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Effect of Disturbance Directions on Closed-Loop 
Performance 

Sigurd Skogestad’ and Manfred Morari* 
Chemical Engineering, 206-41, California Institute of Technology, Pasadena, California 91125 

The effectiveness of disturbance suppression in a multivariable control system can depend strongly 
on the direction of the disturbance. The “disturbance condition number” is introduced to quantify 
the effect of disturbance direction on closed-loop performance. As an example a two-point com- 
position control system for a distillation column is analyzed for various disturbance and set-point 
changes. 

I. Introduction 
Disturbance rejection is often the main objective of 

process control. For multivariable systems, usually each 
disturbance affects all the outputs. As an example, con- 
sider a distillation column. A feed composition disturbance 
corresponding to an increased amount of light component 
in the feed leads to an increase of both product compo- 
sitions YD and xB. (Here YD and XB correspond to the mole 
fraction of light component in the top and bottom prod- 
ucts.) In this paper we define as “disturbance direction” 
the direction of the system output vector resulting from 
a specific disturbance. As we will show, some disturbance 
directions may be easily counteracted by the control sys- 
tem, while others may not. This has also been pointed out 
by Shimizu and Matsubara (1985) and Stanley et al. (1985). 
These papers are discussed in some detail later. The aim 
of this paper is to develop simple measures which may be 
used to indicate how the disturbances are “aligned” with 
the plant and thus how well they can be rejected. 

Consider the linear control system in Figure 1. The 
process model is 

Y ( s )  = G(s)m(s) -k Gdb)z(s) 
= G(s)m(s)  + d(s) (1) 

where y is the output vector, m is the manipulated input 
vector, and d represents the e f f ec t  of the disturbances z 
on the outputs. The square transfer matrix G(s) is the 
process model, and Gd(s) is the disturbance model ex- 
pressing the relationship between the physical disturbances 
z, and their effect on the output. For a distillation column, 
the components z = (zl, ..., z,, ..., z , ) ~  may correspond to 
disturbances in feed rate, feed composition, boilup rate, 
etc. The column vector gd, of Gd represent the disturbance 
model for each disturbance 2,. The effect of a particular 
disturbance (2,) on the process output is d,, 

dl = gdZzi  (2) 

The direction of the vector d, will be referred to as the 
direction of disturbance i. The overall effect of all dis- 
turbances (2,) on the output is d ,  

(3) 

In most cases, we will consider the effect of one particular 
disturbance, z,. To simplify notation, we will usually drop 
the subscript i, and d = gdz will then denote the effect of 
this single disturbances z, = z on the outputs. We will also 
be referring to d as a “disturbance”, although in general 
it represents the effect of the physical disturbance. 

d = Ed,  = c g d , Z ,  = GdZ 
I 1 
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We will consider two different effects of disturbance 
directions. One is in terms of the magnitude of the ma- 
nipulated variables m needed to cancel the influence of 
the disturbance on the process output completely at steady 
state. It is independent of the controller C. This may be 
used to identify problems with constraints at steady state. 
However, the issue of constraints at steady state is not 
really a control problem, but rather a plant design prob- 
lem. Any well-designed plant should be able to reject 
disturbances at  steady state. The second and most im- 
portant effect of disturbance directions is on closed-loop 
performance. Here we mean by performance the behavior 
of the controlled outputs y in the presence of disturbances. 

11. Singular Value Decomposition 
Throughout this paper we will make use of the singular 

value decomposition (SVD) of a matrix (Klema and Laub, 
1980). Any complex n X n matrix A can be written in the 
form 

A = UZVH (4) 
where U and V are unitary matrices (UH = U-l) and Z is 
a diagonal matrix with real nonnegative entries 

Z = diag {u,] (5) 

The superscript H denotes complex conjugate transpose. 
The set of are the singular values of A, and we have 

u1 I 6 2  1 ... L IT,, L 0 

The number of nonzero singular values is equal to the rank 
of matrix A. If matrix A is nonsingular, all singular values 
are greater than zero, and this will be assumed in the 
following. The maximum singular value u1 = IT,, and the 
minimum singular value u,, = umin are of particular interest 
because of the properties 

( 6 4  
IIAvl12 

max- = umax(A) 
VfO llvllz 

and 

IlAvllz 
“#O llvllz 

min - = ami,(A) 

Here 11.112 denotes the Euclidean vector norm. 

IIx112 = (cxi2)”2 
1 

Consequently, u- corresponds to the largest amplification 
by matrix A and umh to its smallest amplification. Matrix 
U consists of the left singular vectors {uj], llujl12 = 1, and 
matrix V of the right singular vectors (v,), llvjllz = 1. For 
each right singular vector v,, we have 

Avj = u,(A)u~ (7) 
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Figure 1. Block diagram of linear control system. The physical 
disturbances z have the effect d = G ~ z  on the outputs. 

and in particular for the singular vectors associated with 
the maximum and minimum singular value 

Avmax = umax(A) umax ( 8 4  
Avmin = umin(A)Umin (8b) 

v,(A) therefore corresponds to the direction of the input 
which undergoes the largest amplification, and vdn(A) to 
the direction with the smallest amplification. Furthermore, 

A-1 = VZ-1UH (9) 
which is the SVD of A-l, but with the order of the singular 
values reversed. Let 1 = n - j + 1. It  then follows from 
(9) that 

uj(A-’) = l/uL(A) (104 

u;(A-’) = vL(A) (lob) 

v;(A-’) = ul(A) (10c) 

and in particular 

um=(A-’) = 1 / amin(A) ( l l a )  

umax(A-’) = Vmin(A) (1lb) 

umin(A-l) = vmax(A) (1lc) 

111. Effect of Disturbance Direction on 
Manipulated Variables 

Constraints. Assume the disturbance model and the 
process model have been scaled such that a t  steady state 
-1 5 z, 5 1 corresponds to the expected range of each 
disturbance and -1 5 mj 5 1 corresponds to the acceptable 
range for each manipulated variable. For process control, 
m, = -1 may correspond to a closed valve and m, = 1 to 
a fully open valve. The steady-state process model is 

y = Gm GdZ (12) 
For complete disturbance rejection Cy = 0), we require 

m = -G-lGdz (13) 
Let llxllm denote the largest component of the vector x. 
To avoid problems with constraints, we have to require 

1Jmll, 5 1 for all llzll, 5 1 

Mathematically this is equivalent to requiring 

IIG-lGdIIIOD 5 1 (14) 
llAllim is the induced m-norm of the matrix A which is equal 
to its largest row sum: 

llAllLm = max (Ela l j l )  (15) 

Whether (14) is violated and constraints cause problems 
depends both on the process model G and the disturbance 
model Gd. Even if ~ ~ G - l ~ ~ , m  is “large”, ~ ~ G - l G d ~ ~ , ,  can be 
“small” if Gd is “aligned” with G-’ in a certain manner. We 
will discuss this in more detail later. 

I t  should be stressed that the issue of constraints (or 
more generally the magnitude of the manipulated inputs) 
at  steady state is mainly a plant design problem rather 
than a control problem, and one should use such argu- 

1 1  

ments for discriminating between various control systems 
only with great care. One example where such arguments 
are highly misleading is for choosing control configurations 
for distillation columns: The manipulated variables for 
a distillation column are, irrespective of the control con- 
figuration, the distillate product (D), the bottom product 
(B), the reflux (L),  the overhead vapor (VT), and the boilup 
(V). To reject disturbances at  steady state, the same 
changes in these flows are needed irrespective of the 
chosen control configuration. For example, a 10% increase 
in the feed rate is rejected by a 10% increase in all the 
flows. I t  does not matter whether we use the LV config- 
uration ( L  and V used for composition control), DV con- 
figuration, or any other configuration; the steady state 
changes in the flows for perfect disturbance rejection are 
the same and cannot be used to choose the best configu- 
ration. Nevertheless, this is exactly what is done by 
Shimizu and Matsubara (1985). For example, they claim 
that at steady state the LV configuration can handle larger 
disturbances in the feed rate than the DV configuration. 
Obviously, this is not correct-there is no difference 
whatsoever. (The reason for their misinterpretation is that 
they only look at  two flows at  a time (for example, L and 
V for the LV configuration) and do not take into account 
that the other flows also have to change). This does not 
mean that all configurations handle disturbances equally 
well, but this issue should be addressed in the framework 
of control performance as discussed below. 

Disturbance Condition Number. Even when con- 
straints are not causing any problems, it is of interest to 
investigate the magnitude of the manipulated variable 
necessary to compensate for the effect of a disturbance. 
In this context it is more reasonable to use the Euclidean 
(2-norm) norm as a measure of magnitude because it “sums 
up” the deviations of all manipulated variables rather than 
accounting for the maximum deviation only (like the m -  
norm). Consider a particular disturbance d = gdZ.  For 
complete disturbance rejection of this disturbance 

m = -G-ld (16) 

Ilmllz/ll4lz = llG-’412/11~11z (17) 
depends only on the direction of the disturbance d but not 
on its magnitude. It measures the magnitude of m needed 
to reject a disturbance d of unit magnitude which enters 
in a particular direction expressed by d/lldl12. 

The “best” disturbance direction, requiring the least 
action by the manipulated variables, is that of the left 
singular vector um,(G) associated with the largest singular 
value of G. 

d = vmin(G-l) = umax(G) 

In this case we find that by use of ( l l b )  

The quantity 

llG-1912/lldll~ = llG-’vmin(G-1)l12 = gmin(G-’) = l/Cma(G) 
(18) 

By normalizing (17) with this “best” disturbance, we obtain 
the following measure which we call the disturbance con- 
dition number of the  p lant  G 

or equivalently 

It measures the magnitude of the manipulated variables 
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disturbance if G is diagonal. 

have several disturbances z as 
We can also define a RDG matrix for the case when we 

RDG = G-’Gd/ (Gdiag)-’Gd (25) 
where the division in this case denotes element by element 
division. Note the resemblance with the Relative Gain 
Array (RGA) which may be defined as the matrix 

RGA = G X (G-l)T (26) 
where X denotes element by element (Schur) multiplica- 
tion. The RGA is also scaling invariant. 

Stanley et al. (1985) claim that the RDG can be used 
to investigate the effect of decoupling. However, (21) and 
(24) clearly show that the RDG is independent of the 
controller which may or may not include decoupling. The 
meaning of (24) when G is replaced by GH, where H de- 
notes a decoupler, is not clear from this definition. The 
variables ml will then be some internal variable in the 
controller with no direct physical significance. 

Below we will derive an alternative physical interpre- 
tation for 01 in terms of closed-loop performance which 
retains it significance when G is replaced by GH in (24). 

IV. Effect of Disturbance Direction on 
Closed-Loop Performance 

In section I11 we derived measures of how the magnitude 
of the manipulated variables depends on the disturbance 
direction. In this section we will rederive these measures 
in terms of closed-loop performance. This will give us a 
more powerful interpretation of these measures and will 
allow us to define dynamic measures and to include 
“decouplers”. 

Disturbance Condition Number. One objective of the 
control system (Figure 1) is to minimize the effect of the 
disturbances on the outputs y .  Consider a particular 
disturbance d(s) = gd(s)z(s). The closed-loop relationship 
between this disturbance and the outputs is 

y ( s )  = (I + GC(s))-’d(s) = S(s)d(s) (27)  

S(s) = (I + G(s)C(s))-’ (28) 
Let lly ( jw)1I2 denote the Euclidean norm of y evaluated 
at each frequency. The quantity 

4 ~ )  = Il~~(j~) l l~/ l l~(j~)1I2 (29) 
depends only on the disturbance direction but not on its 
magnitude. a(@) measures the magnitude of the output 
vector y G w )  resulting from a sinusoidal disturbance d (  j w )  
of unit magnitude and frequency w. 

The “best” disturbance direction causing the smallest 
output deviation is that of the right singular vector vmh(S) 
associated with the smallest singular value ami,@) of S. 
By normalizing a ( w )  with this best disturbance, we obtain 
the disturbance condition number of S-’ 

where the sensitivity operator is 

needed to reject a disturbance in the direction d relative 
to rejecting a disturbance with the same magnitude, but 
in the “best” direction. 

The “worst” disturbance direction is 
d = vmaX(G-’) = u,i,(G) 

and in this case we get 

Td(G)mm = um=(G-’)um=(G) = T(G) (20) 
where y(G) is the condition number of the plant. It follows 
that 

1 5 Td(G) 5 T(G) 
and Td(G) may be viewed as a generalization of the con- 
dition number r(G) of the plant, which also takes into 
account the direction of the disturbances. The disturbance 
condition number Td(G) is clearly scaling dependent since 
r(G) is scaling dependent. We know that ill-conditioned 
plants (r(G) large) indicate control problems (Morari and 
Doyle, 1986; Skogestad and Morari, 1987a). A large value 
of r(G) indicates a large degree of directionality in the 
plant G, which may have to be compensated for by the 
controller in order to get good response. We used “may” 
in the last sentence because this also depends on the 
disturbance direction: If Td(G) is small for all disturbances, 
then it really does not matter if r(G) is large. 

In the next section we will look at closed-loop perform- 
ance and show explicitly the physical significance of yd(G) 
in this context. However, let us first look at  another 
measure which has been suggested for measuring dis- 
turbance directionality. 

Relative Disturbance Gain. We will show that the 
Relative Disturbance Gain (RDG) introduced by Stanley 
et al. (1985) is similar to the disturbance measure Td(G) 
defined above, but with a different normalization. One 
advantage of the RDG is that it is scaling independent, 
while Yd(G) is scaling dependent. On the other hand, the 
physical significance of the RDG is less clear than that of 
Td(G). 

For a particular disturbance z ,  the RDG, P l ,  is defined 
for each manipulated variable, ml, as (Stanley et al., 1985) 

(dml/dz), is the change in manipulated variable ml needed 
for perfect disturbance rejection. (aml/az),,,,,+, is the 
change in manipulated variable ml needed for perfect 
disturbance rejection for the corresponding output y1, while 
keeping all other manipulated variables constant. To find 
the relationship between p1 and Td(G), the following 
identities (Grosdidier, 1985) are used 

which follow trivially from the linear relationship (Figure 
1) d y  = g d  dz + G dm. Here Gdiag denotes the matrix 
consisting of the diagonal elements in G. Using d = g d Z ,  
the definition of P1 (eq 21) may be rewritten as 

(24) 
(G-’d)1 

P1 = 
((Gdiag)-’a) 1 

Equation 24 is similar to the definition of Td(G) in (19a), 
but with the diagonal plant as the normalization factor 
instead of the “best” disturbance. Note that (31 = 1 for any 

(S-’ is used in the argument of Td for consistency with the 
previously defined Td(G) in (19)). Again 

1 5 yd(S-l) 5 T(s-’) = T(S) (31) 
At low frequencies where the controller gain is high, we 

have 
S( j w )  = (GC(jw))-’ (32) 

In particular, this expression is exact at steady state (o = 
0) if we have integral action. On the basis of this ap- 
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proximation, we derive the disturbance condition number 
of GC 

As stated above, this measure has physical significance only 
when amin(GC) >> 1. To avoid problems with evaluating 
the measure at o = 0, write 

C(s) = k(s)H(s) (34) 
where k(s)  is a scalar transfer function which includes any 
integral action. H(s) may be viewed as a “decoupler”. We 
have 

To evaluate how the disturbance direction is aligned with 
the plant G itself, choose H = I (i.e., the controller is k(s)I) 
and rederive the disturbance condition number of G 

(36) 

Yd(G) can be interpreted in terms of closed-loop perform- 
ance as follows: If a scalar controller C = k(s)I is chosen 
(which keeps the directionality of the plant unchanged), 
then Td(G) measures the magnitude of the output y for 
a particular disturbance d, compared to the magnitude of 
the output if the disturbance were in the “best” direction 
(corresponding to the large plant gain). If Yd(G) = y(G), 
the disturbance has all its components in the “bad” di- 
rection, corresponding to low plant gain and low band- 
width. If Td(G) = 1, the disturbance has all its components 
in the “good” direction, corresponding to high plant gain 
and high bandwidth. 

Though a large value of Yd(G) does not necessarily imply 
bad performance, it usually does: In principle we could 
choose an inverse-based compensator C which makes 
yd(GC) = 1 for all disturbances. However, this controller 
often leads to serious robustness problems. For example, 
it is shown by Skogestad and Morari (1987~) that one 
should never use an inverse-based compensator for plants 
with large elments in the Relative Gain Array (RGA) be- 
cause of the presence of uncertainty on the manipulated 
inputs. For a detailed analysis, the reader is referred to 
Morari and Doyle (1986) and Skogestad and Morari 
(1987a,c). 

Decomposition of d along Singular Vectors. The 
objective here is to gain insight into the type of dynamic 
response which is to be expected when disturbances along 
a particular direction affect a system with a high degree 
of directionality (r(S) is “large”). The right singular 
vectors v,(S) of S form an orthonormal basis. The dis- 
turbance vector d can be represented in terms of this basis 

n 

d = (v , (S)~*~)V,(S)  (37) 

where denotes the usual scalar vector product. Then the 
output y is described by 

y(  j w )  = Sd( j w )  (38a) 

Y G J )  = C S v , ( S ) ( v , ( S ) T . d ) ( j w )  (38b) 
n 

/ = I  

n 
~(.b) = C ~ , ( S ) U , ( S ) ( V , ( S ) ~ . ~ ) ( ~ ~ )  ( 3 8 ~ )  

Y ( j W )  = Ca,(S)&( jw) (38d) 

J = 1  

n 

J = 1  

where we have defined the new “disturbance components“ 
as 

ai = ( V j ( S ) ~ . d ) U j ( S )  (39) 

Equation 38d shows that the response to a particular 
disturbance can be viewed as the sum of responses to the 
disturbances a’ passing through the scalar transfer function 
aj(S). The magnitude of B depends on the alignment of 
the disturbance d with the singular vector vj(S). The 
characteristics (speed) of the response to B depend on 
aj (S)*  

For the controller 

U s )  = k(s)H(s) (40) 

with integral action in k(s ) ,  the approximation 
, 

(41) 

is valid for small w. If 1 = n - j + 1 is defined and (10) 
is used, (38d) becomes 

1 
S ( j w )  e -(GH)-’(jw) k 

where 

(ui(GWT*d)v~(GH) (43) Er‘ = dn-lfl = 

The magnitude of ;i’ is given by the component of d in the 
direction of the singular vector ul(GH) and d’ affects the 
output along the direction of the singular vector vI(GH). 
If the loop transfer matrix GH has a high gain in this 
direction (i.e., uI(GH) is large), then the control will be 
quick and good. If the gain is low, the response will be slow 
and poor. If GH is ill-conditioned (r(GH) large), the 
widely different response characteristics for different 
disturbance components will result in unusual overall 
system responses. These issues will become clearer from 
the example at the end of this paper. 

Performance Interpretation of the RDG. The pro- 
cess response to a particular disturbance d = gdz is given 
by 

y(s) = (I + GC(s))-ld(s) (44) 

C(s) = H(s)K(s) (45) 

where K(s) is‘ diagonal and includes integral action in all 
channels. Since at low frequencies a,,(GC)(jw) >> 1, (44) 
can be approximated by 

y(  j o )  (GHK)-’d( j w )  (46) 

Let controller C be given by 

and in particular for output yl 

(47) 

Normalize yl(jo) with respect to the response that would 
occur if the off-diagonal elements in the system GH were 
neglected: 

Comparing this with the definition of the RDG in eq 24, 
we see that eq 48 gives a performance interpretation to the 
RDG and extends it to frequencies other than zero. More 
importantly, this definition provides a justification for 
using RDG to evaluate the effect of decouplers H. 
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Table I. Steady-State Data for Distillation Column 
Given: Binary Separation, Liquid Feed, Constant Molar Flows 

relative volatility a = 1.5 
no. of theoretical trays N = 40 
feed tray location (1 = reboiler) NF = 2 1  
feed composition XF = 0.5 
product compositions y D  = 0.99, x g  = 0.01 
external flow rates F = 1, B = 0.5, D = 0.5 

Computed 
reflux ratio L I D  = 5.41 

Gains Using L and V as Inputs (Linearized Tray-by-Tray Model) 

[z] = [1.082 1.0961 [-A”] 

The normalization using (GH)diag makes the RDG 
scaling independent, which might be viewed as an ad- 
vantage over Td. (In particular, the RDG is the same for 
any diagonal controller K.) However, contrary to Td,  a 
physical interpretation becomes difficult or impossible. If 
a disturbance does not affect yL at all, one finds p1 = a. 
For example, for a full 2 X 2 system with 

0.878 0.864 AL 

dr = [O 11 

we find (Stanley et al., 1985) 

where X is the 1,l element of the RGA of GH. (Also note 
that if GH were diagonal, then p1 would be undefined for 
this specific d.) Consequently, PI may range in magnitude 
from -a to m ,  and contrary to -yd(G) the magnitude of pl 
by itself may not be very informative. 

V. Example: L V Distillation Column 
Consider the distillation column in Table I with L and 

V as manipulated variables and the product compositions 
yD and xB as controlled outputs. The steady-state gain 
matrix is (Skogestad and Morari, 1987b) 

= e.878 0:864] 
1.082 1096 (49) 

We assume there will be no problems with constraints. We 
want to study how well the system rejects various dis- 
turbances using a diagonal controller C ( s )  = &)I[. Since 
we are only concerned about the outputs (yD and Q), the 
scaling does not matter provided the outputs are scaled 
such that an output of magnitude one is equally “bad” for 
both yD and xB. We have 

c,,,(G) = 1.972, a,i,,(G) = 0.0139, 
y(G) = 141.7, X(G) = 35.1 

Consider disturbances z of unit magnitude in feed com- 
position, X F ,  feed flow rate, F,  feed liquid fraction, qF, and 
boilrate, -Vd. The linearized steady-state disturbance 
models are 

Ind. 

3 
18 

2 
10 

1 
18 

1. 

F R E O E N C Y  (RQDIANS/HINUTE) 

Figure 2. Disturbance condition number of S-’ for disturbances in 
feed rate F ,  feed composition xF, and set-point change in yD. C(s) 
= O.l/sI. 

Also consider set-point changes in YD and X B  of magnitude 
one. These are mathematically equivalent to disturbances 
with 

The steady-state values of the RDG, &(G), and the dis- 
turbance condition number, -yd(G), are given for these 
disturbances in Table 11. The disturbance condition 
number of S-l, using the controller described below, is 
shown as a function of frequency in Figure 2. From these 
data, we see that disturbances in xF, q F ,  and V are very 
well “aligned” with the plant, and there is little need for 
using a decoupler to change the directions of G. The feed 
flow disturbance is clearly the “worst” disturbance, but 
even it has its largest effect in the “good” direction. 

A decoupler is clearly desirable if we want to follow 
set-point changes which have a large component in the bad 
direction corresponding to low plant gains. However, a 
decoupler is not recommended for this distillation column 
because of severe robustness problems caused by uncer- 
tainty (Skogestad and Morari, 1987~). Therefore, it  may 
be difficult to obtain acceptable set-point tracking for this 
L V configuration. Other configurations which are less 
sensitive to input uncertainty may be better (Skogestad 
and Morari, 1987b). If set-point changes are of little or 
no interest, the LV configuration using a diagonal con- 
troller may be a good choice. The response to a feed rate 
disturbance is then expected to be somewhat sluggish 
because of the high value of -yd(G). 

Time Responses. We will now confirm the predictions 
based on the data in Table 11 by studying some time re- 
sponses. Assume the plant G(s) has no dynamics; i.e., G(s) 
is as given in (49) a t  all frequencies. This is obviously 
unrealistic, but the dominating dynamics are often similar 
in all the elements of G(s), and we can make the crude 
assumption that these dynamics are exactly compensated 
for by the dynamics in the controller. This also assumes 
that the magnitude of the disturbances is small, such that 
a linear approximation with constant time constants for 

Table 11. Disturbance Measures for Distillation Example 
disturbance set-point change 
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Figure 3. Step change in set point = (0.881, l.l19)T, yd(G) = 1.48 
(closed-loop response to “disturbance” in x F ) .  

D A S H E D  L I N E  - - >  S E T P O I N T  

S O L I D  L I N E  - - >  O U T P U T  

0.1 k ( s )  = - 
S 

(In practice k(s )  may be a PI controller, k ( s )  = (1 + Ts) / s ,  
with integral time T equal to the time constant of the 
distillation column.) 

Time domain simulations are shown for ”disturbances” 
in xF and F and for a set-point change in yD in Figures 3-5. 
We have simulated all responses as step set-point changes 
of size d (eq 50) to make comparisons easier. All simula- 
tions are linear, and readers who are concerned about 
nonphysical values for yD and XB may assume, for example, 
that the deviations, AyD and AxB, from the initial steady 
state are in ppm. Dynamics have not been included in the 
disturbances for xF and F,  which is clearly unrealistic, but 
this has been done to make the example simpler. The time 
responses confirm what could be predicted based on the 
disturbance measures in Table I1 with respect to which 
disturbances are the worst. However, the measures in 
Table I1 give no direct way of predicting the shape of the 
responses. The responses are odd-looking, and one might 
almost expect that the system is nonlinear. This is ob- 
viously not the case, and the response may in fact be easily 
explained by decomposing the disturbances along the 
singular vector directions of the closed-loop system, as 
shown before. For each disturbance, the closed-loop fre- 
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Figure 5. 
(closed-loop response to set-point change for yD). 

Table 111. 8’ and d 2  for Distillation Example 

Step change in set point = (1, O ) T ,  yd(G) = 110.7 

disturbance set-point change 

- XF F Yns 

Ll.119J 

E:::] d’  (eq 52a) 

d 2  (eq 52b) 
L0.04 J 

quency response a t  low frequencies can be approximated 

1 
~ ( j w )  = -G-’d(jw) 

h 
By decomposing d along the “directions” of G as in (42) 
and (43), we may write this response as the sum of two 
SISO responses 

by 

where 

8 = (Um,,(G)T*n)vmax(G) (5%) 

8 = ( Umin(G)T*a) Vmin(G) (52b) 
Thus, each disturbance response will consist of two re- 
sponses: onejast in the direction d’ and one slow in the 
direction of d2. The singular value decomposition G = 
UZVH gives 

1 1.972 0 ’ =k :mln] =[O 0.01391 
u = p m a x  mm .] = p.625 0.7811 

v = [.ma, Vmin ] = k.707 0.7081 

0.781 -0.625 

.708 -0.707 

d1 and a2 are given in Table I11 for the cases simulated 
in Figures 3-5. 

The decomposition in (51) and (52), which applies at low 
frequencies, explains the actual responses very well: In- 
itially there is a very fast response in the direction of vmT 
= [0.707, 0.7081. This response has overall open-loop 
transfer function kumax(G) = 0.197/s corresponding to a 
first-order response with time constant 1/0.197 = 5.1 min. 
Added to this is a slow first-order response with time 
constant (kumi,,(G))-l = (0.1 X 0.01391)-’ = 720 min in the 
direction of vminT = 10.708, -0.7O7lT. 

Note ;hat in this example the slow disturbance com- 
ponent d2 is the “error” at  t = 40 min, because the fast 
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guidelines for the preferred controller structure: 

RGA maxd YdG) 
elements large small 

response has almost settled at  this time. As an example, 
consider the disturbance in feed rate F (Figure 4). At t 
= 40 min, the deviation from the desired set point, (0.394, 
0.586)T, is approximately equal to dZ = (-0.04, 0.04)T. 
Similarly, for the set-point change in yD (Figure 5), the 
deviation from desired se_t point, (1, O)T, at  t = 40 min is 
approximately equal to d2  = (0.55, -0.55)T. 

VI. Summary and Conclusions 
The disturbance condition number of matrix A with 

respect to a disturbance with direction d is defined as 

The maximum singular value u,,(A) = [p(AHA)l1l2 ( p  is 
the magnitude of the largest eigenvalue) and is easily 
computed by using the eigenvalue (or preferably singular 
value) routines in IMSL, EISPACK, or LINPACK. For 
nonsquare A (e.g., plants with more inputs than outputs), 
one should replace IIA-'dl12 by {min Ilml12, subject to Am 
= 41; that is, one should replace A-' by A# (the pseudo- 
inverse of A). 

In this paper, we have used the disturbance condition 
number of the plant G (eq 19), of S-l (eq 30), and of GC 
(eq 35). Of these, the first has the advantage of being 
independent of the controller, but it must be interpreted 
with some care for exactly the same reason. The dis- 
turbance condition number is a measure of control per- 
formance and therefore must be scaling dependent: 
Performance is defined as a weighted average of the out- 
puts (for example, the 2-norm corresponds to the mean 
square average), and any measure involving performance 
should depend on how we choose to weigh the outputs. 
(On the other hand, the issue of stability is independent 
of scaling, and any measure used as a tool for evaluating 
a system's stability should be independent of scaling.) 

Uses of Yd(G): 1. Discriminating between Process 
Alternatives and Selecting Controlled and/or Ma- 
nipulated Inputs. Plants with large values of are 
not necessarily bad, but if other factors are equal (e.g., 
RGA values, RHP zeros), we should prefer a design with 
a low value of Td(G). This measure may therefore be used 
as one criterion for selecting controlled/manipulated 
variables and discriminating among alternatives. 

2. Selecting Variable Pairings. The measure Td(G) 
is invariant to permutations of the inputs and outputs and 
is therefore not useful in this respect. 

3. Selecting Controller Structure (E.g., Diagonal 
or Multivariable Inverse-Based Controller). An in- 
verse-based controller is generally of the form C = &)G- 
(s)-l. Examples of such controllers include steady-state 
and dynamic decouplers and IMC controllers. Td(G) is 
useful in this respect, for example when used in conjunc- 
tion with the Relative Gain Array (RGA). This is discussed 
by Skogestad and Morari (19%~) who present the following 

large (diagonal) diagonal 
small inverse-based inverse-based (diagonal) 
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Nomenclature 
C = controller 
d = effect of disturbances z on outputs, =Gdz 
G = plant transfer matrix 
Gd = disturbance transfer matrix, = (gd,, ..., gd,] 
H = decoupler 
m = manipulated variable 
S = sensitivity matrix, eq 28 
U = matrix of left singular vectors 
V = matrix of right singular vectors 
y = plant output 
z = disturbance vectors, = (zl, ..., z J T  

Greek Symbols 
/31 = Relative Disturbance Gain (RDG) for manipulated 

?(A) = condition number of A, = umu(A)/umin(A) 
Yd(A) = disturbance condition number of A, = (llA-1dl12/ 

X(A) = 1,l element of Relative Gain Array of A 
umar = maximum singular value 
umin = minimum singular value 
Z = matrix of singular values, = diag {uj )  
w = frequency 

Literature Cited 
Grosdidier, P., personal communication, Caltech, 1985. 
Morari, M. Chem. Eng. Sci. 1983, 38(11) 1881-1891. 
Morari, M.; Doyle, J. D. "A Unifying Framework for Control System 

Design Under Uncertainty and its Implications for Chemical 
Process Control" In Chemical Process Control; Morari, M., McA- 
voy, T. J., Eds.; CACHE-Elsevier: Amsterdam, 1986, CPC 3. 

Klema, V. C.; Laub, A. J. IEEE Trans. Autom. Control 1980, AC- 

Shimizu, K.; Matsubara, M. Chem. Eng. Commun. 1985,37,67-91. 
Skogestad, S.; Morari, M. "Effect of Model Uncertainty on Dynamic 

Resilience", Chem. Eng. Sci. 1987a, in press. 
Skogestad, S.; Morari, M. "A Systematic Approach to Distillation 

Column Control", Distillation and Absorption 87, Brighton, Sept 
7-9, 1987, also in Ind. Chem. Eng., Symp. Ser. 1987b, 104, A71- 
A86. 

Skogestad, S.; Morari, M. "Implications of Large RGA Elements on 
Control Performance", Ind. Eng. Chem. Res. 1987c, in press. 

Stanley, G.; Marino-Galarraga, M.; McAvoy, T. J. Ind. Eng. Chem. 
Process Des. Dev. 1985, 24(4), 1181-1188. 

Received for review June 13, 1986 
Revised manuscript received May 2,  1987 

Accepted May 24, 1987 

Partial support from the National Science Foundation 

variable ml, eq 24 

Ild I12)%l"A) 

25(2), 164-176. 


