LV-CONTROL OF A BIGH-PURITY DISTILLATION COLUMN

Sigurd Skogestad
Manfred Morari

California Institute of Technology, Chemical Engineering, 206-41, Pasadena, CA 91125

Abstract. A realistic study of the LV—ontrol of a high-purity distillation column
is presented. Linear controllers designed based on a linearized model of the plant
are found to yield acceptable performance also when there is model-plant mismatch.
The mismatch can be caused by uncertainty on the manipulated inputs, nonlinearity
and variations in reboiler and condenser holdup. The presence of input uncertainty
makes the use of a steady- state decoupler unacceptable. The effect of nonlinearity
is strongly reduced by using the logarithm of the compositions. A simple diagonal
Pl-controller is not sensitive to model-plant mismatch, but yields a response with

a sluggish return to steady-state.

1. INTRODUCTION

In this paper we study the high-purity distillation column
in Table 1 using reflux (L) and boilup (V) as manipulated
inputs to control the top (yp) and bottem (zp) composi-
tions. This column was analyzed previously by the authors
(Skogestad anc Morari. 1986a), bul the objective of that
paper was to study general properties of ill<onditioned
plants rather than distilation column control. The LV-
configuration is chosen because this is the choice of manip-
ulated inputs most commonly used in industrial practice.
This does not necessarily mean that this is the best config-
uration, and, for example, the %%—conﬁguralion may be
preferrable (Shinskey. 1984, Skogestad and Morari, 1987c¢).
The distillation column used in this paper was chosen to
be representative of a large class of moderately high-purity
distillation columns. The goal of this paper is Lo provide
a realistic control design and simulation study for the col-
umn. To be realistic at least the issues of 1) uncertainty
and 2) nonlinearity must be addressed.

1.1 Uncertainty

Skogestad and Morari (1986a) showed that the closed-loop
systern may be extremely sensitive o inpul uncertainty
when the LV-configuration is used. In particular, inverse-
based controllers were found to display severe robustness
protlems. In this paper the uncertainty is explicitly taken
into account when designing and analyzing the controllers
by using the Structured Singular Value (u) introduced by
Doyie (1982). We also find that u provides a much eas
ier way of comparing and analyzing the effect of various
combinations of controllers, uncertainty and disturbances
than the traditional simulation approach.

1.2 Nonlinearity

High-purity distillation columns are known to be strongly
nonlinear (e.g. Moczek et al., 1963, Fuentes and Luy-
ben, 1983), and any realistic study should take this into
account. Our approach is to base the controller design
on a linear model. The eflect of nonlinearity is taken
care of by analyzing this controller for linearized models
at diflerent operating points. Furthermore, all simulations
are based on the full nonlinear model.

1.3 Logarithmic Compositions

In another paper (Skogestad and Morari, 1987a) we study
the dynamic behavior of distillation columns in general.

One conclusion from that paper is that the high-frequency
behavior is only weakly aflected by operating conditions
when the scaled transfer matrix is considered
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All plant models and controllers in this paper are for the
scaled plant. G¥ is obtained by scaling the outputs with
respect to the amount of impurity in each product
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Here 7§ and y$ are the compositions at the nominal oper-
ating point. This relative scaling is automatically obtained
by using logarithmic compositions

Yp = In(1 —yp) (3)
}(E = hl:g
because 4 dr
dYp = -8 axp=—2 (4)
1-yp z

Furthermore, the use of logarithmic compositions (Yp and
Xg) effectively eliminates the effect of nonlinearity at high
frequency (Skogestad and Morari, 19874} and also reduces
its effect at steady-state (Skogestad and Morari, 1987b).
For control purposes the high frequency behavior (initial
response) is of principal importance. Consequently, if loga-
rithmic compositions are used we expect a linear controller
to perform satisfactorily also when we are far removed from
the nominal operating point for which the controller was
designed. Another objective of this paper is to confirm
that this is indeed true. .
In most cases the column is operated close to its pomi-
nal operating point and there is hardly any advantage in
using logarithmic compositions which in this case nferely
corresponds to a rescaling of the outputs. Howe_ver. lf,_ for
some reason, the column is taken far from this nominal
operating point, for example, during startup or due to a
temporary loss of control, the use of Ioganl.h{mc compo-
sitions may bring the column safely back to its nominal
operating point, whereas a controller based on unscaled




compositions (yp and zp) may easily yield an unstable
response,

1.4 Choice of Nomina! Operating Point

The design approach suggested by the above discussion is
to design a linear controller based on a linearized model
for some nominal operating point. What operating point
should be used? If an operating point corresponding to
both products of high and equal purities is chosen (i.e.,
1-yp = zp is small), it is easily shown {Skogestad and
Morari, 1987a,b, Kapoor et al., 1986) that the values of the
steady-state gains and the linearized time constant will
change drasticallly for small perturbations from this op-
erating point. We may therefore question if acceptable
closed-loop control can be obtained by basing the con-
troller design on a linearized model at such an operating
peint. Kapoor et al. (1986) indicate that this is not ad-
visable, and that a mode] based on a perturbed operating
point should be used. However, as we just discussed, the
high-frequency behavior, which is of primary importance
for feedback control, showe much less variation with op-
erating conditions. Therefore, provided the model gives a
good description of the high-frequency behavior, we expect
o be able to design an acceptable controller also when the
nominal point has both products of high purity. This is
also confirmed by the results in this paper.

A main conclusion of this paper is Lherefore that acceptable
closed-loop performance may be obtained by designing a
linear controller based on a linear mode] at any nominal
operating point. If large perturbations from steady state
are expected then logarithimnic compositions should be used
to reduce the eflect of nonlinearity.

2. THE DISTILLATION COLUMN

Steady-state data for the distillation column are given in
Table 1. The following simplifying assumptions are made:
al) binary separation, a2) constant relative volatility, a3)
constant molar flows and a4} constant holdups on all trays
and perfect level control. The last assumption results in
immediate flow response, thal is, we are neglecting flow
dynamics This is somewhat unrealistic, and in order to
avoid unrealistic controllers, we will add “uncertainty” at
high frequency to include the eflect of neglected flow dy-
namics when designing and analyzing the controllers (see
Section 3).

We investigate the column at two diflerent operating
points. At the nominal operating point, 4, both prod-
ucts are high-purity and 1 — y, = 23 = 0.01. Operating
point C is obtained by increasing D/F from 0.500 to 0.555
which yields a less pure top product and a purer bottom
product; 1 — yg~ = 0.10 and z3, = 0.002 (subscript C
denotes operating point C while no subscript denotes oper-
ating point A). We will study the column for the following
three assumptions regarding reboiler and condenser holdup

Case 1: Almost negligible condenser and reboiler holdup
(AID/F =Mp/F =05 m'm).

Case 2: Large condenser and reboiler holdup (Mp/F =
32.1 min, Mp/F = 11 min).

Case 3: Same holdup as in Case 2, but the composition
of the overhead vapor (yr) is used as a controlled
output instead of the composition in the con-
denser (yp).

These three cases will be denoted by subscripts 1, 2 and 3,
respectively. The holdup on each tray inside the column is
M,/F= 0.5 min in all three cases.

2.1 Modelling

Nominal operating point (A). A 41st order linear
model for the columns is easily derived based on the data
given in Table 1 (see Skogestad and Morari, 1987a)
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The scaled steady-state gain matrix is

G0 = [1!:’;2 —-1%%.46] ()

which yields the following values for the condition number
and the 1,1-eJement in the RGA

~(G5(0)) = 2(G5(0)) /(G5 (0)) = 141.7

21.(G5(0)) = 35.1

However, ¥(G®) and A;,(G®) are much smaller at high
frequencies as seen from Fig. 2. A very crude model of the
column was presented by Skogestad and Morari (1986a)
(time in minutes)
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Model 0: G(s) = G(0) (7

This mode! gives the same values of 4(G) and X;,(G) at
all frequencies, and is therefore a poor description of the
actual plant at high frequency. In our previous study (Sko-
gestad and Morari, 1986a) the controller design was based
on this simplified model, and one objective of this paper is
to study how these controllers perform when a more real-
istic model is used.

Case 1. For the case of negligible reboiler and condenser
holdup the following simple two time—onstant mode! yields
an excellent approximation of the 41st order linear model
(Skogestad and Morari, 1987a).
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Model 1: Gy(s) =
1082 -1082 _ _14
1+%,a 147, 14134

7y = 194min, 71, = l5min (8)

Note that this model has only two states. G,(s) uses two
time constants: 7, is the time constant for changes in the
external flows. It corresponds to the dominant time con-
stant and may be estimated, for example, by using the
inventory time constant of Moczek et al. (1963). 7, is the
time constant for changes in internal ows (simultaneous
change in L and V with constant product rates, D and
B) and can be estimated by matching the high-frequency
behavior as shown by Skogestad and Morari (1987a). The
simple model (8) matches the observed variation in condi-
tion number with frequency (Fig.2).

The effect of the reboiler and condenser holdups (Case 2)
can be partially accounted for with Model 1 by multiplying
Gi(s) by diag{(} + rps)~!,(1 + rps)~ '}, where in our
case 7p = Mp/Vr = 10 min and rg = Mg/Lp = 3 min.
However, in practice the top composition is often measured
in the overhead vapor line (Case 3), rather than in the
condenser. G,(s) provides a good approximation of the
plant in such cases.

Cases 2 and 3. In order to obtain a low-order model for
Case 2 and 3, we performed a model reduction (Balanced
Realization, Moore (1981)) on the full 418t order model. A
good approximation was obtained with a 5th order model
as illustrated in Fig. 3. The state-space realizations of
these models (Gj (5) and G§(s)) are available from Sko-
gestad (1987).

Operating point C. We will return with a discussion of

the model for this case in Section 6 when we also discuss
the control of the plant.




2.2 Simulations

The design and analysis of the controller are based on the
linear models G;(s), G2(s) and Gs(s). Bowever, except for
the four simplifying assumptions al-a4 siated sbove, all
simulations are carried out with the full ponlinear model.
(In some cases the changes are so small, however, that the
results are equivalent to linear simulations.) To get a re-
alistic evaluation of the controllers input uncertainty must
be included (Skogestad and Morari, 1986a,b). Simulations
are therefore shown both with and without 20% uncer-
tainty with respect to the change of the two inputs. The
following uncertainties are used

AL=(1+4,)AL, &,=02
AV = (1+ A)AV,, A, =-02 (9)

Here AL and AV are the actual changes in manipulated
flow rates, while AL, and AV, are the desired values as
computed by the controller. A, = —A, was chosen to
represent the worst combination of the uncertainties (Sko-
gestad and Morari, 1986b).

3. CONTROL THEORY
3.1 Robust performance and robust stability

The objective of using feedback control is to keep the con-
trolled outputs (in our case yp and zp) “close” to their de-
sired setpoints, What is meant by “close” is more precisely
defined by the performance specifications. These perfor-
mance requirements should be satisfied in spite of un-
measured disturbances and model-plant mismatch (uncer-
tainty). Consequently, the ultimate goai of the controller
desigr is to achieve Robust Performance (RP): The perfor-
mance specification should be satisfied for the worst case
commbination of disturbances and model-plant mismatch.
To check for RP we will use the Structured Singular Value
u (Doyle, 1982). u of a matrix N (denoted u(N) or ua(N))
is equal to 1/8(A) where 8(A) is the magnitude of the
smallest perturbation needed to make the matrix (J+ AN)
singular. pu{N} depends both on the matrix N and of the
structure (e g, diagonal or full matri») of the perturbation
A.

As stated, achieving robust performance is the overall goal.
The implications of this requirerment are easier to under-
stand if we consider some subobjectives which have to be
satisfied in order to achieve this goal:

Nominal Stability (NS): The model is assumed to be a
reasonable approximation of the true plant. Therefore the
closed loop system with the controller applied to the (nom-

inal) plant model has to be stable.
Nominal Performance (NP): In addition to stability, the

quality of the response should satisfy some minimum re-
quirements - at least when the controller is applied to the
plant modei We will define performance in terms of the
weighted H°-norm of the closed-loop transfer function §
from the disturbances (d) and setpoints {y,) to the errors

(¢=y—~y. ie,yp —vps. 25 — 2p,). The performance
specification is

NP < @&wpS)<1 Yo, S=(I+GC)"' (10

The weight wp is used to specify the frequency range over
which the errors are to be small. To get consistency with
the notation used below define &(wpS) = u(Nyp) such
that (10) becomes

NP & u(Nyp)<Y Vo (11)
where Nyp = wpS, and p is computed with respect to
the structure of a “full” matrix Ap.

Robust Stability (RS). The closed loop system must re-

main stable for all possible plants as defined by the un-
certainty description. For example, assume there is un-

~J

certainty with respect to the actua! magnitude of the ma-
nipulated inputs (which is always the case!). The possible
plants, G, are then given by

G,=G(I+4;), 4;= (AO1 :2) (12)

where A;(s) is the uncertainty for input i. We will consider

the case when the magnitude of uncertainty is equal for
both inputs

lA!l < |wl(jw)lv 1= 1,2 (13)

The robust stability requirement can be checked using u.
In this particular case (Skogestad and Morari, 1986a)

RS & pu(Nrs)<1, Vw (14)

where Nrs = wyCGS and u is computed with respect to
the diagonal 2 x 2 matrix Ay.

Robust Performance (RP): The closed loop system must
salisfy the performance requirements for al] possible plants
as defined by the uncertainty description. As an example
we may require (10) to be satisfied when G is replaced by
any of the possible perturbed plants G, as defined by the
uncertainty description (12).

RP & o&(wp(I+G,C)7Y) <1 Yu, VG, (15)

This definition of Robust Performance is of no value with-
out a simple method to test if condition (15) is satisfied
for all possible perturbed plants G, generated by (12) and
(13). Again it turns out that the structured singular value
u gives a condition which is relatively easy to check:

RP & u(Ngp) <1, Vw (16a)
where
_ (wiCSG wiCS
Nep = ( wpSG  wpS ) (16)

and u is computed with respect to the structure
diag{A,A,} where Ay is 2 x 2 diagonal matrix and Ap
is a full 2 x 2 matrix.

3.2 The RGA

Let x denote element-by-element multiplication. The
RGA of the matrix G (Bristol, 1966) is defined as

AG)=Gx (7Y (17)

The RGA is independent of input and output scaling. The
RGA of the plant is commonly used as a too! for selecting
control configurations for distillation columns (Shinskey,
1984). However, in this paper we will make use of the
RGA of the controller as a measure of a system's sensitiv-
ity to input uncertainty (Skogestad and Morari, 1986b).
Before stating this result, we will point out the close re-
lationship between large plant RGA-elements and a high
condition number. The condition number of the plant is
~(G) = 8(G)/2(G). This quantity is strongly dependent
on bow the inputs and outputs are scaled. The minimized
scaled condition number 4°(G) is obtained by minimiz-
ing 4(5,GS3) over all possible input and output scalings,
S5, and S;. There is a very close relationship between
~* and the absolute sum of the elements in the RGA;
lAll, = ., 1A,]. For 2 x 2 plants (Nett et al., 1986,
Grosdidier et al., 1985)

1 L]
halh = gy <7 (G) < |IAlls (18)



Consequently, for 2 x 2 plants the difference between these
quantities is at most one and ||A||; approaches 1*(G) as
~*(G) — co. Since [jA|}, is much easier to compute than
~*(G), it is the preferred quantity to use.

The RGA and input uncertainty (Skogestad and
Morari, 1986b). Again, consider uncertainty on the plant
inputs as given by (12). The loop transfer matrix, G,C, for

the perturbed plant may be writien in terms of its nominal
value, GC:

G,C = GC(I + C™1ALC) (19)

G,C is closely related to performance because of (15). For
2 x 2 plants the error term C~'A;C in (19) may be ex-
pressed in terms of the RGA of the controller

G A C =

An(C)Aa +221(C)Az A, (C)E2 (A, - Aj)

€11 (20)
—AII(C)E:':(Al—Az) A;g(C)A1+A22(C)A2
If any element in C™'A;C is large compared to 1, the
Joop transfer matrix G,C is very diflerent from the nom-
ina! (GC) and poor performance or even instability is ex-
pected when A; # 0. We see from (20} that controllers
with large RGA-elements should always be avoided, be-
cause otherwise the closed-loop system is very sensitive to
input uncertainty.
It should be added that it is the behavior of G,C at
frequencies close to the closed-loop bandwidth (where
0,(G,C} = 1) which is of primary importance for the sta-
bility of the closed-loops system. Therefore, it is particu-
larly bad if the controller has large RGA-elements in this
frequency range.
Inverse-Based Controller.  To have “tight™ control it
i desirable to use an inverse-based controller C(s)
e{s)G™1(s) where ¢(s) is a scalar. In this case A(C) =
A(G~1) = AT(G) and the controller will have large RGA-
elements whenever the plant has. Consequently, inverse-
based controllers should always be avoided for plants with
large RGA-elements. In particular, this applies to LV-
control of high-purity distillation columns which always
yields large RG A-elements.

Contro! of Plants with Large RGA-Elements. We
clearly should not use an inverse-based controller for a
plant with large RGA-elements. On the other hand, a di-
agonal controller is insensitive to uncertainty (C7!'A[C =
Aj), but is not able to correct for the strong direction-
ality of the plant, which implies that performance has to

be sacrificed This is confirmed by the results presented
below.

4. FORMULATION OF THE CONTROL
PROBLEM

4.1 Performance and Uncertainty Specifications

The uncertainty and performance specifications are the
same as those used by Skogestad and Morari (1986a).
Uncertainty. The only source of uncertainty considered is

uncertainty on the manipulated inputs (L and V) with »
magnitude bound

58 +1
wy(s) = 0.2~0 Tl

(21)
The possible perturbed plants G are obtained by allowing
any dL = dL (14 |wy|) and dV = dV (14 |wy]). (Actually,
the perturbations are allowed to be complex, mainly for
mathematical convenience). (21) allows for an input error
of up to 20% al low frequency as is used in the simulations

- e

{9). The uncertainty in (21) increases with frequency. This
allows, for example, for s time delay of about 1 min in the
response between the inputs, L and V, and the outputs,
yp and zp. In practice, such delays may be caused by the
flow dynamics. Therefore, although flow dynamics are not
included in the models or in the simulations, they are par-
tially accounted for in the y-analysis and in the controller
design.

Performance. Robust performance is satisfied if

2(5,) = 8((1 + G,C) 1) < ﬁ (15)

is satisfied for all possible plants, G,,. We use the perfor-

mance weight

10s+1
10s

A particular S which exactly matches the bound (15) at
low frequencies and satisfies it easily at high frequencies is
S = 20s/20s+1. This corresponds to a first-order response
with closed-loop time constant 20 min.

4.2 Analysis of Controllers

wy(s) = 0.5 (22)

Comparison of controllers is based mainly on computing u
for robust performance (pgp). Simulations are used only
to support conclusions found using the p-analysis. The
main advantage of using the p-analysis is that it provides
a well-defined basis for comparison. On the other hand,
simulations are strongly dependent on the choice of set-
points, uncertainty, etc.
The value of ugrp is indicative of the worst—case response.
If urp > 1 then the “worst case” does not satisfy our
performance objective, and if ppp < 1 then the “worst
case” is better than required by our performance objective.
Similarly, if uxyp < 1 then the performance objective is
satisfied for the nominal case. Bowever, this may not mean
very much if the system is sensitive to uncertainty and urp
is significantly larger than one. We will show below that
this is the case, for example, if an inverse-based controller
is used for our distillation column.
4.3 Controllers
We will study the distillation column using the following
six controllers:

1) Diagonal Pl-controller.

Cri(s) = %(1 +750) (264 _‘2’_4) (23)

This controlled was studied in Skogestad and Morari
(19862) and it was tuned in order to achieve as good
& performance as possible while maintaining robust
stability (also see Fig. 6).

2) Steady-state decoupler plus two Pl-controllers.

(1+4754)
a

Cainv(a) =07 Gs(o)_l =

_ 0.01(1+75s) (27.96 -22.04 (24)
= P 2760 —22.40

This controller was tuned to achieve good nominal
performance. However, the controller has large RGA-
elements (A;;(C) = 35.1) at al] frequencies and we
expect the controller to be extremely sensitive to input
uncertainty.

3) Inverse-based controller based on the linear model
G (s) for Case 1.

0.7

Clino(8) = TGf(a)" (25)



p-optimal controller is much less sensitive to changes
in reboiler and condenser holdup (which will occur
during operation).

G\ (s) approximates the full-order model very closely
as seen from Fig. 7C; the response is almost perfectly
decoupled when there is no uncertainty.

To avoid sensitivity to the smount of condenser and
reboiler holdup, the overhead composition should be
measured in the overhead vapor, rather than in the
condenser. In practice, temperature measurements
inside the column are often used to infer composi-
tions, and the dynamic response of these measure-
ments is similar to that when the condenser and re-
boiler holdup is neglected.

s The simple model G;(s) is useful for controller design
also when the reboiler and condenser holdup is large.

o The main advantage of the y-optimal controllers over
the simple diagonal Pl<ontroller is a faster return to
steady-state. This comes out very clearly in Fig. 8
which shows the closed-loop response to a 30% in-
crease in feed rate.

6. EFFECT OF NONLINEARITY
(RESULTS FOR OPERATING POINT C)

In this paper we do not treat nonlinearity as uncertainty as
was attemnpted in Skogestad and Morari (1986a). The rea-
son is that thie approach is not rigarous and is also easily
very conservative because of the strong correlation between
all the parameters in the model which is difficult to account
for Furthermore, we know from the insights presented by
Skogestad and Morari (1987a) that the column is actually
not as nonlinear as one might expect. Though the steady-
state gains may change dramatically, the initial response
(the Ligh frequency behavior), which is of principal impor-
tance for feedback control, is much less aflected. In partic-
ular, this is the case if relative (logarithmic) compositions
are used (Shogestad and Morari, 1987a). To demonstrate
this we compute u and show simulations for some of the
controllers when the “plant™ is G3.(s) rather than G*(s).
6.1 Modelling

G (s) corresponds to the same column as G(s), but the
distillate flow rate (g) has been increased from 0.5 to
0.555 such that yp = 0.9 and zp = 0.002 (see Table 1).
For Case 1 (Mp/F = Mg/F = 0.5 min), the following

approximate model is derived when scaled compositions
(dyp/0.1,dz; '0.002) are used:

16 0 160 | 0022
GF ( ) 14712 147,90 14130 r; = 24.5 min
cit\s] = .
9.9 03 14 72 = 10 min
1471, lvr,e IR XY

(27)
The steady-state gains and time constants are entirely dif-
ferent from those at operating point A (8). Also note that
at steady state Ay, (G(0)) = 35.1 for Column A, but only
7.5 for Column C. However, at high-frequency the scaled
plants at operating points A and C are very similar (8)
and (27) yield:

1 /0.45
Gileo) =3 (o.se

1/0.65
Gi‘x(m) = s (0438

-0.36

~0.65
_0'52) An(o0) = 3.7 (28b)

Therefore, as we will show, controllers which were designed
based on the model G¥ (s} (operating point A) do in fact
perform satisfactory also when the plant is G5 (s) rather
than G (s). Recall that the use of a scaled plant is equiva-
lent to using logarithmic compositions (Yp and Xpg). The

variation in gains with operating conditions is much larger
if unscaled compositions are used - both at steady-state
(Teble 1) and at high frequencies:

G = (056 Tom) (o
Gorlo) =22 (o o) (o

6.2 u-Analysis

The u-plots with the model GZ(s) and four of the con-
trollers are shown in Fig. 10 (all four controllers yield
nominally stable closed-loop systems). At high frequen-
cies the u-values are almost the same as those found at
operating point A. The only exception is the inverse-based
controller Cj,no(s) which was found to be robustly stable
at operating point A, but which is not at operating point
C. Again, this confirms the sensitivity of this controller to
mode] inaccuracies. Performance is clearly worse at low
frequencies at operating point C (Fig. 10) than at oper-
ating point A (Fig. 6). This is expected; the controllers
were designed based on model A, and the plants are quite
different at low frequencies.

The u-optimal controller C,(s) satisfies the robust per-
formance requirements also at operating point C when the
reboiler and condenser holdups are small. Consequently,
with the use of scaled (logarithmic) compositions, a single
linear controller is able to give acceptable performance at
these two operaling points which have quite different linear
models. The main difference between C,,(s) and the di-
agonal Pl-controller is again that the u-optimal controller

gives a much faster return to steady-state. This is clearly
seem from Fig. 11A.

6.3 Logarithmic Versus Unscaled Compositions

Fig 10 shows how controllers designed based on the scaled
plant G¥(s) atl operating point A, perform for the scaled
plant (diflerent scaling factors!) at operating point C; this
is equivalent to using logarithmic compositions (Yp and
Xp). However, we know from (29) that the plant model
shows much larger changes if absolute (unscaled) compo-
sitions (yp and zp) ere used. We therefore expect the
closed-loop performance to be entirely different at operat-
ing ponts A and C when unscaled (absolute) compositions
are used. This is indeed confirmed by Fig. 11B which
shows the closed-loop response to a small setpoint change
in zp at operating point C. Fig.11B should be compared
to Fig.11A which shows the same response, but using log-
arithmic compositions as controlled outputs. In Fig.11B
(absolute compositions) the response for zp is significantly
more sluggish, and the response for yp is much faster than
in Fig.11A (logarithmic compositions). This is exactly
what we would expect by comparing (29a) and (29b): The
high- frequency gain for changes in yp is increased by an
order of magnitude and the gain for changes in zp is re-
duced by an order of magnitude. Bowever, recall from
(28) that the gain shows very small changes if logarithmic
compositions are used.

The simulations in Fig. 12 are with no flow dynamics and
in practice we expect the sysiem to be unstable at operat-
ing point C if unscaled (absolute) compositions are used;
the loop gain for yp is increased by a factor of about 10
compared to the design conditions at operating point A.
Assume we use the diagonal controller Cp(s) and are only
controlling top composition (yp) using reflux (L). Then the
analysis reduces to a SISO-problem. At operating point A
the loop transfer function for this loop is (unscaled com-
positions)
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Column A, Case 1. Closed-loop response to small set-

point change in yp  Solid lines: no uncertainty; Dot-

ted lines: 20% uncertainty on inputs L and }' (Eq.
9).

Figure 8

Column A, Case 1. Closed-loop response to a 30% in-
crease in feed rate. Solid lines: no uncertainty; Dotted
lines: 20% uncertainty on inputs L and V' (Eq. 9).
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Column A. Effect of reboiler and condenser holdup on
closed-loop response. No uncertainty.
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Figure 10.

u-plots for column C. Upper solid line: u{Ngp);
Lower solid line: u{Nyp); Dotted line: w(Ngs).
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Figure 11.

Column C, Case 1. Closed-loop response to small set-
point change in zp (zp increases from 0.002 to 0.0021)
using diagonal Plcontroller (dotted line) and the u-
optimal controller for column A (solid line). Left: log-
arithmic compositions as controlled outputs (equiva-
lent to using scaled compositions); Right: Absolute
(unscaled) compoesitions as controlled outputs, No un-
certainty,

Figure 12.

_Transition from operating point A 1o C (Case 1) ys-
ing controllers €\, (salid line) and Cpy (dotted line).
Logarithmic compositions are used as controlled oyt-
PUts to reduce the effect of nonlinearity, Desired tra-

Jectory is a E:st-grder response with time constang 10
min. No uncertainty.



