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Abstract

Decentralized control systems have fewer tuning pa-
rameters, are easier to understand and tune, and are more
easily made failure tolerant than general multivariable con-
trol systems. In this paper the decentralized control prob-
lem is formulated as a series of independent designs. Sim-
ple bounds on these individual designs are derived, which
when satisfied, guarantee robust performance of the over-
all system. The results provide a generalization of the u-
Interaction Measure introduced by Grosdidier and Morari
(1986).

1. INTRODUCTION

Robust Performance

The goal of any controller design is that the overall
system is stable and satisfies some minimum performance
requirements. These requirements should be satisfied at
least when the controller is applied to the nominal plant
(G), that is, we require nominal stability (NS) and nom-
inal performance (NP). In addition, when a decentralized
controller is used, it is desirable that the system be failure
tolerant. This means that the system should remain stable
as individual loops are opened or closed.

In practice the real (or “perturbed”) plant G, is not
equal to the model G. The term “robust™ is used to indi-
cate that some property holds for a set II of possible plants
G, as defined by the uncertainty description. In particular,
by robust performance (RP) we mean that the performance
requirements are satisfied for all G, € II. Mainly for mathe-

matical convenience, we choose to define performance using
the H,- norm. Define

NP & (%)< i, Yw (1a)
RP & 5(%,)<1, Vw, VG,ell (1)

In most cases ¥ is the weighted sensitivity operator
E=W,SW,;, S§=(I+GC)! (2a)

S, =W S;Wa, S,=(I+G,C)! (2b)

The input weight W, is often equal to the disturbance
model. The output weight W, is used to specify the fre-
quency range over which the sensitivity function should be

emall and to weight each output according to its impor-
tance.

The definition of Robust Performance is of no value
without simple methods to test if conditions like (1b) are

satisfied for all G, in the set IT of possible plants. Doyle et
al. (1982) have derived a computationally useful condition
for (1b) involving the Structured Singular Value u. To use u
we must model the uncertainty (the set IT of possible plants
G,) as normbounded perturbations (A;) on the nominal
system. Through weights each perturbation is normalized
to be of size one:

o(A) <1 ,Vw (3)

The perturbations, which may occur at different locations
in the system, are collected in the diagonal matrix Ay (the
subscript U denotes uncertainty)

Ay =diag{A,,..., A} (4)

and the system is rearranged to match the structure in Fig.
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Fig. 1 General structure for studying effect of uncertainty
(Ay) on performance. M is a function of the plant
model (G) and the controller. d: external inputs
(disturbances, reference signals), é: external outputs

(weighted errors y — r), ¢ = E,d (Eq. (1)).

1. The interconnection matrix M in Fig.1 is determined
by the nominal model (G), the size and nature of the un-
certainty, the performance specifications and the controller.
For Fig.1 the robust performance condition (1b) becomes
(Doyle et al., 1982)

RP & uM)<1l, Vw (5)

(M) depends on both the elements in the matrix
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Fig. 2 Decentralized control structure.

M and the structure of the pertubation matrix A =
diag{Ay,Ap}. Sometimes this is shown explicity by us-
ing the notation u(M) = ua(M). Ap is a full square ma-
trix with dimension equal to the number of outputs (the
subscript P denotes performance). In addition to satisfy-
ing (5), the system must be nominally stable (i.e., M is
stable). Also note that within this framework, the issue
of robust stability (RS) is simply a special case of robust
performance.

Decentralized Control
Decentralized control involves using a diagonal or
block-diagonal controller (Fig. 2)

C = diag{c;}

Some reasons for using a decentralized controller are
¢ tuning and retuning is simple
o they are easy to understand
o they are easy to make failure tolerant
The design of a decentralized control system involves two
steps
A) Choice of pairings (control structure)
B) Design of each SISO-controller ¢; (or block).
The best way to proceed for each of these steps is still an
active area of research. The RGA has proven to be an
efficient tool for eliminating undesirable pairings in Step
A. This paper deals with the Step B. Two design methods
which may be applied for this step are 1) Sequential loop-
closing and 2) Independent design of each loop.
1) Sequential loop-closing. This design approach in-

volves designing each element (or block) in C sequentially.
Usually the controller corresponding to a fast loop is de-
signed first. This loop is then closed before the design
proceeds with the next controller. This means that the
information about the “lower-level” controllers is directly
used as more loops are closed. The final step in the de-
sign procedure is to test if the overall system satisfies the
RP-condition (5). The main disadvantages of this design
method are

e Failure tolerance is not guaranteed when “lower-level”
loops fail.

e The method depends strongly on which loop is de-
signed first and how this controller is designed.

e There are no guidelines on how (and in which order) to
design the controllers for each loop in order to guaran-
tee robust performance of the overall system. There-
fore the design proceeds by “trial-and-error”.

2) Independent design of each loop. This is the design

approach used in this paper. In this case each controller
element (or block) is designed independently of the others.
We present a procedure for these designs which guarantees
robust performance of the overall system. The proposed
method has the following advantages

e Failure tolerance: Nominal stability (of the remaining
system) is guaranteed if any loop fails. '

o Each controller is designed directly with no need for
_,__trial-and- error.
The main limitation of the approach is the assumption of
independent designs, which means that we do not exploit
information about the controllers used in the other loops.
Therefore the derived bounds are only sufficient for robust
performance.

Problem definition. .

This paper addresses the following problem: Let G de-
note the diagonal (or block-diagonal) version of the plant
corresponding to the chosen structure of C (i.e., G is found
from G by deleting the off-diagonal elements). Assume that
uncertainty and “interactions” are neglected when design-
ing the controller C, that is, design each element (or block)
of C independently based on the information contained in
G only. What constraints have to be placed on the indi-
vidual designs in order to guarantee robust performance of
the overall system (which can be any plant G, from the set
me?

The constraints on the individual designs are chosen
to be in terms of bounds on |k;| and |3;| where k; and 3
are the closed-loop transfer functions for loop i:

hi = gices(1 + guies) ™* H = diag{h;} (6a)

Gi=(1+gue)™t 8§ =diag{5) (6b)

(In general, if C is block-diagonal, 71.-, §; and g;; are matrices
corresponding to the block-structure of C, and |3;| and |h;|
are replaced by (H;) and (5)).

We solve the decentralized problem as defined above,
by deriving the tightest possible bounds on

o(H) = max k| and 5(5) = max 4|
which guarantee robust performance:

RP <« &(H)<ég or 8(S)<és, Yw (7)
In addition to satysfying (7) the system has to be nom-
inally stable. The p-interaction measure, introduced by
Grosdidier and Morari (1986), gives a sufficient condition
for nominal stability:
NS <« &(H) <pc(Ey), Y, Ex=(G-&)G!
(8)
(u is computed with respect to the structure of C which is
equal to the structure of G,H and 5) This paper provides

a generalization of the y-interaction measure from the case
of nominal stability (NS) to the case of robust performance
(RP). The results derived here also apply to robust stability
(RS) or nominal performance (NP) if the u-condition (5) is
a RS- or NP-condition rather than a RP-condition.

Notation )
The most important notation is summarized below.



G - model of the plant
G = diag{gii} (corresponding to structure of C)
szf(G’AU), G'p=Gwhen Ap =0

S=(I+6Go)t, H=1-§
§=(I+Go)™t, H=I-§ )
Sp = (I+G,C)7Y, Hy=1I-5,

Stability of individual loops <« H (and ) is stable

NS <« H (and S) is stable

RS <« H, (and S,) is stable (for all G, € I).
NP ¢ S satisfies the performance specification
RP & S, satisfies the performance specification

(for all G, € IN).
2. NOMINAL STABILITY (OF H AND S)

To apply the general robust performance condition
g{(M) < 1 (5) we must require that the system is nomi-
nally stable, that is, that the interconnection matrix M is
stable. Nominal stability is satisfied if H (and §) is stable.
However, note that nominal stability (i.e, stability of H and
S) is not necessarily implied by the stability of the individ-
ual loops (i.e., stability of H and S). The “interactions”
(difference between G and é) may cause stability problems
as discussed by Grosdidier and Morari (1986). If either one
of the following conditions on &(H) and 6(.§) is satisfied,
then the stability of H (or f;') implies nominal stability.

Condition 1 for NS (Grosdidier and Morari, 1986).
Assume H is stable (each loop ts stable by itself), and that
G and G have the same number of RHP (unstable) poles.

Then H is stable (the system is stable when all loops are
closed) if

3(H) < pg'(En) Vw (10)
where Ey =(G-G)G™! (11)

pc(Eg) is the p-interaction measure and u is computed
with respext to the structure of the decentralized controller
C. Note that the condition that G and G have the same
number of RHP poles, is generally satisfied only when G
and G are stable. In order to allow integral action (H(0) =
I), we have to require that u(Ey) < 1 at w = 0, that is, we
need diagonal dominance at low frequencies. If this is not
the case the following alternative condition may be used:

Condition 2 for NS (Postlethwaite and Foo, 1985,
Grosdidier, 1985). Assume S s stable, and that G and G
have the same number of RHP zeros. Then S (and H) is
stable if

2(8) < ug(Es) (12)
where Es = (G- G)G™! (13)
Since we have to require S =11 as w — oo for any real

system, we have to require u(Es) < 1 as w — oo, in order
to be able to satisfy (12), that is, we must have diagonal

(!

dominance at high frequencies. Conditions 1 and 2 cannot
be combined over different frequency ranges. The reason
is that the “uncertainty” G — G is not a norm-bounded
set and therefore is not “connected in the graph topology”
{Postlethwaite, et al., 1985).

3. ROBUST PERFORMANCE

Having derived conditions for nominal stability, we can
now proceed to the case of robust performance. The objec-
tive of this section is to derive bounds on the individual
designs (H and S), which when satisfied guarantee robust
performance of the overall system (that is, s(M) < 1). This
is accomplished in two steps:

1. Sufficient conditions for RP in terms of bounds on
?(H) and &(S) are derived by writing M as a linear frac-
tional transformation (LFT) of H and S.

2. These bounds are used to derive sufficient conditions
for RP in terms of bounds on #(H) and &(S).

3.1 Robust Performance Condition in Terms of H
and S

The robust performance condition
RP & pa(M)<1, Vw (5)

may be used to derive sufficient conditions for RP in
terms of bounds on &(H) and 7(S) (Skogestad and Morari,
1987a). To this end write M as a LFT of H (Fig. 3)

M=N{ + NER(I- NEH)"'NE (16)

Fig. 3 M written as a LFT of H.

The matrix N¥, which is independent of C, can be obtained
from M by inspection in many cases. Otherwise, the proce-
dure given by Skogestad and Morari (1987a) can be used.
They also point out that in general M is affine in H, that
is, Nfi = 0. Applying Theorem 1 of Skogestad and Morari
(1987a) (the theorem is reproduced in the Appendix) the
following sufficient condition for (5) is derived:

RP-condition in terms of H. Assume M s given
as a LFT of H (Eq. 16). Then at any given freqency

paMYS1 i a(H)Sew  (17a)

where at this frequency ¢y solves

A,



N ONE ) _
BA (cHN;{ CHN{% =1 (17b)
and u 15 computed with respect to the structure A =

diag{A,H}.

Note that H is generally a “full” matrix if the con-
troller is diagonal. A similar bound in terms of S is derived
by replacing H by S in Eq. (16) and (17). (17) applies on
a freqency-by-frequency basis. This implies that u(M) <1
at a given frequency is guaranteed if either #(H) < ¢y or
5(S) < ¢ at this frequency. Consequently, the bounds on
5(H) and &(S) can be combined over different frequency
ranges. In particular, the following holds

RP <« o(H)<ew or 3(S)<cs, Vw (18)

.............................

A
e
w, —»

Fig. 4 Plant with input uncertainty (Aj)

Example. RP with input uncertainty (Fig. 4).
Let the set IT of possible plants be given by

Gp=GI+wrhr), (A5 <1, Yw (19)
Here w; is the magnitude of the relative (multiplicative)
uncertainty at the plant inputs. For robust performance
we require that the magnitude of the sensitivity operator is
bounded by |w,|~!:

RP & &(wp(I+G,C)™ ") <1Vw, VG, €T (20)
This condition is most easily checked using 4 (Eq. (5)):

RP & pa(M)<1 Ww (21a)
where the interconnection matrix M is (Skogestad and
Morari, 1986):
_ [ —wiCSG —wiCSs
M= ( wpSG w,S ) (215)

and u(M) is computed with respect to the structure A =
diag{A;,Ap}. Ap is always a “full” matrix of the same
dimension as S. A is often a diagonal matrix (if the inputs
do not affect each other). Rewrite M in terms of S and H
such that C does not appear :

M= (—w;G’“HG —w;G"lH)

wpSG wpS (22)

By inspection M may be written as a LFT (16) of H (recall
S '=1-H)

M=NE + NEHN

- (ng wL) + (‘j’fp;l) HE 1) (23)

We derive from (23) and (17)
RP if 3(H)<cy Ww (24a)
where 'at each frequency cg solves
0 0 —w;G-1
ul| wpG wpl —wpl =1 (246)
egG epl 0

where u is computed with respect to the structure
diag{A1,Ap,H}. A similar condition on &(S) is derived
by writing M as a LFT of S.

3.2 Robust Performance Condition in Terms of H

and S . -
Sufficient conditions for RP in terms of (H) and 5(S)

may now be derived using the identities (Grosdidier, 1985)

H=GG'H(I+ExH)™! (25)
§ = §(I - EsS)"*GG™! (26)
Note that (25) and (26) both are LFT’s of H (and S) in

terms of H (and §). In Section 3.1 we pointed out that in
general M can be written as a LFT of H with NE=o0:

M=NE + NEHNE (27)
Substituting (25) into (27) yields
M=NE y NEGG-'H(I+ ExH)™'NJ}  (28)

which is a LFT of M in terms of H. Using Theorem 1
(Appendix 1) and (28) we derive:

RP-condition in terms of H. Let M = Nf +
NEHNZE. Then at any frequency

pa(M)<1 if &(H)<éy (29a)
where at this frequency ¢ solves
( N ONBGGY _
BA (EHN{{ —épEy =1 (ng)

and p is computed with respect to the structure A =
diag{A,C}.
Note that the structure of C is block-diagonal and

equal to that of H. An entirely equivalent condition may
be derived in terms of &(5):

RP-condition in terms of §. Let M = N§ +
N$SN5,. Then at any frequency
pa(M)<1 i 8(8)<és (30e)

where és solves

(. Ny NG\ =
k4 (éscc:-lN,s1 gsEs ) =1 (308)



and u 18 computed with respezt to the structure A =
dieg{A,C}.

Again, the bounds (29) and (30) may be combined over
different frequency ranges:

RP if s(H)<ég or 8(5)<és Yo  (31)

Example. RP with Input Uncertainty (Continued)
Consider the same example as above (Fig. 4). How-

ever, in this case we will derive bounds in terms of (H) and
5(5). A RP-condition in terms of 3(H) = |hi| is derived
by combining (29) and (23):

RP if #(H)<éiy Ww (32a)
where at each frequency &y solves -
0 0 —w,é:l
HA wpG wpl -"prG-1 =1 (326)
éyG égl —icyEy

Similarly, the RP-condition in terms of 5(5) = |&] is

RP if &(§)<és Ww (33a)

where at each frequency Zs solves

—wil —wiG~! w;G!
A 0~ 0_ wpl =1 (33b)
csG asGG_l ¢sEs

In both (32b) and (33b) u is computed with respect to the

structure A = diag{Ar, Ap,C}. Conditions (32) and (33)
can be combined as shown in (31).

4. DESIGN PROCEDURE

The following design procedure for decentralized
control systems based on the “independent designs”-
assumption is proposed: Find a decentralized controller
which yields individual loops (ﬁ and 5‘) which are stable
and in addition satisfy

1) Nominal Stability: Satisfy 5(#) < p~'(Ex) (10) at
all frequencies or satisfy 6(5) < p~YEs) (12) at all

frequencies. It is not allowed to combine (10) and (12).

2) Robust performance: At each frequency satisfy either

a(H) < éx (29) or 5(§) < &s(30). Combining (29)

and (30) over different frequency ranges is allowed.
Consequently, two separate conditions must be satisfied by
the individual designs: One for nominal stability and one
for robust performance.

5. NUMERICAL EXAMPLE

In this section we continue the previous example of RP
with diagonal input uncertainty (Fig.4). Consider the plant
(time is in minutes)

(34)

1 —-0.878
—0.014

G 0.014
T 1+ 1755 | —1.082

Physically, this may correspond to a high-purity distilla-

tion column using distillate (D) and boilup (V) as manipu-
lated inputs to control composition (Skogestad and Morari,
1986). We want to design a decentralized controller for
this plant such that robust performance is guaranteed when
there is uncertainty on the manipulated inputs. The per-
formance and uncertainty weights are

T
wp(s) = 025511 (35a)
7s
5s+1
wi(s) = 0155 (35)

A particular sensitivity function which matches the perfor-
mance condition (29) exactly at low frquency and easily at
high frequency is S = E%I . This corresdonds to a first
order response with time constant 28 min. The uncertainty
weight (35b) corresponds to 10% uncertainty on each input
at low frequency. ||wr(jw)| reaches a value at one at about-

w = 2 min—L. This allows for a uncertain time delay of up
to 0.5 min.

We find p(Ex(0)) = 1.11 and the NS-condition (10)
is impossible to satisfy. However, the NS-condition (12) on
() is easily satisfied since G and G have the same number
of RHP- zeros (none), and u(Eg) = 0.743 at all frequencies. .

The only restriction this imposes on S is that the maximum
peaks of |§;| and |3| must be less than 1/0.743 = 1.35. This
is easily satisfied since both §,; = '12_‘.?;? '13_',?51:
are minimum phase.

Robust Performance (RP)
Bound on a(H)). The bound éx on #(H) is given by Eq.
(32) and is shown graphically in Fig. 5. (u of the matrix

and g2 =

in (34b) is computed with respect to the structure A =
diag{A,Ap,C}, where A; is a diagonal 2 x 2 matrix, Ap
is a full 2 x 2 matrix and C is a diagonal 2 x 2 matrix). It
is clearly not possible to satisfy the bound Er(I;V } < én at
low frequencies.

Bound on #(5). The bound &s on (8) is given by Eq.
(33) and is shown graphically in Fig. 6 (s is computed
with respect to the same structure as above). It is not
possible to satisfy this bound at high frequencies.

10 -l

Cole Bl ) +_|

1|o'
w (min~1)

-2

10 1 . . L

Fig. § Bounds 4~'(Ey) and éx on 2(H).
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Fig. 6 Bounds p~!(Es) and &s on 3(5).

Combining bounds on &(H) and 6(5‘) The bound on (5)
is easily satisfied at low frequencies, and the bound on &(fI )
is easily satisfied at high frequencies. The difficulty is to

find a § = I — H which satisfy either one of the conditions
in the frequency range from 0.1 to 1 min—1, The following

Fig. 7 RP is guaranteed since |&| < &s for w < 0.3 min~!

and |;L.| < &g forw > 0.23 min~1, R = 1/1+7.5s.

design is seen to do the job (Fig. 7).

s s 1

7.58
hi=hy = —— 51 =8, =
1=hs 7.58+1 > S1= 92

T 75s+1 (36)

The bound on |3, is satisfied for w < 0.3 min~!, and the

bound on |h;| is satisfied for w > 0.23 min=!, and from
(31) we get that RP of the overall system is guaranteed.

6. CONCLUSION

This paper solves the problem of robust performance
using independent designs as introduced in the Introduc-
tion. The example illustrates that this design approach
may be useful for designing decentralized controllers.

The main limitation of the approach stems from the
initial assumption regarding independent designs: Since
each loop is designed separately, we cannot make use of
information about the controllers used in the other loops.

The consequence is that the bounds on 5(5) and &(H) are
only sufficient for robust performance; there will exist de-
centralized controllers which violate the bounds on &(S)

;\:\

and 4‘7(}? ), but which satisfy the robust performance con-
dition. However, the derived bounds on #(5) and &(H)
are the tightest norm bounds possible, in the sense that
in such cases there will exist another controller with the

same values of 3(H) and &(5) which does not yield robust
performance.

The bounds on #(H) and 8(5) tend to be most conser-
vative in the frequency range around crossover where &(ﬁ )
and a(S‘) are both close to one. If, for a particular case, it
is not possible to satisfy either (H) < &y or #(5) < &s in
this frequency range, then try the following: Design a con-

- troller for which the frequency range where both bounds

are violated is as small as possible. Since the bounds are
only sufficient for RP, this may still yield an acceptable de-
sign with robust performance. This may be checked using
the tight RP—ondition u(M) < 1 (5).

We are thankful to Prof. John C. Doyle and Dr. Pierre Grosdi-
dier for numerous useful discussions and remarks.
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AII}PENDD(. Theorem 1. Let M be written as a LFT
of T:

M = Nii + NyoT(I - NpoT) 1N,y

and let k be a given constant. Assume #a(Ny) < k and
det(I - NggT) 96 0. Then

Ba(M) <k
if
a(T) <er
where ¢ solves
o Ny N2 | _
a chNgl chNgg -

and A = diag{A,T}.



