodness
of the estimate, even when used for feedback control, is
improved by adding temperature measurements, This
does not apply to Brosilows inferential estimator which
in its original form is very sensitive to colinearity in the
measurements. IL is important to use only those direc-
tions in the measurement space which are excited by the
independent variables (inputs and disturbances). The
Partial Least Square Regression ( PLS) method used in
stalistics adresses this explicitly. In the paper we use
the PLS method to gain insight into the directions of
the temperature space.

1 Introduction

The paper adresses the estimation of process outputs based
on multiple secondary measurements. The application chosen
in this paper is the use of temperature and flow measurements
to estimate the product compositions in a distillation colnmn.
This is a very interesting application which features: i) alarge
number of strongly coupled measurements, ii) strong nonlin-
carity, and iii) a large number of disturbances and inputs with
similar effects on the column,

‘The use of temperature measurements for feedback control
of distillation columns is quite extensively discussed in the
chemical engineering literature (eg., Nisenfeld and Sceman (1],
p- 85-95). Temperatures are not used because they are of
interest themselves, but because composition measurements
are often expensive and unreliable and often not available,
while temperature measurements are inexpensive and reliable.
One problem is that temperature is a true indicator of the
tray composition only if the mixture is binary and at constant
pressure. However, this problem may be partly overcome by
using several measurements.

Measurement selection. Most columns have temperature
sensors located at about every fifth tray in the column, that is,
a typical column may have 5-10 temperature measurements.
In industry all these measurements are rarely used. Usually
each composition measurement is replaced by a single tem-

perature measurement and used for single-loop feedback con-
trol. The main problem is then to find a suitable location
for this temperature. According to Nisenfeld and Seeman {1)
the most important issues are, i) that the temperature should
be sensitive to changes in the composition, and ii) that the
correlation between temperature and composition should be
insensitive to disturbances in feed composition and in flows.
Since the products are often very pure the first criteria favors
placing the temperature sensor away from the products. The
second criteria favors placing the sensors close to the prod-
uct. Another factor favoring placing the sensor away from the
column ends is nonlinearity caused by changes in operating
conditions. However, note that nonlinear effects may alterna-
tively be counteracted by using the logarithm of the impurity
for feedback instead of its absolute value.

In this paper, measurement location is not an important
issue. The reason is that we use several (typical five or more)
temperature mcasurements and then estimate the product
compositions. In this case the exact location is far less impor-
tant than when single temperature measurements are used.

The estimation problem. The objective is to obtain the
best estimate of the product compositions using all available
measurements. This estimate should be obtained based on a
description of the process (nominal model and expected un-
certainty), the expected disturbances, and a more precise def-
inition of what we mean by “best”. Il is assumed that the
estimated outputs are to be used for fecdback control.

Note that we arc implicitly assuming that the controlier
should be separated into two parts: one estimator which con-
denses all the measurements into a few estimated outputs,
and a “small” controller which uses these estimates for feed-
back control (Fig. 1). In general, this solution is suboptimal
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Figure 1. Controller block C = CregCeat split in sepa-
rate blocks for estimation and control.



compared to using one big controller which directly uses all
available measurements. The reason is of course that some in-
formation is lost as the original measurements are condensed
into the fewer estimated variables. In some cases it may be
shown that no information is lost and this is then referred to a
separation principle. In particular, this may be the case if all
the states of the system are estimated since the states contain
all information about the system at any given point in time.
However, in this paper we will not use all states for feedback
control and the separation principle does not apply. However,
since we in our case are estimating the actnal controlled out-
puts, we may postulate that the performance loss caused by
the separation is not a major problem. However, this point
remains to be proved rigorously.

The motivation for separating the controller in two parts
in our case is reliability, design simplicity and robustness. In
particular this is the case if the “small” controller is based on
single loops. Reliability then means that we can still control
one composition even if the other loop fails. Design simplicity
means that the control system is build up of smaller pieces
which each perform a specific task which is relatively easy to
understand. By robustness we mean robust in a broad sense,
both with respect to model-plant mismatch, but also robust-
ness with respect to the accuracy of the problem definition
itself. This last point may seem somewhat philosophical, but
is often of great practical value. For example, suppose you are
to design a multivariable controller for a very ill-conditioned
plant (with large RGA- values [2]). To avoid “stupid” con-
trollers such as decouplers you have to add specifications such
as uncertainty or limitations on the input signals. Iowever,
if the controller structure is limited to be diagonal (decen-
tralized control) then there is no possibility for doing stupid
things (simply because the controller structure is so limited)
and your result in terms of optimal tunings is only weakly on
the specifications mentioned above. The same applies il one
wants to design a “big” controller using all measurements: to
get a meaningful solution (rom an optimization procedure you
have to be extremely careful with the problem formulation,
that is, the solution is not robust with respect to the problem
formulation.

The statement in the problem definition above that the
best estimate should be based on all available measurements
is not as obvious as one should think. Actually, a large num-
ber of authors (eg. Joseph and Brosolow [3], Morari and
Stephanoplous [4], Yu and Luyben [5], Moore et al.[6], Keller
and Bonvin (7] have suggested that one should only nse a
few of the temperature measurements to avoid the badly con-
ditioned problem of obtaining information from the strongly
correlated temperatures. The reasons for this are again related
to the somewhat philosophical points raised above about sen-
sitivity to the problem descriptions. Dy not using all the mea-
surements the solution space is limited and you do not need
to define the problem carefully in order to avoid “stupid” so-
Iutions. One of the main objectives of this paper is to study
some of the available methods for designing estimators to find
out if they are sensitive to the kind of colinearity which we
intuitively expect may cause control problems. In particular,
we expect the Brosilow Inferential Estimator [8] to be sensitive
since the users of this method strongly argue against using too
many measurements.

We consider three different approaches to the estimation
problem: i) The Kalman-Bucy Filter, ii) Brosilows Inferential
Control Method, and iii) Partial Least Square Regression.

IKalman estimator. The traditional “optimal” approach
of modelling disturbances and noise as stochastic processes
and minimizing a quadratic error function gives rise to the
Kalman-Bucy filter. This estimator contains a full model of
the plant, and the states are updated by using constant gain
feedback from the measurements. This algorithm does not
seem to have been widely used in industry for estimation of
compositions, but this may partly be caused by the need for
compuling power which previously made it impractical.

Brosilow estimator. In process control, Weber and Brosilow
(8] introduced a different method for use of secondary mea-
surements. The main idea is that disturbances in process con-
trol applications tend to vary slowly compared to the process
dynamics, and are certainly not well modelled by stochastic
disturbances. Brosilow proposed to use the secondary mea-
surements to estimate the disturbances. These estimated dis-
turbances are then assumed to be constant in the future and
the disturbance estimates are used in a sort of feed-forward
scheme to counteract their expected on the outputs. We shall
only use the estimator part of Brosilows scheme and not the
feedback part. Brosilows scheme has a strong intuitive appeal
and seems to have found some use in industry. However, the
method appears to be very sensitive to the number of mea-
surements if these are colinear (eg., Joseph and Brosilow [3].

To understand what the Brosilow estimator does consider
the simplified steady-state estimation problem with constant
manipulated variables: Given a set of (secondary) measure-
ments 6, obtain an estimate § of the the outputs y,

§=Kb (1)

where I{ is the gain matrix of the estimator. To obtain K
Brosilow considers the model

0="Fyd, y=0Gud (2)
where d contains all independent variables (disturbances), and

then obtains
K = GyF} (3)

where the latter denotes the pseudo inverse of Fyy. The pscudo
inverse arises as the best estimate in the least square sense.

i“igure 2. Control scheme based on LV configuration.



PLS estimator. A more direct way of obtaining K, with-
out going the way through estimating disturbances, is inspired
by the approach used by analytical chemists in theit “multi-
variable calibration problem” [9]. In this case one first ohtains
sets of corresponding values of Y and O (The matrices Y and
© contain corresponding values of y and 8 obtained from “cal-
ibrations” or simulations). A SVD on O is performed to delete
directions in @ which are only weakly excited and then one
computes

Kk = oty. (4)

Using this approach one avoids explicitly modelling the ef-
fect of the independent variables on @ and ¥ (although typical
variations should be included in the calibration set). The ap-
proach also has an intuitive appeal to engineers as one seems
to skip the modelling step. Physical insight may be obtained
by studying the directions of the matrix © using SVD.

Analysis of estimators. We shall compare these estimators
on the basis of robust performance. This involves computing
the structured singular ‘value p [10). The performance re-
quirement is satisfied for the worst case if 4 is less than one
at all frequencies. The composition estimates are assumed
to be used as inputs to two PID-controllers using the LV-
configuration as shown in Fig. 2. The PID-controllers were
tuned such that robust performance was achieved when the
estimate is exact. The estimators are compared under the
[ollowing two conditions:

1. Open-loop estimation. In this case feedback from the
true compositions is used, and we compare based on the
estimation error y — § (Fig. 4).

2. Closed-loop estimation. In this case the estimates are
used for feedback control and we compare based on the
control error y—y, where yg is the setpoint for y (Fig. 5).

Ezample column. As an example column we use column
A studied by Skogestad and Morari [11). This is a column
with 41 stages, including reboiler and condenser. Column
data are given in Table 1. The liquid holdups are assumed
constant, that is, the flow dynamics are neglected. This gives
rise to a 41th order linear model in terms of the mole [raction
of the light component on each tray. DBecause the mixture
is binary and pressure is assumed constant, there is an exact
relation between this composition and the temperature on the
tray. We compute the temperature using Raoults law and

Antoine parameters for pure component vapor pressures given
in Table 1.

zr o N Np yo xg D/F L/F
0.50 1.5 40 21 0.99 0.01 0.500 2.706

Feed is liquid.

Constant molar flows.

Constant pressure 1 atm.

Holdup on each tray; M;/F = 0.5 min

Antoines parameters:
Light component Heavy component
15.8366 2697.55 -48.78 15.4311 2697.55 -48.78

Table 1. Data for distillation column example.

2 Estimation Methods

2.1 Brosilow estimator.

The following linear steady-state model of the column in terms
of deviation variables is used

y=Gad + Guu (5)

o:Fdd+Fuu (6)

Ilere the dependent variables are the outputs y (compositions)
and secondary measurements # (temperatures). The indepen-
dent variables are the disturbances d (F, zr), and manipulated
inputs u (1,,V). Introduce new variables y; and 84 for the effect
of disturbances on y and 4.

Va=y—Guu= Gad (7)
04=0—Fou=Fyd (8)

The disturbances are estimated from the measurements
8 using a least square estimator (pseudoinverse of Fy). The
estimated effect of these disturbances on the outputs are then

K gl (9)
GqF] (FyF])™ (10)

Ve
Ky

and the estimate of the outputs becomes
§= (G'u—KBF.,)u+ Kyt (11)

In this paper we use the estimate in eq. 11 for feedback
control using two PID controllers. The estimator applies also
in the dynamic case provided the dynamics of disturbances
and inputs are equal. This is reasonable to some extent for
distillation columns since the dynamics are dominated by a
time constant r;. Brosilow uses the estimate in eq. 11 com-
bined with a kind of “fcedforward” scheme to keep § = 0. This
gives rise to the inferential controller, but this is not used here.

2.2 Partial Least Square Regression.

We want to estimate p outputs (compositions y) [rom g known
variables (temperatures 6, inputs u). Denote the known vari-
ables as the extended measurement vector .. The problem is
then to obtain the matrix K in

y= I8, (12)

To this end obtain n “calibration” sets of corresponding values
of y and §,. In this paper they are obtained from the nonlinear
steady-state column model. Place the n calibration sets of y
and 8, as rows in the matrices Y"*? and @™*9, respectively.
We then have

Y =0KT (13)

The ordinary lcast square solution for K is:
Kis=YToloTo]! (14)

The matrix ©70 is n times the sample covariance matrix of
the measurements 6., and may be singular or nearly singu-
lar if strong colinearity in the temperatures exists. This will
generally be the case in a column with measurements located
close to each other.



To avoid this difficulty transform the measurement vari-
ables to their principal components (singular value decompo-
sition)

O = t1p] +12p] + 4 tmpl, (15)

where m = min(n, p). Here Py is the eigenvector correspond-
ing to the largest eigenvalue of 0T, (or equivalently the
square of the largest singular value), and p; is the eigenvalue
corresponding to the second largest eigenvalue and so on. The
loading vectors (p’s) give the directions of the principal com-
ponents (factors) , while the scores (t's) give the magnitude.
Select only the principal components that can be distinguished
from the measurement noise, i.e. the first k components, and
let the matrices PP* and T"*k include only these k most
important directions. The least square solution to y = Kyt
becomes

K, =YTTTT)! (16)
and since t = PT4, (Pis orthogonal), the X in eq. 12 becomes

K = YTT(TTT)1 pT (17)

Another version of this method is to also take into account
the directions in ¥ when finding the approximate pseudo in-
verse ol O (partial least square, PLS). The main difference is
that one computes the largest eigenvalues from OTYY7Q in
stead of ©TO. This takes in account the directions in ® which
have the largest covariance with ¥, and thus ensure that these
directions are not deleted.

2.3 Kalman filter.

This is the standard estimator used in stochastic optimal con-
trol. A dynamic model is used in parallel with the process
itself, and the deviation between the output from the process
and that of the model is used as feedback to the model through
a constant filter gain K ;. The linear state space model is

z = Az 4 Bu+ Ev (18)
= Cz (19)
0 = Coz+4w (20)

llere = is the state vector, v the process noise {cg. to
represent disturbances), w the measurement noise, and the
other variables u, y and 8 are as defined before, v and w are
supposed to be white noise processes.

The estimator then becomes

T = A&+ Bu+t K (8- Cyi) (21)
(A—K;C4)2 + Bu+ K0 (22)

I

The calculation of the filter gain K s is based on modelling the
covariance matrices of v and w, Vand W.

K;=Xxciw-! (23)

where X', the covariance matrix of X, is found from the matrix
Riccatti equation

X = AX + XAT - XCTW-1C,x + EVET (24)

3 Estimators for the example column.

In this section we describe how the different estimators were
obtained for the example column with 41 stages.

3.1 Brosilow estimator.

The matrices Fy,F,,,G4 and G in equations 5 and 6 are found
by using the steady state values of a linearized model in the
operating point.

3.2 PLS-estimator.

The Partial Least Square estimator was found by selecting 16
different sets of the outputs g and yp and the feed com-
position zg (disturbance) and use a nonlinear column model
to caculate the steady state temperature profile. Note that
it is not necessary to simulate different feed rates using this
approach. The 16 values are listed in Table 2. The data was
spread with equal distances around zp, but with logarithmic
equal distances for zg and (1 — yp). This is to give a better
balanced calibration set for this kind of nonlinear high-purity
column. The operating point data from the first run in the
table was used as basis for making deviation variables of the
remaining 15 runs. The temperature data was then reduced
to 3 factors (directions), and Kpyg was computed.

zy Yd Xp Z Yd Xb
0.5000 0.9900 0.0100 || 0.4875 0.9962 0.0189
0.5375 0.9913 0.0262 || 0.4750 0.9956 0.0087
0.4250 0.9738 0.0151 || 0.5625 0.9934 0.0115
0.5250 0.9700 0.0132 || 0.4625 0.9772 0.0300
0.4125 0.9801 0.0058 || 0.4375 0.9950 0.0038
0.6000 0.9849 0.0044 || 0.4500 0.9924 0.0173
0.5125 0.9942 0.0066 || 0.5750 0.9868 0.0228
0.5500 0.9827 0.0076 || 0.5875 0.9885 0.0050

Table 2. Datatosimulatestationary temperature profile. Sec
also Table 1.

3.3 Kalman estimator.

The Kalman filter gain was found by assuming the covariance
matrix of the measurement noise W = 0.041. I is the iden-
tity matrix. This indicates that we model the measurement
uncertainty to be 0.2 °C. Tor the process noise v, defined as
T = (LV F'zg) (reflux, boilup, feedrate and feed composi-
tion), we have used four different covariance matrices V. This
gave rise to the four different filter gains in table 3 denoted
K1 to K4. In K4 we have assumed a standard deviation of
10% on all input variables. The three others have larger val-
ues to compensate for model uncertainty and unknown distur-
bances. The difference between them is how they model the
disturbance on the inputs.

The assumption of white noise disturbances is of course
rather doubtful, but the estimator is not expected to be very
sensitive to this aproximation. Nevertheless, it is clear from
the above more or less arbitrary choices of weights for V that it
is not at all clear how to set up the problem to get a reasonable
estimator. This is of course one the main disadvantages with
this approach.



Gain Vv
K1 0.4 diag{0.50.5 1.0 1.0}
K2 0.4 diag{1.0 1.0 1.0 1.0}
K3 0.4 diag{n.0 0.0 1.0 1.0}
K4  0.01 diag{1.0 1.0 1.0 1.0}

Table 3. Process noise covariance matrix for different Kalman
filter gains.

3.4 Number of measurement and their locations

The estimation methods above were applied to different num-
bers and locations of temperature measurements. Three cases
were considered: i) all 41 temperature measurements, ii) five
measurements with two options (A and B) for their location,
and iii) two measurements on trays 10 and 30 (only for the
Brosilow estimator). In case ii) we used the loading plot from
the PLS-calibration, see fig. 11, to select the best location for
set A. This gave trays 10,15,22,29, and 33 (reboiler is no. 41).
Set B corresponds to a more arbitrary equal distance selection
using trays 1,12,21,30 and 41.

4 Mu-analysis of the Estimators.

The objective is to evaluate the different estimation methods
described above. In this section we set up our problem and
derive criteria for the evaluation.

4.1 p-analysis.

Our tool is the Structural Singular Value (1) analysis. In this
framework we rearrange our system to fit the general form
shown in fig. 3. Here M denotes the generalized nominal plant
including the plant and the weights, d is disturbances and
setpoint changes, e is the "error” we want to keep small. We
have one A-block loop, which represent the model uncertainty,
and one controller loop . The g analysis is to evaluate {he
maximum amplification from d to e at each frequency. To
make any sense all valucs, i.e d, e and A, must be scaled
properly, that is, scaled to be less than 1. The requirements
for the system, defined by the weights (scaling), is satisfied if
st is less than one at all frequencies. For more exact definitions
of jt see Doyle [10].
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Figure 3. General structure for studying any linear
control problem.
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Figure 4. Block diagram for “open-loop” test.
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Figure 5. Block diagram for “closed-loop” test.

4.2 Evaluation criteria

One obvious criteria for evaluating the different estimators is
their ability to follow the true composition value. The “er-
ror” e in fig. 3 then becomes the difference between the real
value (y) and the estimated one (§). We let the system have
feedback, since this is more close to a real situasion than a
pure open loop test, but tle controller will use the actual y,
and not the estimate as input. Qur test will then be indepen-
dent of the controller used. We call this evaluation test “Open
Loop” because the estimator is not connected to the feedback
system. See fig. 4.

The ultimate goal is however the performance of the to-
tal feedback system, i.e it’s capability of holding the specifi-
cations. The “error” to be minimized is now the difference
between y and yye.(Fig. 5). This “Closed loop” test implies
that we have to choose a suitable controller that is fixed for
all estimators. For reasons outlined in the introduction, we
choose a PID controller. The PID-parameters was found by a
p-optimization of the system in fig. 5 without estimator. One
main drawback of this test is however that it is not indepen-
dent of the controller chosen.

4.3 Uncertainty weights.

The most important source of uncertainty is assumed to be
on the inputs L and V. We shall use the same uncertainty
weigtht as Skogestad and Morari [11], which is given by

58+ 1

WI(S) =0.2 m

+ (25)
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Figure 8. a) Uncertainty weight. b) Inverse perfor-

mance weights. Solid line: Open loop, dotted line: Closed
loop.

The weight is shown graphically in fig 6a. In the low fre-
quency range it allows for a 20% uncertainty in flow changes
(L and V are deviation variables), due to the inaccuracy of
valve settings. The uncertainty increases at higher frequen-
cies, reaching a value of 100% at about w = 1 min~!. The
increase at high frequencies will take care of neglected flow
dynamics in the model, and it will allows for a time delay of
about 1 min between I, and V and the outputs yp and zp.

4.4 Performance weights,

In the “Open Loop” test we use the following performance
weight

10
T T
which is shown in fig 6b. This weight will require less than
10% deviation of the estimates (1 - ¥p) and =R at steady-
state (@ < 0.1 min~!). At higher w the weight increases to |
at w = 2.5 min~'. This allows a deviation y — § grealer than
100% at frequencies above 2.5 min=!, This is not unresonable,
since the two dominant time constants of the column are 194
min and 15 min, [11]
In the “Closed Loop” test we have chosen a performance’
weight

(26)

w, =5 10s +1

PN 100s 4 1

This impies that the deviation of ¥ — y4ee should be within

20% at steady state, i.e we tolerate a deviation of the product

composition of about 0.2 mole%. Our feedback system should

be effective up to about w = 0.05 min="! and the amplification
at high frequencies should never exceed 2.

(27)

4.5 Disturbances.

The external inputs to the systems (the d's) consists of both
setpoints and ordinary disturbances. They may have any [re-
quencies, but are normalized specifying their maximnm valucs.

The maximum setpoint changes are set to 100% of 23 and
(1-yp). Since the operating point is 0.01 and 0.99 this implies
that the zp,., may vary from 0 to 0.02, and yp,ee from 0.98
to 1.0. The disturbances in the feedrate F are set to 20% and
in the feed composition to 10%, i.e. it may vary from 0.4 to
0.6 in mole fraction.

For some tests we also used disturbances on the tempera-
ture measurements. The disturbances were then set to 0.2 °C
on all temperatures.

5 Results.

5.1 [Insights in the colinearity using PLS.

The elements in the matrix K for the calibration with 41 tem-
peratures, is plotted in fig. 7 below. The first 2 values are the
streams L and V, and the others (3 - 43) are the temperatures
on each stage. The reboiler is no 43. In fig. 8 we see how the
variances ©70 are explained with increasing number of fac-
tors (principal components). After 3 factors almost all (98%)
of the variation in 6, is explained.

Fig. 9 shows the same thing for the output y. Here three
factors explain 94 % and four 97 % of the variance in Y. Using
3 or 4 factors depends on the magnitude of the noise in the

-8.10
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Figure 7. FElements in matrix K. Abscissa: b, 1)
elements for yp, 2) elements for zg5.
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Figure 8. Explained X-variance (%). Abscissa: number
of factors.

108 F=Uarlanen

50

259 |

T v T
8 1 2 3 i

Figure 9. Explained Y-variance (%). Abscissa: number
of factors.



temperatures. Fig. 10 displays the variance in Y when the
same set of data was corrupted with 0.2°C of white noise.
There is no longer any improvement from factor 3 to factor
4. This indicates that there are hardly more than 3 differ-
ent directions jn the dataspace of the pressure compensated
temperatures and input streams. In fig. 11 the loading vetors
are displaid, i.e how the different measurements are summed
up to make the factors. It shows that there are some tem-
peratures that are more important than others. We used this
information to select the measurement set A. From the figure
we also see that the temperatures near the product streams
contain little information about the composition. (They will
only be useful for detecting pressure variations).

1aa|Y-Variance

] H 2 3 1

Figure 10. Explained Y-variance (%). Data corrupted
with 0.2 °C noise. Abscissa: number of factors.
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Figure 11. Loading plot. Abscissa: B, curve identificr:
factor number.

5.2 Comparison of estimators using 41 Temper-
atures.

In fig. 12 we compare the pi-plots for the Kalman and the PLS
estimators. The Kalman filter gain K1 is given in table 3. For
closed loop bolh estimators hold the specifications (p < 1),
but the Kalman estimator is better at steady state. It is as
good as with perfect measurements. In the “Open loop” test
this difference is still larger. Contrary to PLS, the Kalman
estimator is dynamic, and has a model available, so this is not
surprising.

Fig. 13 shows the estimators when the column no longer is
operating at zp = 0.01, yp = 0.99 and zp = 0.5 (Operating
point ), but at 0.03, 0.97 and 0.45 respectively (Operating
point B). Although none of them reach the specifications, PLS
is better than Kalman. The new operating point is within the
calibration set of PLS, and being there it is not that sensitive
to model changes as Kalman, which is developed around the
first operating point.
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Figure 12. p-plots for Kalman and PLS- estimators.
Normal operating point a. a) Closed loop b) Open loop.
Solid line: Kalman, shert dotted line: PLS, long dotted

line: No estimator.
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Figure 13. p-plots for Kalman and PLS- estimators.
Operation point 3. a) Closed loop b) Open loop. Solid
line: PLS, dotted line: Kalman.

5.3 Comparison of estimators using 5 Tempera-
tures.

Fig. 14 shows the Brosilow estimator for 41, 5 and 2 tem-
peratures. It demonstrates clearly that the estimator cannot
handle many temperatures. Only the estimator with 2 tem-
peratures (min for 2 points control) is in the neighborhood of
the specifications. The set B is “better” than A because it
has more distance between the measurements, and this gives
rise to less colinearity.

In contrast to the Brosilow estimator, the PLS and the
Kalman estimators are improved with increasing number of
measurements (fig. 15). The temperature set selected with
PLS, i.e. A, is slightly better. Nevertheless, the performance
seems not to be very sensitive to the selection when operating
with 5 temperatures.
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Figure 14. p-plots for Brosilow estimator. a) Closed
loop b) Open loop. Solid line: 41 temp, upper dotted

line: 5 temp. selection B, short dotted line: 5 temp.
selection A, lower dotted line: 2 temp.
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Figure 15. p-plots for Kalman and PLS estimators,
closed loop. 2a) Kalman, b) PLS. Solid line: 41 temp.,

short dotted line: 5 temp selection A, long dotted line:
selection B.

5.4 Different Kalman Filters Gains.

The performance of the different Kalman filter gains K1, K2
and K3 from table 3 are shown in fig. 16. for 41 temperatures.
The difference in performance is caused by the difference in
modelled variances of the disturbances on L and V. K1 and
K2 has almost equal performance. On the other hand, K3,
with zero variance on the inputs, is significantly worse. Thig
demonstrates the importance of modelling the input streams.

Fig. 17 shows the diffcrence between the estimators when
the relationship between V and W is changed. Since V and ¥
are diagonal matrices it is the relationship between them and
not their magnitude that is important. Compared to K1, K4
depend less on the measurements and more on the model. The
figure shows that K1 is the best when both the measurcments
and the model are perfect. If the operating point is changed
from o to § one should expect that K1 is still bettor than
K4. In fig. 18 we see that this actually is the case, but the
differences are quite small.

On the other hand, if measurement disturbances are pre-
sent, one should expect that the estimator which depends less
on the measurements are best. In fig. 19 this is shown. IHere
the improvement is quite clear.

camrm—m e
-

s e

L] " TR T I Ty T Ll vna Ty T T ST
Wt FL I L R T B B HI TR

Tromeney (rodiom/second)

a

(roquarcy (- odi wa/sacomd)

Figure 18. p-plots for Kalman estimators. a) Closed
loop b) Open loop. Solid line: K1. Short dotted line:
K2. Long dotted line: K3.
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Figure 17. p-plots for Kalman estimators, 5 temper-
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Figure 19. pu-plots for Kalman estimators. Distur-
bances on the temperatures. a) Closed loop b) Open
loop. Solid line: K1, dotted line: K4.

6 Discussion

Kalman-Bucy Filter. For most test cases the Kalman-Bucy
IMilter appears to be the estimator with the best performance.
The main reason is its inherent dynamics, which is a great
advantage unless the disturbances is very slow compared to
the process. In addition to using all the measurements, it takes
advantage of the information incorporated in a mathematical
model. However, this gives a tuning problem. Depending of
the relative goodness of the model and the measurements, one
have to tune the filter gains to make them useful. Although
the p-analysis have proved to be useful for tuning these gains,
the tuning is not a straight forward process.



The results show also the importance of including the un-
certainty of the manipulated variables in the process noise
description, and not lump them together with the unmanipu-
lated ones, which is normally done.

One apparent drawback of the estimator is it’s dependence
of the operating point. This is due to the strong nounlinearity
in the system. For compensating this one may use the ex-
tended Kalman filter with on-line updating and calculations
of the filtergains. For distillation columns this will rapidly
give a heavy computer load, caused by the dimension of the
state space involved. For example, for a n-component destil-
lation the state space description will have a dimension n-1
times the number of temperatures used. An alternative way
to counteract for the nonlinearity is to express the operating
conditions in logarithmic compositions [3, 11], also for the es-
timator, that is, estimate Inzg and In(1 - yp) instead of zg
and yp. We will then involve scaled gains in the state space
model. The transformation to logarithmic compositions will
be a useful improvement for the other estimators too.

The PLS estimator. The PLS regression is only using
steady state information and this is perhaps its main draw-
back. To introduce dynamics into the method is not trivial,
but may be a fruitful area for future research.

Nevertheless the method provide insight into the estima-
tion problem. It gives informalion about the main dimensions
in the temperature space and the location of the most influ-
ential measurements. Tor example, the variance plot shows
that using tree factors, the temperatures can explain 94% of
the changes in the compositions y. This will be a measure of
the maximum prediction ability of the temperatures, or how
well conditioned the estimation problem is.

PLS estimator will be an interesting alternative to Kalman
Filter in those cases where the disturbances are slow, and a
static estimator will be sufficient. Especially, if the process
also is difficult to model, or the modelling becomes very rigor-
ous, as will be the case for some multicomponent distillations
columns. This “black box” method has the advantage that
one may skip the modelling part and use the data directly. It
also has an inherent pressure compensation, il different pres-
sure levels are included in the calibration data set.

We have shown that the estimation improve when all avajl-
able temperature measurements are used, and there are also
other reasons for using them all. The sensetivity due to the
location becomes less, and the estimator becomes more rob ust,
with respect to measurements faults. With PLS it is easy to
include some features to detect erronenous temperatures be-
cause of the great redundancy in the measurements.

One main difficulty with PLS is to obtain good “calibra-
tion” data. Often it is difficult to make precise online steady
states measurements, and one must rely on simulations. Even
more important is the selection of a optimal “calibration” set,
that is, how to ensure that all important directions are exciled
in the calibration set. Also the way of updating the calibra-
tion model is important for the performance. ITowever, all
this issues are of a general nature, and a detailed discussion
will be beyond the scope of this paper.

Brosilow . The results demonstrates clearly that the Bro-
silow estimator is not useful to estimate compositions when
there is colinearity in the temperatures. (Too many temper-
atures with nearly the same information). When using the
Brosilow method we are simply trying to get more informa-
tion from the temperatures 6 than there actually is. This was

pointed out by Brosilow himself, and his recommendation was
to reduce the number of measurements [8].

Improved Brosilow Learning from the PLS-regression, one
may avoid this problem by including only a limited number
of independent directions (certain linear combinations of the
temperatures) . One should delete directions in 8 with little
information, but not delete measurements as such. This could
most easily be done by computing the pseudo inverse from the
singular value (principal components) decomposition (SVD)
of Fy and deleting directions corresponding to small singular
values in Fy. Avoi’ing the problem of colinearity, the Brosilow
estimator has the advantage of making sure that all the input
directions are well excited in the estimator. The drawback
is that one have to model all the matrices in the equations 5
and 6.

7 Conclusions

The objective of this paper has been to evaluate some esti-
mator algorithms for estimating the product composition in a
distillation column from reflux, boilup, and temperature mea-
surements. The product estimates was supposed to be used
as input to two PID controllers.

We have found the p-analysis very suitable for this task,
because we then get a picture of the performance for the dif-
ferent disturbance frequencies without having to perform a
large number of simulations.

Although the open-loop test in most cases yield somewhat
greater differences between the estimators, the same trends
were also found in the closed loop test.

The analysis showed that the Brosilow estimator is impos-
sible to use with many coupled temperatures. The best way
to avoid this problem is to delete the directions corresponding
to small singular values when using pseundo inverses.

The Kalman-Bucy Filter was found to be the estimator
with best performance. The drawbacks are complexity, heavy
computer loads, and tuning requirements.

PLS may be a good alternative if a static estimator is
sufficient. The method has been uselul in giving insight in the
estimation problem.
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NOMENCLATURE

Cp - measurement matrix from states to temperaturcs.
d - normalized disturbances

e - normalized “error”

F' - fecd rate

k - number of factors used in calibration

K - estimator constant

I(; - Kalman filter gain

L - reflux flow rate

M - gencralized nominal plant

n - number of calibration set

N - number of theoretical trays

Np - number of feed tray

p - loading vector (direction of principal component)
gr - fraction liquid inn feed

t - principal component, score

T - matrix of scores



¢ - manipulated inputs (V L)T

v - process noise vector

V - process noise covariance matrix.

V - boilup from reboiler

0 - measurement noise vector

w; - input uncertainty weight

wp - performance weight

W - measurement noise covariance matrix.

T - state space vector

xg - mole fraction of light component in bottom product
X - state vector covariance matrix.

¥ - output vector (ypzp)T

¥ - estimate of compositions

¥p - mole fraction of light component in distillate
Y - data matrix of y

2 - mole fraction of light component in feed

Greek symbols

a - relativ volatility

A - uncertainty block

¢ - Structural Singular Value

w - frequency (min~1)

71 - dominant time constant for external flows
T2 - time constant for internal flows

8 - temperature vector

f. - extended measurement vector

O - data matrix of theta,
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