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DEDICATION 

This article is dedicated to the memory of Richard R. Hughes, a dear friend and colleague. He was 
a continuous source of the type of engineering insight we are seeking in this paper. 

Abstract--It is shown that the dominant part of the dynamic composition response of two-product 
distillation columns can be approximated by a linear first-order response This applies also for large 
perturbations to the column. The numerical value of this dominant time constant (7,) can be obtained 
from steady-state simulations. A simple analytical expression for small perturbations is derived which 
provides insight into the variation of ?T, with operating conditions. The time constant 7, does not apply 
when there are changes in the internal flows only. 

1. INTRODUCIION 

Analytical models 

Simple analytical models are useful for understanding 
and analyzing the behavior of complex systems. In 
this paper we present such a model for the com- 
position dynamics of distillation columns. We stress 
that it is not our goal to develop models for simu- 
lation; detailed column models which can be easily 
solved on a digital computer have been available for 
at least 30 yr. The main purpose of simple analytical 
models is to provide insight. For example, we might 
want to answer the following questions-Under what 
conditions do we find the very large time constants 
which have been observed in the simulations of some 
columns (e.g. Fuentes and Luyben[ l])? Why does the 
nonlinear dynamic composition response of dis- 
tillation columns resemble often closely a linear 
first-order response? Does a change in reboiler 
holdup, condenser holdup or column holdup have the 
largest effect on the time constant for the composition 
response? For gaining such valuable insights a simple 
analytical model can be more useful than running 
hundreds of tray-by-tray simulations. 

Furthermore for the modern robust control system 
design techniques, simple models are preferred which 
reflect the main dynamic characteristics of the system. 
The most important characteristics are those which 
limit the performance achievable by feedback con- 
trol. An analytic model can be very helpful for 
pinpointing these limiting characteristics. 

Dynamic composition response 

The dynamics of most distillation columns are 

tPresent address: Chemical Engineering, Norwegian Insti- 
tute of Technology (NTH), 7034 Trondheim, Norway. 

dominated by one large time constant, which is nearly 
the same, regardless of where a disturbance is intro- 
duced or where composition is measured. This is well 
known both from plant measurements[2] and from 
theoretical studies[3-51. 

A distillation column is described by a large num- 
ber of differential equations. For each tray, i, a 
differential equation may be formulated for (a) the 
material balance of each component (composition 
dynamics): 

$(“ix,)=Li+~xi+~ + V(_,_Yi_, -LiXi- Viy,, 

where, from the VLE: yi = J&c,, T), 

(b) the overall material balance (flow dynamics): 

where, (tray hydraulics) L, =A ( Vi, Mi, Api). 

(pressure drop) Vi = f2 (Mi, Api), 

and (c) the energy balance: 

$ (MiVi) = Li+ 1 Hf+ 1 + Vi_ 1 HL 1 - LiHf - V,H,Y, 

where, 

We only want to outline the structure of the equa- 
tions and not concern ourselves with the details. 
Viewed against the background of the large number 
of nonlinear differential equations, the simple low- 
order responses (often first-order) observed for most 
distillation columns are somewhat surprising. For a 
specific example Levy et al.[6] showed through modal 
analysis that the slowest mode involves primarily the 
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composition effects and is nearly unaffected by the 
flow dynamics (if we assume constant molar flows, 
then the flow dynamics are decoupled from the 
composition dynamics and it is trivial to show that 
the eigenvalues for the modes corresponding to the 
composition dynamics are unaffected by flow dynam- 
ics). This leads to the conjecture that the dominant 
part of the dynamics can be captured by modelling 
only the composition dynamics. This is the approach 
taken in this paper. 

The simplest approach is to consider the total 
holdup of each component in the column. Assuming 
that all trays have the same response, a first-order 
model is found directly and the dominant time con- 
stant can be estimated. According to Rademaker et 
a/.([71 p. 280) this idea dates back to the beginning of 
the century (Lord Raleigh) and seems to get redis- 
covered every few years. Moczek et a1.[3] used it to 
introduce the “inventory time constant” for a column 
going from one steady-state (subscript 0) to another 
(subscript f ): 

Tnv = 
APf,xi) 

A(Fz,) - y,AD - x,AB ’ (1) 

Here AD = D,- D, and AB = B,- B. are the 
changes in distillate and bottoms flow rate, A(ZMixi) 
is the change in holdup in the column of any com- 
ponent, A(Fzr) is the change in feed rate of this 
component and y, and x80 are the initial product 
mole fractions of this component. 

Later, Wahl and Harriot[4] and Waller et al. 
(Toijala[8]) introduced similar concepts (7’, and T,), 
but they considered only the time constant of the 
linearized system (called the “linearized time con- 
stant” in the following). Moczek et al. introduced (1) 
through somewhat intuitive arguments; we will return 
with a complete derivation and interpretation below. 

In spite of the excellent agreement found for 
high-purity separations[39] between (1) and the ac- 
tual time response of the column, the usefulness of (1) 
does not appear to be appreciated by the chemical 
engineering community. For example, Shinskey([lO] 
p. 157) claims that the only general relationship that 
seems to hold for the dominant time constant is that 
it is proportional to ZM,/F. In fact, this follows 
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Fig. 1. Column A. Nonlinear openloop response to small (a) and large (b) change in feed rate F with 
L and V constant. Dotted line: approximation with second-order response k/(r,s + l&s + 1). 

@4,/F = 0.5 min, MD/F = 32.1 min. MB/F = 11.1 min). 

directly from (1), but (1) certainly contains much 
more information. The limited use of (1) is probably 
caused by the following two misconceptions: 

(i) equation (I) provides the value of the linearized 
time constant, that is, it is only useful for small 
perturbations from steady-state, 

(ii) the linearized time constants are substantially in 
error (much larger) when compared to either the 
actual or the simulated response. 

Both these claims are incorrect. Misconception (i) 
is probably based on the work by Wahl and 
Hartiot[4] and Toijala[8] who derived (1) for small 
pertubations. In fact, (1) can be used to estimate the 
“average” time constant between any two steady- 
states. Misconception (ii) is due to the unfortunate 
assumption of equal product purities (1 - y, = xe) 
used in the majority of the academic case studies. It 
turns out, as we will show, that the time constant has 
its peak value for approximately 1 - y, = xg. In gen- 
eral, however, the estimated linearized time constant 
is not necessarily larger than the actual time constant 
(e.g. see Fig. 2). In fairness we should add that the 
criticism in (ii) is correct if both products are of high 
purity. The reason is that in this case the per- 
turbations to the column will bring the column to a 
new steady state where one of the products is less 
pure. Since the time constant is determined by the 
least pure product this implies that the actual time 
constant will be smaller than the linearized one (see 
Section 3). 

A major source of misconception (ii) is probably 
the work of Wahl and Harriot[4]. They present a 
figure (Fig. 7 in their paper) for estimating the 
linearized time constant as a function of operating 
variables for the column. Although not stated in the 
paper, these values apply on/y to the special case 
1 - y, = xg. The figure is therefore of very limited 
practical value and will generally yield too large 
values for the time constant. (Similar figures, which 
are misleading, for the same reason, are presented by 
Tyreus et uf.[l 11.) Wahl and Harriot[4] also claim that 
the time constant is relatively constant for a large 
perturbation in the loads; this is not correct for 
high-purity columns as seen from Fig. 1. 

(b) AF/F,=O.lS 
0.12r 7, =50,2,.15 
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Misconception (ii) is also present in a recent work 
by Kapoor et a1.[12]. They claim that “published 
tower time constants based on linear analysis have 
been substantially in error when compared to actual 
responses for many cases. The reason for this error 
is a... positive feedback loop produced by the re- 
cycle tower structure. . . (for which the) gain drops 
sharply for small perturbations from steady state”. 
Firstly, the results based on linear analysis are not “in 
error”. (The range of validity may be very limited 
however if both products are of high purity.) Sec- 
ondly, the simple mixing-tank model (1) explains in 
at least as simple a fashion as the “positive feedback 
loop concept” when and why the linearized time 
constant is “in error”. This is discussed in detail 
below. 

2. DERIVATION OF EXPRESSION FOR r, 

Consider a column which initially (t = 0) is at 
steady state (subscript 0). At t = 0 a step change is 
introduced to the column which eventually (t + co) 
moves the column to a new steady-state (subscriptf). 
The nature of this step change is not important as 
long as: (i) the new steady-state is known; and (ii) it 
leads to a change in the total holdup in the column 
of one or more component. This includes most 
disturbances and inputs except changes in the internal 
flows (changes in L and V keeping product rates 
constant). 
Assumption 1. The flow dynamics are immediate, i.e. 
for t > 0: M,(t) = Mi/, D(t) = D,, B(t) = B, 

This assumption is also used in all simulations in 
this paper. It is reasonable for the composition 
dynainics, provided the flow response is much faster 
than the composition response. Using Assumption 1 
the overall material balance for any component be- 
comes for t > 0: 

$ [;$,I Mqxi(t)] = f,+,- D,yo(t) - B,x,(t). (2) 

Subtracting the final steady state (0 = F,zr,- 
D,yDf- BfxBf) and introducing Ayfi(t) = y,(t) = yor, 
yields: 

N+1 

c MgA&(t) = - DfAyD(t) - BfAxB(t). (3) 
i=, 

Assumption 2. All trays have the same dynamic 
responses, i.e. Axi = AxJc(t), Ayr,(t) = Ay&(t), 
AxB(t) = Ax&(t). [Here k(0) = 1 and Axi = Axi( 
Ayr, = AyD(0) and Ax, = Ax,(O) denotes the differ- 
ence between the initial and final steady-state). 

Assumption 2 corresponds to treating the column 
as a large mixing tank. This assumption is reasonable 
if the time constant for the internal mixing in the 
column, zM = M,/L, is much shorter than the domi- 
nant time constant. TV is approximately the time it 
takes for a composition change at the top of the 
column to travel to the bottom; for a composition 
change starting from the top each tray acts as a first 

order lag with time constant M,/L. The overall 
transfer function is the product of these lags which 
may be approximated by a time delay with time 
constant 7M = M,IL. (To was introduced by Wahl and 
Harriot[4] who called it the circulation time.) 

Assumption 2 and equation (3) yield: 

(Y,’ Jr 1) 
c M. Ax. k(t) = (- D/AyuD - BJAx,)k(t). (4) 

Solving (4) gives a linear first-order response: 

k(t) = e-“‘c, 

where the time constant 7, is defined as (subscript c 
denotes change in component holdup): 

N+l 

i;, M&l def 

7, = 
ASi ’ 

ASi = D,Ay, + B,AxB, (5) 

(ASi is the supply imbalance). A simple interpretation 
of (5) is: 

“change in holdup of one 
component” (kmol) 

7, = 
“imbalance in supply of this ’ 

component” (kmol min-‘) 
Note that: 

ASi = D,AyD + B/Ax, 

= A(Fzr) - y,AD - x,AB (6) 

and 7c defined by (5) is therefore equal to ~ii,, defined 
by (1) if we assume that the holdup on each tray is 
constant, i.e. Mq= M,. This assumption is used in the 
rest of the paper; its effect on the value of 7c is clearly 
insignificant. 

Comments on (5) 

1. The column model was not linearized and (5) 
applies to any finite change provided that Assump 
tions 1 and 2 hold. 

2. The time constant depends on the magnitude and 
direction (negative or positive change) of the step 
change introduced. 

3. The expression for 7, applies to any component 
in a multicomponent mixture. 

4. Equation (5) applies to any change which 
changes the external material balance, i.e. which has 
ASi # 0. Equation (5) does not apply for changes in 
the internal flows (changing L and V while keeping D 
and B constant) because the denominator ASi = 0 in 
this case [see (6)]. Furthermore, in this case there is 
very little change in component holdup and the entire 
holdup approach is not appropriate. Methods for 
estimating the time constant for changes in the 
internal flows are discussed in another paper[l3]. 

5. To compute 7r according to (5) a steady-state 
model of the column is needed. For obtaining accu- 
rate numerical values a nonlinear simulation program 
should be used. Such programs are usually readily 
available. For any given step change only two simu- 
lations are required to compute 7,. To simplify the 
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Table I. Steady-state data for distillation column examples. d,, (0) denotes the I-l-element in the 
RGA for the LVcontinuration 

Column + a N NF YD X8 DIF LIF A,, (0) 

A 0.5 1.5 40 21 0.99 0.01 0.500 2.706 35.1 
B 0.1 1.5 40 21 0.99 0.01 0.092 2.329 47.5 
C 0.5 1.5 40 21 0.90 0.002 0.555 2.737 7.53 
D 0.65 1.12 110 39 0.995 0.10 0.614 il.862 58.7 
E 0.2 5 15 5 0.9999 0.05 0.158 0.226 2.82 
: 0.5 0.5 15 1.5 80 10 40 5 0.9999 0.9999 0.0001 0.000 I 0.500 0.500 0.227 2.635 1673 499 

WH 0.5 2.0 26 13 0.995 0.005 0.500 I .477 41.6 

computations the program should be modified to 
print out Zr=+,’ Mixi. 

6. Very large time constants are found for small 
perturbations to columns with both products of high 
purity. This agrees with the observations of Wahl and 
Harriot[4], Tyreus et al.[ll] and Fuentes and 
Luyben[l]. The reason is that the compositions inside 
the column may change significantly (resulting in a 
large change in component holdup), while the change 
in product compositions may be very small (resulting 
in a small imbalance ASi to cause the change in 
component holdup). 

7. The expression for t, can be split into three 
contributions (caused by holdup inside column, in 
condenser and in reboiler): 

7c=7c/+7cD+7,B, 

M,AZ, 

Ua) 

MDAYD MD M&B MB 
7cD = r < o/ 9 7cB =-<-, (7b) 

ASi Bf 

where M, = CrTy=, Mi is the total holdup and 
ZJ = Cf”zxiM,/MI is the average composition inside 
the column. The contribution to 7, from the change 
in holdup inside the column (7,,) is often dominating. 
Furthermore, the reboiler and condenser are to some 
degree “decoupled” from the rest of the column and 
their contribution to 7, may be less than what is 
indicated by (7) (see Example 4 below). 

8. One disadvantage of (5) is that the compositions 
on all trays are needed to compute 7,. We will 
therefore later derive an analytical expression for 
zc, based on a very simple model, which involves 

only the product compositions b. and x8). This 
expression is useful for gaining insight into the non- 
linear behavior of distillation columns. 

Comparison with nonlinear simulations 

Moczek et a1.[3] reported excellent agreement be- 
tween (5) and the observed nonlinear response for a 
high-purity BTX-column. Weigand et a/.[91 studied 
six different columns and found very good agreement 
for the high-purity column (Column V in their paper) 
and reasonably good agreement for the five low- 
purity columns. The agreement was found to be best 
for small perturbations to high-purity columns, 
which is expected, since this gives large time constants 
and Assumption 1 and 2 are likely to hold. For 
columns with only one product of high purity, 7, was 
found to apply to the low-purity end, while the time 
constant for the high-purity end was often 
significantly smaller. 

In this paper the eight columns (A-WH) in 
Table 1 are used as examples. In all examples we 
assume constant molar flows, constant liquid and 
vapor holdup (i.e. instantaneous flow responses), 
constant relative volatility, liquid feed, 100% tray 
efficiency, total condenser and equal holdup, Ni, on 
all trays inside the column. 

Example I. Column A. (M,/F = 0.5 min, MD/F = 
32.1 min, M,/F = Il. 1 min). Table 2 compares 7, 

with the actual time constant 7, observed for non- 
linear responses to small and large changes in F, V 
and L. Each nonlinear response was fitted by eye to 
a second-order linear response l/( 1 + 7, s) (1 + tZs) as 
shown in Fig. 1. (We do not propose this as a good 
column model, but it gives the reader an idea of the 
shape of the nonlinear response.) The agreement 

Table 2. Column A. Time constants for inputs of various magnitude. Note that (7) 
often overestimates the magnitude of qD and 7,s (see Example 4). (M,/F = 0.5 min, 

MD/F= 32.1 min, MB/F= 11.1 min) 

Fit of nonlinear response to 

1 

Inout 

AF/F,= 0.001 
AV/F, = 0.001 
AL/F,= 0.001 
AL/F,+0 
AF/F, = 0.150 
AV/F, = 0.200 
AV/F, = -0.20 
AL/F. = 0.200 

Holdup model (7) 

‘1c/ %D *rn 

190 24.6 13.7 
194 30.6 11.6 
190 26.4 13.1 
191 28.7 12.3 

41.1 1.9 16.6 
29.6 45.2 0.5 
25.7 1.5 15.6 
26.5 1.5 15.6 

= &m 

228 
236 
229 
232 
59.6 

75.3 
42.8 
43.7 

(7,s + l)(r,s + I) 

L) Z) (Z) (L 

207 50 207 210 50 210 8 
228 20 228 0 

50 25 50 15 
50 25 14.5 0 
43 0 25 20 
40 0 25 20 
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between t, and t, is good for small perturbations. For 
the larger perturbations 7, agrees better with 7, + 7*. 

The only large deviation is found for the response in 
xs to a large increase in AV/FO = 0.20 (L constant); 
this change takes the column from the initial steady- 
state with Y, = 0.99 and xg = 0.01 to a new steady- 
state with Y, = 0.714 and xg = 0.0006. For the pure 
bottom product we find 7, + t2 = 14.5 min which is 
much smaller than 7, = 75.3 min. However, as ob- 
served by Weigand et a/.[91 the agreement is very 
good for the less pure top product (7, + r2 = 75 min). 

Example 2. Column D. (M,/F = M,/F = M,/F = 
1 min). To show that the linearized time constant is 
not necessarily larger than the actual “nonlinear” 
time constant, we considered a feed composition 
disturbance to column D. The linearized time con- 
stant for a small disturbances in zp found using (5) is 
7, = 319 min. This compares nicely with the actual 
response which has a time constant of about 388 min 
for Y, and 341 min for xs (Fig. 2a). Next, we studied 
a 7.7% decrease in zF (Fig. 2b): 

initial steady state: 
zF = 0.65, Y, = 0.9950, 
xg= 0.1000, Z,=O.714, 

final steady state (all flows unchanged): 
zF = 0.60, Y. = 0.9578, 
xg = 0.0296, 2, = 0.495, 

We find for this change: 

(N - l)MiAX, 109 x 1 x 0.219 
7e,= = 

A(Fz,) 0.05 
=477min 3 

MB&S MDL?VD 
7 =-= 1.4min, 7cD=- 
‘xv A(FzF) A (FzF) 

= 0.7 min. 

Consequently, for this large disturbance in zF, (5) 
gives 7, = 479 min, which is higher than the linearized 
value of 319 min. This is also confirmed by the 
simulations in Fig. 2; the response of y, to the 
large disturbance in zF is clearly more sluggish 

(7, x 72 z 4OOmin) than for the small disturbance. 

x10-4 (a) AZ, = - 0.0001 

-3 I I I 1 
0 500 1000 1500 2000 

Time (min) 

Linearized time constant 

The linearized time constant is derived from (7) by 
replacing the A’s by differentials: 

MI df,ldx, 

“‘=B+DdyD/dxgl 

MD M.9 
7cD=D+Bdx8/dyD’ 7CB=B+DdyD/dxg. 

(8) 

These values are in general different depending on the 
disturbance or input because the linearized gains 
(dy,/dx,) are different. The values of 7cD and 7cB are 
easily obtained from the steady-state gain matrix. 

Example 3. Column A. (MJF = 0.5 min, 
M,/F = 32.1 min, M,/F = 11.1 min). The steady- 
state gain matrix [equal to -CA -‘B, see equation 
(11) below] for this column is: 

dY, 

(>( 

0.878 -0.864 dL 

dx, = 1.082 -1.096 >( > dV ’ 

For a small change in L with Y constant this gives 
(dy,/dx,), = 0.878/1.082 = 0.811 which yields 
7cD = 28.7min and zcB = 12.3 min. The value of 
(dZ,/dx& = 8.85 for a small change in L is obtained 
numerically. This gives: 

39 x 0.5 x 8.85 = 191 min 

“’ = 0.5 + 0.5 x 0.811 
9 

7, = 7,+ zcD + 7cB = 232 min 

Very similar values are obtained for a small change 
in V (L constant) since (dy,/dx,), = 0.864/1.096 = 
0.799 and (dT,,ldx,), = 8.74 are almost unchanged. 
Note that the l-l element in the RGA for the 
L V-configuration is given by[ lo]: 

I,, = (9) 

Therefore columns with large RGA-elements (which 
corresponds to columns with both products of high 
purity) are expected to yield similar values for 7, for 
small perturbations in L or V. 

(b) Cl+=-0.05 

-,.,,t &217 llxs 

-0.08 1 I I I I 
0 500 1000 1500 2000 

Time (min) 

Fig. 2. Column D. Nonlinear open-loop response to small (a) and large (b) change in feed composition 
+. Dotted line: approximation with second-order response k/(s, s + l)(r,s + 2), t2 = 0 if not specified. 

@4,/F = MD/F = MB/F = 1 min). 
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Comparison with eigenvalues 

TO find the linearized dynamics more accurately, 
linearize the material balance and VLE on each tray: 

M$i=LdXi+l-(L+K;V)dxi+Ki_IVdwi_7 

+(x,+1 -Xi)dL -_Cvi-yi_l)dV. 

Here K, is the linearized VLE-constant: 

,,=dyi_ u 

’ dxi- [l +(a -1)x,12’ 

Written in the standard state-variable form in terms 
of deviation variables: 

i=Ax+Bu+Ed, y=Cx. (10) 

Here x = (dx,, . . . , dxN+ ,)’ are the tray com- 
positions, u = (dL, dV)T, d = (dF, dz,)r and 
y = (dy,, dxs)r. Written in transfer matrix form: 

y = C(sl- A)-‘(Bu + Ed). (11) 

The poles (eigenvalues of A) are the same for any 
input or disturbance and independent of where com- 
position is measured &,, x8, xi). However, the zero 
locations are different which may yield entirely 
different responses. 

Wahl and Harriot[4] found very good agreement 
between the linearized value of r, and the time 
constant tie corresponding to the smallest eigenvalue 
of A, and this is confirmed by our results. Wahl and 
Harriot found that the agreement was acceptable 
(errors less than 20%) even for some cases with 
r& < 1. 

Example 4. Column A. The value of the time 
constants corresponding to the three smallest eigen- 
values of A are (all numbers in minutes, z, from 
Example I ): 

MiIF MvIFM,IF 71r oh 73, zc 

0.5 0 0 193 12 3.4 191 
0.5 32.1 11.1 220 32 11.6 232 

Note that rc and tie are almost identical for the case 
Mv = M, = 0. This indicatesthat Assumption 2 holds 
very well for what happens inside the column. How- 
ever, with M,/F = 32.1 min and M,,/F = 11 .l min 
the increase in tlP is only 27 min, while r, increases by 
43 min. This indicates that Assumption 2 does not 
hold for the reboiler and condenser and that these are 
partially decoupled from the rest of the column, This 
is not surprising since the larger holdups in the 
reboiler and condenser make these less sensitive to 
“interactions” with the other trays. In addition, there 
is only one stream entering the reboiler and con- 
denser, while the trays inside the column have two. 

tlr and linearized values of r, (5) are compared for 
some other columns with small reboiler and con- 
denser holdup in Table 3. The agreement is amazing 
for columns A,B,F,G and WH all of which have 
rhl e Z, is generally very good. Also for the other 
cases the agreement is very good. The only exception 
is column E for which r, for a change in V is 42% 
smaller than rle. This is not surprising because 

Table 3. Linearized time constants (min). Values for ‘I, (5) arc given 
for small perturbations in L with Y constant (and, if different, vale 
for small change in V with L constant is in parentheses). Note that 
zM = M,/L 4 q for Assumption 2 to hold. All columns: 

M,/F=M,IF=M,/F=Imin 

Eigenvalues 
Column % (5) Trr (17) Tlr %e %I 

A 387 421 388 24 I5 
B 504 (496) 428 500 23 18 
C 58 (60) 91 49 16 15 
D 300 (299) 385 308 47 9 
E 142 (95) 29 165 16 71 
F 5992 4886 5992 9 48 
G 40664 42891 40667 40 31 

WH 459 477 459 15 18 

q/zM = 1.34 in this case and Approximation 2 is not 
likely to be valid. The large difference in the linearized 
time constant r, for changes in L and V which is 
observed in this case is also expected because of the 
low values for the RCA for this column ()Lr, = 2.82) 
which implies that (dy,/dx,), and (dy,/dx& are 
quite different. 

Table 3 illustrates that the simple holdup model (5) 
gives strikingly accurate time constants for small 
pertubations to high-purity columns. According to 
(5) the reasons for the large time constants observed 
for high-purity columns is that there is a “large” 
change in component holdup inside the column, but 
only a small imbalance (change in product com- 
positions) to bring about the change. Other expla- 
nations for the large time constants are given in the 
literature: Kapoor et al.[12] claim that they are 
caused by “positive feedback loops produced by the 
recycle structure”. Fuentes and Luyben[l] claim that 
the cause is “small concentration changes from tray 
to tray (which) make some of the coefficients in the 
linearized equation very small, giving small eigen- 
values”. Both of these explanations seem unneces- 
sarily complicated. 

Note from Table 3 that very large linearized time 
constants may be encountered even for easy sepa- 
rations with few trays: Column F has 10 theoretical 
trays and LID = 0.45, yet rc = rle = 5992 min. The 
reason for the large value of the linearized time 
constant is the high purity of the products 
(1 - yd = xg = 10m4). However, the time constant will 
be drastically smaller for any realistic perturbation to 
the column. This is discussed below. 

3. A SIMPLE FORMULA FOR q 

We will now use (5) to derive a simple formula for 
the linearized time constant for the case of a binary 
separation. The following additional assumptions are 
made. 

Assumption 3, All trays (i = 2, N) have equal and 
constant holdup (MJ. 

Assumption 4. The average composition inside the 
column is (see Appendix): 

(12) 
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Assumption 5. The steady-state gains may be 
estimated by assuming the separation factor 
S = Yo(l -x,)/(1 -YD)xe is constant for any given 
change. 

Equation (12) was derived by assuming the com- 
position profile is the same as that of a column with 
total reflux, and Assumption 4 is therefore most likely 
to hold for columns with large reflux. Assumption 5 
does not apply when there are changes in the internal 
flows, but this case is already excluded since (5) does 
not apply in this case. Assumption 5 is most likely to 
hold for high-purity columns because then the term 
involving the change of In S in (15) is negligible. 

In this section let Yo, x, and xi denote the mole 
fraction of the light component, and let [ represent 
any input or disturbance to the column which 
changes the exrertzal material balance such that (5) 
holds. For a small perturbation, d[, (5) yields: 

Differentiating the component material balance, 
FzF = II,,, + Z?xs, yields the following expression for 
the denominator of (13): 

W) 

where ei is defined as: 

To evaluate the numerator, we need to find the 
linearized gains ay,,/a[ and axJay. (This will also 
yield a&/al because of Assumption 4.) For binary 
mixtures exact expressions for these gains are derived 
by combining (14a) with the definition of the sepa- 
ration factor S: 

1 aY, 1 
(I_ yDjyodl; =7; 

[ 
eC + BxB(l -x~) f_!!G , ay 1 (15a) 

1 ax, I 

(1 - xe)xe a( 
- =r er-DyD(l -Yd s F . 1 (15b) 

Here Z, is the “sum” of impurities leaving the column 

z, = Bx,(l - xg) + Dy,(l - y,). (16) 

As pointed out by Shinskey[lO] there is usually not 
too much error introduced by assuming the sepa- 
ration factor S is constant when considering changes 
in the external flows (e.g. D/F). Consequently, for 
upsets d[ which change the external material balance 
(et # 0), the term involving the change in separation 
factor S is usually of minor importance (in particular 
for high-purity separations with xB and 1 - y, small) 

and a reasonable approximation is found by as- 
suming S constant (Assumption 5). Equations (12) 
and (15) yield: 

=-%. 
I, In S 

Substituting this into (13) yields a short-cut formula 
for the linearized value of r, (note that eF drops out): 

MI 
7X = 7seI + 7scD + 7& = - Z,lnS 

+M,U -YD>YD+W -x&s 
IS 4 

. (17) 

For the special case of equal purities (xe = 1 - yD) we 
get Z, = Fx,y, and (17) becomes: 

M,IF 
7 =----+MM,/F+M,/F. SC 

xsyD In S 
(18) 

Here the term l/x,y, In S which multiplies the 
holdup inside the column is: 

x*= 1 -y,: 0.3 0.1 0.01 0.001 10-4 10-6, 
(x,Y,ln S)-‘: 2.81 2.53 11.0 72.5 543 36191. 

This clearly shows that usually the contribution to 7, 

from the holdup inside the column dominates, es- 
pecially for separations with both products of high 
purity. Also recall that the contributions to tc from 
the condenser and reboiler holdup are generally 
overestimated by (17) and (18) because Assumption 
2 does not hold. 

Values for bc found from (17) are compared with 
7, (8) in Table 3. The agreement is of course best for 
the cases when Assumptions 4 and 5 are likely to 
hold, i.e. for columns with high reflux (Assumption 
4 is valid) and for high-purity columns (Assumption 
5 is valid). However, the main value of the analytical 
formula (17) is the insight it yields into the nonlinear 
dynamic behavior of distillation columns. Consider 
the contribution from the holdup inside the column: 

MI 
7xI = I,lnS . (19) 

Here In S usually does not change very much with 
operating conditions. The time constant is therefore 
determined mainly by Z, which again is determined by 
the composition of the least pure product: 

r D( 1 - Y,) if distillate least pure 

Bxa if bottoms least pure (20) 

For columns with both products of high purity any 
disturbance or input to the column is likely to take 
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-r,,(6) 

---Shortcut 117) 

Fig. 3. Column WH. Lineurized time constant rd as a function of zr with all flows fixed. Each value of 
zF corresponds to a new steady-state with a particular y, and xg and the right-hand figure is included 

to show clearer the variation in re, with x,/l - yo. (MJF = M,/F = MB/F = 1 min). 

the column to a new steady-state where one of the 
products is less pure and the actual time constant for 
this change will be smaller than found by linear 
analysis [which (19) is based on]. 

It also follows from (19) that r,, reaches its max- 
imum value approximately when both products have 
equal purity; by differentiating (19) we find that for 
zF = 0.5 the maximum value of t,, when D/B is 
varied is obtained for D/B = 1 corresponding to 
1 - y, = xg. Also for other values of zr the maximum 
is obtained when (1 - yD)/x, is of the order one. 

Example 5. Column WH. Consider the high-purity 
column (1 - yD = xB = 0.005) presented by Wahl and 
Harriot[4]. In Fig. 3 the linearized time constant r,, 
is shown as a function of zr with all flows fixed. Each 
value of zr corresponds to a specific steady-state with 
a given ratio xJ( 1 - vo) and we have also plotted r,, 
against this ratio. We see that TV, has a very high peak 
at the nominal operating point zr = 0.5 which corre- 
sponds to xa/( 1 - y,) = 1. This illustrates that Fig. 7 
in Wahl and Harriot[4] for estimating the linearized 
time constant is highly misleading; it is based on the 
assumption 1 - y, = xg. Also note from Fig. 3 that 
very similar values for 7= are obtained from (8) and 
the short-cut formula (17). 

Example 6. Column B. A similar example for 
column B is shown in Fig. 4. In this case zr = 0.1 and 
L/F = 2.329 are fixed, and different steady states are 
obtained by varying D/F. The nominal operating 
points has D/F = 0.0918 corresponding to 
(1 - yD)/xs = 1 which yields T,, = 501 min. The peak 

6OOr (a) 
- TCI (6) 

c ---Shortcut (171 

600 A 
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value of the linearized time constant 7e, is 656 min 
which is obtained for D/F = 0.0952 corresponding to 
(1 - y,)/x, = 2.8. 

4. DISCUSSION AND CONCLUSION 

The dynamics of most distillation columns are 
dominated by one large time constant (r,), which is 
nearly the same, regardless of where a disturbance is 
introduced or where composition is measured. Phys- 
ically, this dominant time constant reflects the change 
in component holdup inside the column. The domi- 
nant time constant can be estimated using the inven- 
tory time concept introduced by Moczek et af.[3]. 
Based on this concept we have derived a simple 
analytic formula for estimating its linearized value for 
binary separations: 

(19) 

(In addition there are contributions to T, from the 
reboiler and condenser holdup; these are usually of 
less importance.) The formula (19) gives reasonable 
agreement with observed values, but its main value is 
the simple analytical form which provides insight into 
the nonlinear behavior of distillation columns. In 
particular, the value of rE, is determined mainly by the 
purity of the least pure product [equation (20)] and 
it will be large when both products have high purity 
(1, is small). 

“Or (bl 

600 

(l-yD)/xB 

Fig. 4. Column B. Linearized time constant q, as a function of D/F (with zr = 0.1 and L/F = 2.329 fixed). 
Each value of D/F corresponds to a particular 1 - yo/xs. @4,/F = M,/F = MB/F = I min). 
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Fig. 5. Column A. Condition number y(G) = ci(G)/g(G) 
and 11 RGA 11, = Z I I, I (dotted line) as a function of fre- 

quency. (MJF = MD/F = MB/F = 1 min). 

Numerical results[3,9] have shown that the inven- 
tory time concept gives best agreement with actual 
simulated responses for columns with both products 
of high purity. This observation may be justified with 
(19): Assumption 2, which is the basis of the inven- 
tory time concept, is most likely to hold for columns 
with T,,, < r,. Using 7M = M,/L and 7, from (19) we 
find that this is satisfied if: 

L/D % 
;x,+ (1 _YD) 

In S 

This inequality holds for columns with large reflux 
(left hand side is large) and columns with both 
products of high purity (right hand side is small). The 
inventory time concept may not yield accurate esti- 
mates if this inequality is not satisfied. For example, 
this may be the case for low-purity separations (e.g. 
column I in Weigand et al.,[9]) and for cases when a 
large forcing function makes one of the products 
unpure (e.g. V/F = 0.20 discussed in Example 1). 

From the derivation of 7, it is clear that this 
dominant time constant only applies if there is a 
change in the exrerna[ material balance. The time 
constant r2 for changes in the internal flows is often 
much smaller. As an example consider Fig. 5 which 
shows the condition number as a function of fre- 
quency for column A. If a single time constant 7, were 

used for all transfer function elements, corresponding 
to the model G(s) = G(O)/1 + 7p, then the condition 
number would be the same at all frequencies. This is 

x,o_3 (a) AZ,=-0.0001 

Time (min) 

clearly not the case as seen from Fig. 5 and the lower 
value at high frequencies is caused by z2 being 
significantly smaller than 7,. This is discussed in 
detail in another paper[l3] where we propose a model 
in terms of t, and 7z which is consistent with the 
behavior in Fig. 5. 

From the derivation of (5) we know that if 
Assumptions 1 and 2 hold then the composition 
response should be first order, even for large devi- 
ations from steady-state. The simulations indicate 
that the first order approximation is indeed valid for 
small perturbations. However, recall Fig. 2 which 
shows that the response in y, to a small decrease in 
zF is first order (Fig. 2a), but that it is approximately 
second-order for a large decrease (Fig. 2b). In the last 
case y, decreases from 0.995 to 0.958, that is, the 
amount of heavy impurity increases from 0.005 to 
0.042. Although the initial response in terms of 
absolute compositions is sluggish (second order), 
there is initially a large relative change in the amount 
of impurity. This suggests that a lower-order re- 
sponse may be obtained if logarithmic compositions 
are used: 

Y,=ln(l -y,) and X,=lnx,. (21) 

Fig. 6 shows the same responses as in Fig. 2, but 
using logarithmic compositions. The time constants 
of the first- and second-order approximations of the 
observed responses are summarized below: 

AZ,= -0.0001: AZ, = -0.05: 

YD z, = 388 7,=7,=400 

yD 7, = 388 7, = 563 

XL? 7, = 341 t,=217 

xt! 7, = 341 7, = 320 

The responses are much less dependent on the mag- 
nitude of the disturbance when logarithmic com- 
positions are used and the observed second-order 
response for y, almost “disappears” (becomes 
first-order) when YD is used. This confirms the results 
by Skogestad and Morari[l3] who suggest using 
logarithmic compositions as a means of reducing the 
effect of nonlinearity. Note that for smaN deviations 
from steady-state the use of logarithmic compositions 
merely corresponds to a resealing of the outputs and 

(b) Azr=-0.05 

-AY, 

0 500 1000 1500 2000 

Time (min) 

Fig. 6. Cohnnn D. Nonlinear open-loop responses to small (a) and large (b) change in zr.. Logarithmic 
compositions Y, = In(l - yo) and X, = In xs are used. Dotted line: approximation wtth first-order 
response k/(s,s + 1). The responses should he compared to the ones in terms of y, and x, in Fig. 2. 
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the time constants in terms of YD and X, are the same 
as for y, and xs. This of course means that the 
linearized time constants derived in this paper [equa- 
tions (8) and (17)] also apply to Y, and A’,. 

However,-as shown above, for large deviations 
from steady-state the responses are different and it 
seems that the response in terms of logarithmic 
compositions, Y, and A’,, is closer to first-order than 
when y, and xg are used. We can not explain this 
from (S), which was derived in terms of absolute 
compositions and our only justification is that the 
linear response at each operating point is approxi- 
mately first-order [from (5)] and that the use of 
logarithmic compositions makes the linear response 
only weakly dependent on operating conditions[ 131. 
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NOMENCLATURE 

B = Bottom product rate (kmol min-‘) 
D = Distillate (top product) rate (kmol min-‘) 
F = Feed rate (kmol min-‘) 
2, = &,(I - yo) + Bx,(l - x,F‘impurity sum” 
L = Reflux flow rate (kmol min-‘) 

MB = Holdup in reboiler (kmol) 
MO = Holdup in condenser (kmol) 
M, = Holdup on tray i (kmol) 

M, = f M, = total holdup of liquid inside column 
i=2 
(kmol) 

N = Total number of theoretical trays (including 
reboiler) 

NF = Feed tray location from bottom (feed enters 
above this tray) 

S $1 -%) ____ = separation factor 
(1 --Y,)% 

V = Boilup from reboiler (kmol min-‘) 
xg = Mol fraction of component in bottom product 
x, = Liquid mol fraction of component on stage i 

N 

2, = 1 x,M,/M, = average liquid mol fraction in- _ 
I=‘ 

side column 
y, = xD = mol fraction of component in distillate 

(top product) 
y, = vapor mol fraction of component on stage i 
zF = mol fraction of component in feed 

Y,lX, 

a =u -Y,)lU -4) 
= relative volatility (binary 

mixture) 

~~ = Dominant time constant for change in holdup 
(min) 

‘c, = Shortcut estimate of T, 
T& = l/i,(A) = time constant corresponding to the 

jth smallest eigenvalue of matrix A in equation 
(10) (min) 

Z~ = M,/L = mixing time for column (min) 

Subscripts 
B = Bottom product 
D = Distillate product 
F = Feed 

I = Inside column 
f = Final steady-state 
0 = Initial steady-state 
i = Tray No. numbered from bottom (i = I for 

reboiler, i = 2 for first tray, i = N for top tray, 
i = N + 1 for condenser) 
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APPENDIX 

Formula for P, for Binary Mixtures 

The expression (12) for f, is derived by assuming: 

(i) all trays have the same holdup (Assumption 3), 
(ii) constant relative volatility a, 

(iii) the shape of the composition profile is the same as that 
derived from Fenske’s exact equation for total reflux: 

Y,ll -Y, _ a, 

x,/l - xs ’ 
(iv) this composition profile may be approximated by 

straight lines: 

x,<x,<w: a%O(i<N,) 
w<x,<l-w:zzo.5 
I-w<x,Cy,:~zI (iaN,_,) 

(NW and N, _ u are defined by the above equations, w 
is a fixed number). 
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The average composition in the column from (iii): 

1 
x,- 

s 

Nmin 

Ntnin-1 t-1 
x,di. 

Here N,,,i, is the number of trays needed with total reflux. 
Using (iv): 

%++o.s(N,_,-NW)+ l.O(N,,- N,_,)]. (Al) 

Here N,,,rP NW and N, _-w are found using (iii): 

w I-x, 
h- 

NtiD=$ NW= 
I-w xg 

In a 
+ 1, 

I-wl-x, 
In __- 

w 
N xi3 

1--w= In a 
+ 1. 

This gives: 
l-w 

In - 

0.5(N,_,-NW)=+_, 

In Y’ In lmw I ~- -- 

(N,,,-N,_,)= I-Y’ lna BJ 

Note that w drops out when this is substituted into (Al) and 
we get: 

lnL- In a lny, 
ln 1 -xE 

‘I = 
l--Y, l-Y, xs ! -1 -I 
In S - In a 

zp-= 1+- . 
In S 

InA 
1 -YLI 


