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Abstract-The achievable quality of control for a particular system (its dynamic resilience) is limited by the 
nonminimum phase characteristics of the plant, constraints on the manipulated variables and model 
uncertainty. Model uncertainty requires that the controller be detuned and performance be sacrificed. The 
goal of this paper is to quantify this well-known qualitative statement. The closed-loop system must remain 
stable for all possible plants as defined by the uncertainty description. This robust stability requirement is 
used to derive simple bounds on the nominal performance for some specific cases. These bounds are relatively 
easy to evaluate and should be effective tools for screening alternative designs in terms of their resilience 
characteristics. The RGA and the minimized condition number are accurate measures with respect to element 
uncertainty, provided the relative errors of the transfer matrix elements are independent (uncorrelated) and 
have similar magnitude bounds. 

t. INTRODIJCXION 

Most chemical plants are designed on the basis of 
steady state considerations, and the control system is 
designed separately in a subsequent stage of the 
project. This separation is acceptable provided that 
there exist suitable design-stage methods which can 
assess the ‘*controllability” of the plant. That is, it must 
be determined u priori whether the design of a control 
system offering “reasonable” closed-loop response will 
subsequently be feasible. Until recently, such methods 
were not available. As a result, the expected perform- 
ance often was not achieved in the opei’ating plant. In 
some instances, a minor change at the initial design 
stage could have resulted in a “controllable” plant. 

Previously, the controllability assessment has been 
based on simulations. This approach is complex and 
requires a complete dynamic model of the plant. 
Usually a number of case studies are performed with 
different choices of inputs, disturbances, operating 
conditions, controller structures and controller par- 
ameters. All those choices could bias the controllability 
assessment in an erroneous manner. 

Morari (1983) suggested making the problem of 
controllability assessment independent of the con- 
troller selection problem. This is done by finding a 
plant’s best achievable closed-loop control perform- 
ance. for all possible constant parameter linear con- 
trollers. This target, the upper bound on the achievable 
closed loop performance, is defined as the plant’s 
dynamic resilience. Thus, “dynamic resilience” is an 
expression of the plant’s inherent limitation on the 
closed-loop system’s dynamic response which is not 
biased by specific choices of controllers. 

The limitations imposed by non-minimum phase 
elements and constraints have been discussed in quan- 
titative detail by Morari (1983) and Holt and Morari 
(1985a, b). Fundamentally, perfect control can only be 

achieved if the plant is invertible. Non-minimum phase 
elements [Right Half Plane (RHP) zeros and time 
delays] make it impossible to invert the plant and 
retain (internal) stability of the closed-loop system. 
The effect of constraints on performance is also related 
to a plant’s closeness to singularity. If the minimum 
singular value of a plant P,@(P)) is small then the plant 
is nearly singular. This means that the plant has a very 
small gain for a particular input direction. To achieve 
tight control, the controller would have to provide very 
large input signals in this direction, possibly violating 
input size constraints. 

The objective of this paper is to study the effects of 
model uncertainty on dynamic resilience. Model un- 
certainty requires that the controller be detuned and 
performance be sacrificed. The primary goal is to 
quantify this well-known qualitative statement by 
deriving expressions relating achievable closed-loop 
performance and uncertainty. 

The first (and most important) step is to quantify the 
model uncertainty. This is usually not a trivial prob- 
lem, and very misleading results may arise if an 
inappropriate uncertainty description is used. Another 
goal of this paper is to demonstrate some of these 
pitfalls. Therefore, the design engineer encounters a 
difficult situation: simple achievable performance 
bounds may be obtained with a crude uncertainty 
description but such bounds are often misleading. On 
the other hand, a detailed description of the model 
uncertainty is needed to find more meaningful bounds. 
Such descriptions are normally not available. A first 
step in resolving this dilemma is to identify for specific 
problem classes (e.g. distillation columns) the sources 
of model uncertainty which are likely to cause compli- 
cations. The engineer can then concentrate on these 
when quantifying the uncertainty. Some of the 
examples in this paper will be helpful in this respect. 
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II. UNCERTALNTY, STABILkTY AND PERFORMANCE 

(1) Model uncertainty: causes and definition 
The linear time invariant models used throughout 

this paper describe the actual plant dynamics only 
approximately. 

All real processes are nonlinear. In this paper, linear 
transfer functions are used to represent the plant 
and some “uncertainty” is introduced by linearizing 
the nonlinear plant at various operating points. 
This may lead to a linear model with “uncertain” 
coefficients. 
In other cases the process may be represented quite 
accurately by linear models. However, different 
operating conditions can lead to changes of the 
parameters in the linear model. For example, in- 
creased throughput/flowrates usually result in 
smaller deadtimes and time constants. 
Consequently, in many cases parts of the “un- 
certainty” are known accurately. However, there 
will always exist “true” uncerrainties even though 
the underlying process is essentially linear: The 
model parameters are never known exactly and, at 
high frequencies, even the model order is unknown. 

Definition of model uncertainty. We assume the 
plant P is linear and time invariant, but that its exact 
mathematical description is unknown. However, it is 
known to be in a specified “neighborhood” of the 
“nominal” system, whose mathematical “model” P is 
available. This neighborhood will be denoted the 
“uncertainty set”; it defines the “set of possible plants” 
II. In some cases the uncertainty set II may include a 
finite number of plants. However, in most cases we will 
define fI in terms of norm-bounded perturbations on 
P, and the set II becomes infinite. 

(2) The effect of model uncertainty 
Before discussing how uncertainty limits the achiev- 

able performance (dynamic resilience), a digression on 
why feedback is used for control is of interest. 
Obviously, for stable plants in the absence of un- 
certainty, feedforward control would be sufficient. 
Feedback is used to control a plant despite unmeasured 
disturbances and model uncertainty. One particular 
example is the application of integral action in order to 
achieve perfect steady state control. Without exact 
knowledge of the steady state gain, perfect control may 
be achieved through feedback. 

However, even though high gain feedback can be 
used to reduce the effect of uncertainty, it is intuitively 
obvious that there must be a limit to the extent that 
uncertainty can be tolerated before the system must be 
detuned and performance sacrificed. Thus uncertainty 
may impose limitations on the achievable performance 
(dynamic resilience). Here, quantitative effects of un- 
certainty on closed-loop performance will be found. 
First, additional terminology is required: 

Performance. “Performance” is the quality of the 
closed-loop response. Typically, the error signal (e) 

should be small for the expected disturbances (d) and 
reference signals (r) (Fig. 1). The sensitivity function (S) 
describes the relationship between r, d and e 

e = S(r-d), S = (I+ PC)-‘. (1) 

In order to have *‘good” performance, S has to be 
“small”. In this paper, the magnitude of S is measured 
using the singular value 5. At a given frequency w, 
+g(N)) represents the “worst” amplification 
([lel12/llr-dljl) of (r-d). By “worst” we mean that r 
-d is in the direction giving rise to the largest 
amplitication. A typical performance speciJcation is 

a(S) G l/)w,JVo (2) 

where w&) is a weight which is used to define what 
responses are acceptable. The complementary sensi- 
tivity function H will also be used to measure perform- 
ance. H is defined by 

H=I-S 

or H = PC(Z+ PC)-‘. (3) 

H relates the output y to the reference signal r 

y = Hr. (4) 

It is desirable to have H % I. d(H) < 1 at some 
frequency implies that tight control (H x I) is not 
possible. s and E? are used to denote the nominal 
(P = P) sensitivity and complementary sensitivity 
functions. 

Nominal srability (N.S.). The nominal closed loop 
system (with no uncertainty) is stable. 

Nominal performance (N.P.). The nominal closed 
loop system L? (with no uncertainty) satisfies the 
performance specification (2). 

Robust stability (RX). The closed loop system is 
stable for all plants in the “uncertainty set”. 

Robust performance (R.P.). The closed loop system 
satisfies the performance specification (2) for all plants 
in the “uncertainty set”. 

In the context of ‘how’ uncertainty affects perform- 
ance, there are at least three problems of interest: 

Problem 1. The effect of the robust stability require- 
ment on nominal performance: How does the stability 
requirement for all plants in the uncertainty set limit 
the nominal performance? 

Problem 2. The effect of the robust performance 
specification on nominal performance: If we specify that 

Fig. 1. Feedback system with controller C and plant P. 
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some particular performance requirement has to be 
satisfied for all plants in the uncertainty set, how does 
this bound the nominal performance? 

Problem 3. Achievable robust performance: Design 
the best possible controller; what is the best achievable 
performance by all plants in the uncertainty set? 

In Problem 1 and 2, a “lower bound” on robust 
performance is specified (for Problem 1 this “lower 
bound” is simply the requirement of stability), and we 
are considering effect on the nominal performance. The 
goal is to derive some simple bounds on the nominal 
system which, when satisfied, give the desired robust 
performance. These bounds are intended to assist the 
engineer in designing a controher for the nominal 
system such that the specified performance for all 
plants in the uncertainty set is achieved. 

In Problem 3, there is no in particular concern for 
the performance of the nominal system. In this case, 
the problem is to find the “upper bound” on robust 
performance using any linear controller. This situation 
is addressed by Doyle (1984) and actually involves 
finding the optimal controller; this “p-synthesis” is a 
complicated mathematical and numerical problem 
which will not be addressed here. 

This paper will be concerned mainly with Problem 1. 
Problem 2 may formulate trivially as a special case of 
Problem 1 provided that the appropriate norm (5) is 
used to define performance (Doyle et al., 1982; Doyle, 
1984). Problem 1 is important in itself for the case 
when the plant is “operating” most of the time close to 
its nominal point, but with occasional plant pertur- 
bations. In this case performance may not be import- 
ant when perturbations occur provided that the system 
remains stable. Furthermore, for Problem 1 it will be 
possible to derive reasonably simple bounds on the 
achievable nominal performance. Simplicity is desired 
in order for the engineer to gain insight into ‘why’ a 
particular design is sensitive to uncertainty. 

Two approaches may be taken in order to find 
bounds on nominal performance imposed by robust 
stability (Problem 1): 

A performance related transfer function which is to 
be bounded [for example, d (8) or 6(s)] is selected. 
This requires that the uncertainty be expressed in 
terms of a specific single perturbation (“unstruc- 
tured” uncertainty) as discussed in Section III. The 
bounds derived using unstructured uncertainty are 
generally conservative since the actual uncertainty 
rarely “fits” into a single norm-bounded pertur- 
bation. 
A reasonably “tight” description of the uncertainty 
is chosen. This is done by identifying more precisely 
where the uncertainty occurs in the system, such as 
by considering uncertainty in the model parameters. 
This generally leads to an uncertainty description 
with multiple perturbations (Ai’s). By assuming 
norm bounds [e.g. C(Ai) G l] on these uncertain- 
ties, it is possible to derive non-conseruatiue con- 
ditions for robust stability using the Structured 

Singular Value, cc. This approach is due to Doyle 
and coworkers (1982, 1984) and is considered in 
Section IV. One disadvantage of this procedure is 
that the resulting conditions are not in terms of a 
simple bound on C?(R) or O(g), but involve p(N) 
where N may be a complicated function of 3 and A. 

A number of conditions in this paper are stated as 
both necessary and sufficient for robust stability, but it 
is stressed that necessity is only meaningful if the 
assumed uncertainty is an accurate (“tight”) descrip- 
tion of the true uncertainty. 

111. SINGLE PERTURBATIONS (UNSTRUCIIJRED 
UNCERTAINTY) 

In this section, the uncertainty which occurs at 
different parts of the system will be lumped into one 
single perturbation L. In most cases this will cor- 
respond to “unstructured” uncertainty. (More pre- 
cisely, “unstructured” uncertainty means that several 
sources of uncertainty are described with a single 
perturbation which is a “full” matrix of the same size as 
the plant P). 

Let P E lT be any member of the set ofpossible plants 
JI, and let P E lT denote the nominal model of the plant. 
To describe unstructured uncertainty the fotlowing 
four single perturbations are commonly used: additive 
(L,), multiplicative input (Li), multiplicative output 
(Lo) and inverse multiplicative output (Ls) pertur- 
bations (Fig. 2) 

P=Pi-L,orL,=P--F (5a) 

P=F(Z+L,)or L,=P-‘(P-F) (5h) 

P=(Z+LdPor L,=(P-F)P-’ (5c) 

P=(I-Ls))‘For Ls=(P-&Pm’. (5d) 

Additional examples are given by Doyle et al. (1982). 
The conditions derived for robust stability will be 
different depending on which single perturbation is 
chosen to describe the uncertainty. 

Fig. 2. Four common uncertainty descriptions involving 
single perturbations: input multiplicative uncertainty (L,); 
additive uncertainty (L,); output multiplicative uncertainty 

(Lo); output inverse muItiplicative uncertainty (LS)_ 



1768 S~GURDSKOGESTAD and MANFREDMORARI 

(1) Simple bounds on G(R), cY(AJ and s(3) disturbances affecting the inputs to the plant. 
In each of the cases above the magnitude of the However, since performance is usually measured at the 

perturbation L may be measured in terms of a bound output of the plant it may be of interest to use (10) in 
on ci(L.) order to derive a bound in terms of A. To derive this 

t?(L) G Z(o) VW (6) 
bound the inequality 

where ??(&I) = @-‘BP) ,( r?@+l),_(R)rr(B) = y(P)e(A) 
Z(w) = maxd(L). 

Pen is used; the bound is: 

The bound Z(w) can also be interpreted as a scalar 
weight on a normalized perturbation A(s) R.S. if C?(A) < & & Vo. (12) 

L(s) = Z(s)A(s), a(A) G 1 v w. (7) Here y(p) = d(P)/,(F) is the condition number of the 

The magnitude bound Z(w) will not generally constitute plant. Equation (12) has been used to introduce the 

a tight description of the “real” uncertainty. This condition number as a stability sensitivity measure 

means that the set of plants satisfying (7) will be larger with respect to input uncertainty (Morari, 1983), but 

than the original set II. this is misleading. The condition number enters the 
stability condition (12) mainly as the result of the 

Output multiplicative uncertainty. The sensitivity 
conservative step introduced by going from an input 

function S has to be stable for all P E II. Using the 
[eq. (lo)] to an output uncertainty description [eq. 

identity 
(12)]. For y(P) large, (12) may be arbitrarily conserva- 
tive even though the uncertainty is tightly described in 

S = 3(I+(P--)P-‘A)-’ = S(Z+to??)-’ (8) terms of a norm-bounded input uncertainty such that 

and the Nyquist stability condition, the following 
(10) is both necessary and sufficient. However, even 

robust stability bound is derived. 
though (12) is misleading and the system is stable, 
input uncertainty usually does cause control problems 

Theorem 1. Bound in terms of@(W) (Doyle and Stein, 
when u(P) is large. As shown by Morari and Doyle 

1981; Postfethwaite and Foo, 1985) Assume the nom- 
(1986), robust performance (measured at the output of 

inal system is closed loop stable, that is, assume in 
the plant) may be poor in such cases (even though the 

particular that Z? is stable. Let II be any set of plants 
nominal performance may be excellent). Output un- 

such that P and P have the same number of RHP 
certainty does not lead to the same performance 

(unstable) poles. Then robust stability is guaranteed 
problems, and this indicates why input uncertainty is 
of more concern than output uncertainty for ill- 

if o(A) G l/lo(o) where Z,(w) = rnz;a(L.,) conditioned plants. 

(9) Inverse multiplicative output uncertainty. Using the 

[Condition (9) is necessary and sufficient for robust identity 

stability if it is assumed that all plants satisfying 5 (L.,) s = 3(z-L,S)-‘~P-l (13) 
< lo(w) actually occur (Doyle and Stein, 1981).] 

The robust stability condition (9) can always be 
and the inverse Nyquist stability condition, the follow- 

satisfied for open loop stable systems since fi = 0 (no 
ing theorem may be derived. 

feedback) is always possible. However, good disturb- 
ance rejection and good command following require 

Theorem 2. Bound in terms of c?(s) (Postlethwaite and 

R = Z (i.e. a@) x 1). Condition (9) says that the 
Foo, 1985) Assume the nominal system is closed loop 

system has to be “detuned” (G(a) < 1) at frequencies 
stable, that is, assume in particular that 3 is stable. Let 

where lo(o) > 1. This is reasonable since lo(w) > 1 for 
II be any set of plants such that P and P have the same 

some o implies that the plant can have zeros on both 
number of RHP zeros. Then robust stability is guaran- 
teed if 

sides of the imaginary axis; it is well known that RHP 
zeros limit the achievable performance. 

Znpur multiplicative uncertainty. In this case a 

. 
B(3) < I 

Z,(a) 
where Is(w) = y;;b(L,). (14) 

theorem similar to Theorem 1 is obtained, but with Z? 
For minimum phase systems (no time delays or 

replaced Z?, (Postlethwaite and Foo, 1985): 
RHP zeros), the nominal sensitivity function 3 may be 
arbitrary small (“perfect control”) and (14) can always 

R.S. if L@,) G l/ZAw), Z,(o) = tnt”,“(L,) be satisfied. Therefore, condition (14) seems to imply 

(IO) 
that for minimum phase systems arbitrarily good 

where 
performance (3 small) is possible regardless of how 

A, = C(Z + pc)-‘P = P_‘AP. (11) 
large the uncertainty is. This is claimed by 
Postlethwaite, but is not quite true. The pitfall is that 

fi, is the nominal closed-loop transfer function as any real system has to be strictly proper, and S = Z and 
seen from the input of the plant. It is desirable to have 3 = I as w -+ cc must be required. Consequently, to 
this transfer function close to Z in order to reject 

_ . 
satisfy (14) it is necessary that c(L,) = c( (P - P)P- ‘) 
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< 1 as w + 00 for all possible P. This condition is 
generally violated in practice, because the order of the 
actual plant is higher than that of the model. 

Theorems 1 and 2 prescribe two fundamentally 
different ways of handling uncertainty: To guarantee 
robust stability Theorem 1 prescribes that the system 
be detuned (low gain), while Theorem 2 prescribes that 
the control be tightened (high gain). In practice, it is 
desirable to combine the two approaches: By tighten- 
ing the control at low frequencies better performance 
is obtained. Eventually, at higher frequencies, the 
system has to be detuned to guarantee robust stability. 
In fact, Postlethwaite and Foo (1985) has shown that it 
is possible to combine Theorem 1 and 2 over different 
frequency ranges. However, the bounds are still con- 
servative since there is no “tight” description of the 
uncertainty. A better approach is to derive tighter 
uncertainty descriptions in the first place and then 
derive robust stability bounds (Section IV). 

(2) Input uncertainty for distillation column (example) 
Conditions (9) and (10) indicate that the system has 

to be detuned such that r%(R) < l/f,(o) [or 5(fi,) 
< (l/f@))] in order to guarantee robust stability. 
However, because of the conservativeness introduced 
by using unstructured uncertainty, these conditions 
are generally only sufficient for robust stability; the 
detuning indicated may be much larger than what is 
actually necessary. This is illustrated conveniently 
through an example. 

Consider the distillation column described in Table 
1 where the overhead composition is to be controlled 
at y, = 0.99 and the bottom composition at xs = 0.01 
using the distillate D and boilup c/ as manipulated 
inputs. By linearizing the nonlinear model at steady 
state and by assuming that the dynamics may be 
approximated by a first order response with time 
constant T = 75 min, the following linear model is 

Table 1. Data for distillation column example 

Binary separation, constant molar flows, feed liquid 
Rehtive volatility cc = 1.5 
No. of theoretical trays N=4O 
Feed tray location - N,=21 
Feed rate and composition F = 1 kmol/min, rF = 0.5 
Product compositions yn = 0.99, xn = Osil 
Product rates D = B = 0.5 kmol/min 

Computed from steady state model 
Retlux rate L = 2.71 kmol/min 

(1.39 L,in) 
Linearized steady state gains 
L V-configuration: 

[::I = K z~::~] EC] 

D V-configuration: 

derived (Skogestad and Morari, 1986): 

1 p=------ 
rs+l I 

- 0.878 0.014 
- 1.082 1 -0.014 . 

A simple decentralized control system with two PI 
controllers is chosen 

1+ ts 
C(s) = s 

[ 

-0.l5 0 
0 1 -7.5 . (15) 

This controller gives acceptable nominal performance, 
and can be shown [Section W(2)] to give robust 
stability when there is relative uncertainty of magni- 
tude w,(s) on each manipulated variable: 

5s+l 
WI(S) = 0.2------. 

0.5s + 1 

This implies a relative uncertainty of up to 20% in 
the low frequency range which increases at high 
frequencies, reaching a value of I at w x 1 min - i. This 
increase with frequency allows for a time delay of 
about 1 mm, and may represent the effect of the flow 
dynamics which were neglected when developing the 
model. This relative uncertainty can be written in terms 
of two scalar multiplicative perturbations AD and A y. 

dD = (1 +w,(s)AddD,, (ADI < 1 VW 
(16) 

dV = (1+ w,(s)Av)dLc, iA,1 < 1 VW 

(dD and d V are the actual inputs, while dD, and d V, are 
the desired values of the flow rates as computed by the 
controller). Equation (16) can be approximated by an 
“unstructured” single perturbation L, = w,A, (A, is a 
“full” 2 x 2 matrix) 

dD c 1 = (I + w,(s)A,) dDc 
dV [ 1 dV, ’ 

*(A,) < 1’40 (17) 

with f,(o) = jw,(jw)I. Equation (10) indicates that 
robust stability is guaranteed if a(fi,) < l/l,(w) Vo. 
However, from Fig. 3 it is seen that this condition is 
violated over a wide frequency range, despite the fact 
that the system is known to be robustly stable. The 

,I--. 
10 1 - /' l/lWIJ 

1. --srL~_~--, 

-1 \ 
\ 

*. 

II3 - 
&~\ 

.\. 

10 -2 \ 

1 1 10 -3 -2 18-l I 1 1 
lQ l. 10 

1 
1B 

2 

Fig. 3. Robust stability for the distillation column with 
diagonal input uncertainty is guaranteed since P(H,) 
< l/lw,(Vo. The use of unstructured uncertainty and a(H,) 
is conservative, and would require the system to be detuned to 

guarantee robust stability. 
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reason for the conservativeness of condition (10) in this 
instance is that the use of unstructured uncertainty (17) 
includes plants not included in the “true” uncertainty 
description (16). These problems may be avoided by 
using the structured singular value ~(fi,) as discussed 
in Section IV(2). 

(3) Integral control and robust stability 
Because of the importance of integral control in the 

context of process control we will derive specifically 
conditions under which controllers with integral 
action can be designed in the presence of uncertainty. 
We will keep the uncertainty as general as possible. To 
this end define nA as the set of plants which is 
generated by a single weighted additive norm bounded 
perturbation (Fig. 4) 

a(A,) < 1, V w. (18) 

This is a generalization of (5) and (7) because the 
weights W, and W, are allowed to be matrices. (Note, 
for example, that the multiplicative input uncertainty 
L, = l,A,, may be written in this additive form by 
choosing W, = PI,, WI = I.) 

A necessary and sufficient condition for “perfect 
control” and robust stability will be stated first. Note 
that “perfect control” (R = I, VW) is clearly not 
possible for real systems which must be strictly proper 
(i.e. fi --, 0 as w -+ 03), but the notion of “perfect 
control” is nevertheless useful. 

Theorem 3. Perfect control (UI = n.). Assume P is 
minimum phase and that all plants have the same 
number of unstable poles. Robust stability and “per- 
fect control” (B = I) may be achieved 

iff det(PF’-‘) # 0 Vo, VPE~~. (19) 

This theorem implies that perfect control is possible 
if and only if none of the plants P in the set nA have 
zeros on the jw-axis (i.e. det P # 0). The necessity of 
condition (19) is obvious since perfect control (S = s 
= 0) is never possible for plants with RHP zeros. Re- 
garding sufficiency, it is clear from Theorem 2 that for 
minimum phase plants, perfect control is always poss- 
ible in principle. The search for zeros is restricted to the 
jo-axis as the result of the particular norm bounded 
uncertainty assumed; it implies that zeros cannot 
appear in the RHP without crossing the jo-axis. 
Theorem 3 offers little that is new; it is stated mainly as 
a means to prove Theorem 7 in Section V. The 
following conditions for integral control are more 
interesting. 

Fig. 4. System with weighted additive uncertainty. 
Rearranging this system to fit Fig. 6 gives M = WIC(I 

+?C)_‘W,. 

Theorem 4A. Integral control. Let II be any set of 
plants such that P and P have the same number of 
RHP (unstable) poles. Also, assume that PC and PC 
are strictly proper. Then robust stability and integral 
control (a(O) = I) may be achieved 

only if det (P(O)P(O)- ‘) > 0 V P E l-I. (20) 

Theorem 4A implies that for stable plants, integral 
control is never possible if the sign of the plant, 
expressed in terms of det P(O), changes. This is a direct 
generalization of the result for SISO systems. Note 
that Theorem 4A does not apply to cases where the 
pole may cross the&-axis. As an example, let P = l/(s 
+ a) and P = l/(s - a) (a > 0). These plants may be 
stabilized using a single controller with integral action 
(e.g. C = k(s + a)/s, k > a) despite of the fact that they 
do not satisfy condition (20). 

For the special case when II is of the norm-bounded 
form H, (18), condition (20) is both necessary and 
sufficient: 

Theorem 4B. Integral control (Il = n,J. Assume all 
plants P E l-I A are stable and that PC and PC are strictly 
proper. Then robust stability and integral control may 
be achieved 

iff det(P(O)P(O)-‘) > 0 VPE~,. (21) 

The sufficiency of condition (21) follows mainly 
from the assumed norm-bounded additive pertur- 
bation, and also from the fact that at frequencies o # 0, 
the robust stability condition [similar to (lo)] may 
always be satisfied by detuning the system (provided 
the plant is stable). Note that condition (21) does not 
imply robust stability if II is not on the form n, As an 
example, consider the set n consisting of the two 
plants P = diag { 1, 1) and P = diag { - 1, - l}. Since 
this corresponds to two SISO plants where the gains 
change sign, integral control is not possible. 

IV. MULTIPLE PERTURBATIONS (*‘STRUCTURED” 
UNCERTAINTY) 

In this section, we will describe the uncertainty in a 
“structured” manner by actually trying to identify the 
sources and locations of uncertainty in the system. This 
usually leads to an uncertainty description with mul- 
tiple perturbations (A& These perturbations may 
correspond to uncertainty in the model parameters, 
uncertainty with respect to the manipulated variables 
(input or actuator uncertainty) and the outputs 
(measurement uncertainty), etc. By using such a mech- 
anistic approach, we can norm-bound each pertur- 
bation (e.g. llAill < 1) without introducing too much 
additional conservativeness and get a “tight” descrip- 
tion of the uncertainty set. 

However, we should not necessarily describe the 
uncertainty as rigorously as possible. Rather, we 
should take the engineer’s approach and describe the 
uncertainty as rigorously as necessary. This means 
some of the sources of uncertainty (occurring at dif- 
ferent places of the system) should be lumped into a “un- 
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structured” multiplicative perturbation, for example, if 
this does not add too much conservativeness. 
This leads to a practical uncertainty description: some 
sources of uncertainty are described in a “structured” 
manner (e.g. parametric uncertainty), while the rest 
(usually uncertain high-frequency dynamics) is lumped 
into a single “unstructured” perturbation (see reactor 
example below). 

The main objective in this section is to familiarize 
the reader with the work of Doyle (1982, 1984). The 
results are presented without further motivation; sub- 
sequent examples illustrate how these results may be 
used in practice. 

(1) General theory 
Consider the uncertainty as perturbations on the 

nominal system. Each perturbation Ai is assumed to be 
a stable and norm-bounded transfer matrix 

cY(Ai) < 1 VW. (22) 

Weighting matrices are used to normalize the un- 
certainty such that the bound is one at all frequencies; 
that is, the actual perturbation Li is written 

If Ai represents a real parameter variation we may 
restrict Ai to be real, but in general Ai may be any stable 
rational transfer matrix satisfying (22). The choice of 
the singular value 0 as the norm for bounding Ai is not 
arbitrary, but is needed to obtain the necessity in the 
theorems which follow. 

The perturbations (uncertainties) which may occur 
at different places in the feedback system (e.g. Fig. S), 
can be collected and placed into one large block 
diagonal perturbation matrix 

A=diag{Ar,...,A,} 

for which we have 

(24) 

o(A)< lvo. (25) 

The blocks hi in (24) can have any size and may also be 
repeated. For example, repetition is needed in order to 
handle correlations between the uncertainties in dif- 
ferent elements. The nominal closed-loop system with 
no uncertainty (A = 0) is assumed to be stable. The 
perturbations (uncertainty) give rise to stability prob- 
lems because of the “additional” feedback paths 
created by the uncertainty. This is shown explicitly by 
writing the uncertainty as perturbations on the nom- 
inal system in the form (MA-structure) shown in Fig. 
6. M is the nominal closed-loop system “as seen from” 
the various uncertainties, and is stable since the 
nominal system is assumed stable. More precisely, M is 

Fig. 5. System with weighted multiplicative input and output 
uncertainty. Rearranging this system to fit Fig. 6 gives M as in 

eq. (29). 

A+ E l M- 

Fig. 6. Interconnection structure for studying effect of un- 
certainty on stability. A = diag {A,, . , A,,}. 

the interconnection matrix giving the nominal transfer 
functions from the output of the perturbations Ai to 
their inputs. Constructing M is conceptually 
straightforward, but may be tedious for specific 
problems. 

We want to derive conditions on M in order to 
guarantee robust stability. It may be shown (Doyle et 
al., 1982) that for a nominally (A = 0) stable system, 
robust stability is equivalent to the stability of the MA- 
structure in Fig. 6. This system is stable if and only if 
det (I + AM) does not encircle the origin as s traverses 
the Nyquist D contour for all possible A. Because the 
perturbations are norm bounded [i.e. all A’s satisfying 
(25) are allowed] this is equivalent to 

det(Z+AM)#O VW, VA, c%(A)< 1 

op(AM)< I VW, VA, c(A)< 1. 
(26) 

Condition (26) by itself is not very useful since it is only 
a yes/no condition which must be tested for all possible 
perturbations A. What is desired is a condition on the 
matrix M, preferably on some norm of M. This is 
supplied by the following theorem. 

Theorem 5. Necessary and sujicient condition for 
robust stability (Doyle et al., 1982). Assume the nom- 
inal system (A = 0) is stable. Then the closed loop 
system (Fig. 6) is stable for all A, 8(A) < 1 if and only if 

PA< 1 Vo, (27) 

Theorem 5 may be interpreted as a “generalized small 
gain theorem” applied to (26) which also takes the 
structure of A into account. The function p, called the 
Structured Singular Value (SSV), is defined in order to 
get the tightest possible bound on M such that (26) is 
satisfied. A more precise definition of p and some of its 
properties are given in Appendix 1. It is important to 
note that p(M) depends both on the matrix M and on 
the structure of the perturbations A. ,u(M) is a generali- 
zation of the spectral radius p(M) and the maximum 
singular value C(M) in that p(M) = p(M) when the 
perturbation A is totally structured (A = 61, 16) C l), 
and p(M) = c?(M) when the perturbation is unstruc- 
tured (A is a full matrix). Note that the matrix M is a 
function of the nominal system only, and the condition 
p(M) < 1 limits the possible nominal transfer 
functions. 

At this point, it is not apparent that the uncertainty 
description (22)(25), does indeed provide a useful 
framework for handling uncertainty. Furthermore, it is 
not clear how to find the matrix M. Hopefully this will 
become clearer through the examples below. 
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(2) Input uncertainty for distillation column (example) 
It is now possible to derive a less conservative robust 

stability test for the distillation column example. 
Previously, we assumed that the input uncertainty was 
unstructured, but now A, in (17) may be restricted to be 
a diagonal matrix which results in a tight description of 
the uncertainty. The interconnection matrix M 
= w,(s)E;f, and, from Theorem 5, 

R.S. iff ~(a,) < l/lw,(jo)I = l/I,(o) VW 

where p(R1) is computed with respect to the diagonal 
matrix A, From Fig. 3 we see that this condition is 
satisfied and robust stability is guaranteed with the 
chosen controller (15). 

(3) Simultaneous input and output multiplicative 
uncertainty 

Consider the system in Fig. 5 which has both input 
and output multiplicative uncertainty with respect to 
the model of the plant P. The possible plants are given 
by 

P = (I + L#(Z + LI) 

L, = WzlAIW,,, 6(A1) < 1 V o (28) 

L, = WzoAo W,,, c(A& c 1 V CD. 

The perturbation block A, represents the multiplicat- 
ive input uncertainty. If its source is uncertainty with 
respect to the manipulated variables, then 

A,: diagonal, W,, = diag {wli), W,, = I 

where wli represents the relative uncertainty on each 
manipulated input. 

The block A, represents the multiplicative output 
uncertainty. If its source is uncertainty or neglected 
deadtimes involved in one or more of the measure- 
ments, then 

A,: diagonal, W,, = diag {woi}, W,, = I. 

woi represents the relative uncertainty for each 
measurement. These sources of input and output 
uncertainty are present in any plant. A, and A0 are 
restricted to be diagonal matrices, since there is little 
reason to assume that the actuators or measurements 
influence each other. However, some of the un- 
modelled dynamics in the plant P itself, which has 
cross terms, may be approximated by lumping them 
into A, or Ao, thus making either one of them a “full” 
matrix. 

To examine the constraints on the nominal system 
imposed by the robust stability requirement for this 
uncertainty description, let A = diag (A,, A,) and re- 
arrange the system in Fig. 5 into the form in Fig. 6. The 
interconnection matrix M becomes: 

and robust stability is guaranteed for all A such that 
a(A) < 1 

iff p(M) C 1, V co. 

p is computed with respect to the structure of A which 
in turn depends on the structure assumed for A, and 
Ao. Note that conditions (9) and (10) in Section IV are 
special cases of (29) when the weights are assumed to be 
scalar, A, and A0 are “full” matrices, and either A, = 0 
or A o = 0. However, this only applies to stable A’s; an 
unstable A0 (or A,) may be allowed in (9) [or (IO)], 
while only stable A’s were allowed when deriving (29). 

(4) Simultaneous parametric and unstructured uncer- 
tainty (reactor example) 

Consider a perfectly mixed batch reactor where an 
exothermic reaction is taking place. The reaction 
temperature Tis controlled using the temperature T, of 
the fluid in the cooling jacket (the fluid in the cooling 
jacket may be boiling, and T, may be adjusted by 
changing the pressure). A heat balance for the batch 
reactor gives 

C,p = (- AH,)r - UA(T - T,) 

where 

T: reactor temperature (K) 
‘TC: coolant temperature (K) 

r: reaction rate (function of T) (mol/s) 
AH,: heat of reaction (negative constant) (J/mol) 

C,: total heat capacity of fluid in reactor (J/K) 
WA: overall heat transfer coefficient (J/s K). 

Linearizing the reaction rate 

r= r”+krdT 

results in a linear transfer function from T, to T 

dT(s) = sdZ(s) (30) 

where 

a= UA- (-AH,@. 
CP . 

(31) 

Two sources of uncertainty will he considered for the 
linear model (30): 

(1) The effect of nonlinearity expressed as uncertainty 
in the pole location a. 

(2) Neglected high-frequency dynamics. 

M= 
- w,Jccp(z + CP) - 1 w,, - W&(1 + PC) - 1 w*. 

w&r + O- ’ w,, - W,~C(I + Pc)-‘w20 1 
= rwl, w,,l[ -;;“p I;-‘“][“’ w2d (29) 
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Pole uncertainry (4). Most of the terms in (31) are 
nearly constant, except for k, = dr/aT which is a 
strong function of temperature (operating point). 
From (31) we see that the reactor may be open loop 
stable (a > 0) at low temperatures where k, is small, 
and unstableat high temperatures where the reaction is 
more temperature sensitive. To describe the effect 
temperature has on LI, let 

la-n’1 <i--d 

where a’: nominal pole location, 
r,: relative “uncertainty” in a (real constant). 

If r, > 1, the plant may change between stability and 
unstability. Equivalently, the possible a’s may be 
written in terms of a norm-bounded perturbation A, 

a = a(1 + r-A,), 141 < 1, A. real (32) 

and this may be written as an inverse multiplicative 
perturbation (I + w,A,)- ’ on the plant 

1 1 1 -=- 
s+a s+ Z 1 + w,(s)As’ 

w,(s) = --L- 
1 +s/a’ (33) 

Neglected dynamics [modelled as unstructured 
output uncertainty (A,,)]. A plant always has some 
unknown uncertainty, mainly at higher frequencies, 
which cannot be modelled in a “structured” manner 
(using parametric uncertainty, etc.). These sources are 
most conveniently modelled as multiplicative un- 
certainty; in this case we choose to use output multipli- 
cative uncertainty (I+ woAo). Physically, this un- 
certainty may include neglected (and unknown) dy- 
namics for changing the cooling temperature T, (if T, is 
manipulated indirectly with pressure), neglected ac- 
tuator dynamics (the valve used to control pressure) 
and neglected dynamics introduced by the heat ca- 
pacity of the walls. A conservative choice for wO(s) is 
found by approximating the neglected dynamics as an 
effective time delay, and choosing 1 w o ( jo)l = 1 at the 
frequency where the phase lag represented by the 
neglected dynamics reaches 60” (I1 - ej*l = 1 for @ 
= 60”). 

A block diagram representation of the uncertainty is 
depicted in Fig. 7. Note that both block’s (4 and A& 
are in general needed: We cannot lump the pole 
uncertainty (4) into the output uncertainty (Ad if the 
pole is allowed to cross the jw-axis. This would result in 
1 wg( jo) 1 + co at w = 0. Similarly, we cannot lump the 
output uncertainty into the pole uncertainty. The 

Fig. 7. Block diagram representation of uncertainty for 
reactor example. A0 represents the neglected (and uncertain) 
high-frequency dynamics. A= represents the pole uncertainty 
(changes between stability and instability are possible if 
Iw.(@)l Z= 1 at some frequency). Rearranging this system to 

fit Fig. 6 gives M as in eq. (34). 

reason is that the inverse multiplicative uncertainty 
description (A,) cannot be used to model neglected or 
uncertain RHP zeros (this would require an unstable 
perturbation 4). It is therefore not suited for handling 
neglected high frequency dynamics which most cer- 
tainly include RHP zeros (one simple example is the 
“dead band” on any valve). 

Combining the two scalar perturbations into one 
block perturbation A = diag {As, A,} and rearranging 
Fig. 7 to match Fig. 6 gives the following intercon- 
nection matrix: 

M= KS -w3 
KS 1 -woR ’ 

From Theorem 5, robust stability is guaranteed 

iff p(M)< 1 Vo 

or iff Iw,SI+lw#l< JVo. (35) 

Because of the identity A+ 3 = 1, this bound is 
impossible to satisfy if I w,) and 1 wol are both “large” 
(that is, close to one or larger) over the same frequency 
range. For r, > 1 the pole may cross the jw-axis, and 
Iw,l> 1 for 0 < w* = G./m and Iw,I < 1 for o 
> o*. In that situation, robust stability is guaranteed 
only if the “unstructured” relative uncertainty given in 
terms of ] w,,( jo) ( reaches one at a frequency higher 
than o*. 

If pole uncertainty were the only source of un- 
certainty (w o = 0), the robust stability bound would be 
131 c l/l w,l. Since the plant is minimum phase, this 
bound could always be satisfied by increasing the gain 
and making s small, regardless of the size of r,. 

In summary, the uncertainty regarding the pole 
location is handled by “tightening” the control at low 
frequencies. Indeed, 3 small (“tight” control) is needed 
in order to stabilize an unstabIe plant. However, to 
realize robust stability in face of the uncertain high- 
frequency dynamics, it is necessary to detune the 
system and make fi small (3 e I) at frequencies where 
W&D) is larger than one. The implication of this result 
for process design is that we cannot stabilize an 
unstable plant if there are RHP zeros or model 
uncertainty in the same frequency range as the location 
of the unstable pole. 

(5) independent uncertainty in the transfer matrix 
elements 

In many cases the uncertainty is most easily de- 
scribed in terms of uncertainties on the individual 
transfer matrix elements. This kind of uncertainty 
description may arise from an experimental identifi- 
cation of the system. No claim is made that this 
uncertainty description is a good representation of 
how the uncertainty actually occurs, but it is included 
as a possibly useful description in some cases. 

The simplest form of element uncertainty arises 
from the assumption that each element pij in the plant 
P is independent, but confined to a disk with radius 
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Fig. 8. Additive element uncertainty: lpii - Fiji c C+(W). The 
disc represents the set of possible pij( juJ) at a given frequency. 

a&~) around dij in the Nyquist plane (Fig. 8), i.e. 

I Ptj - dij I ( aijCw) VW- (36) 

This corresponds to treating each element as an 
independent SISO plant with additive uncertainty of 
size aij(o). Multiplicative (relative) uncertainty rij on 
the elements may also be written in the form (36) by 
using 

ei_j(a) = rij(m) I @ij I- (37) 

The two main limitations of the uncertainty descrip- 
tion (36) are 

(1) The disk shape is potentially conservative, such as 
for pure time delay error. 

(2) Correlations between the elements cannot be 
handled [potentially oery conservative as shown 
for the distillation example in Section V(3)). 

Defining the complex perturbation, Aij, (36) 
becomes 

~ij-$ii = Aijaij, IAijl < 1. (38) 

Or equivalently, on matrix form 

[ 

Arra,i Ai2ar2 . . . 
P-P = Azlazl 1 Annann . 

(39) 

Introducing weighting matrices E and L it is possible 
to rewrite (39) in terms of the “Iarge” diagonal 
perturbation matrix As 

P-P= EA,L (40) 

whereE~R”X”z,L~R”~X”andAE~C”2Xnzaredefined 
as 

E = [I I . . . I], L = at =[ i] 

(41) 

As= diag{All, Ail, . . . , Am), (Aij( < 1. 

A block diagram representation of (40) is given by 
Fig. 4 with W, = E and W, = L. This system may be 
rearranged into the form in Fig. 6 with the intercon- 
nection matrix M = LC(Z+pC)-‘E = LP-‘WE. 
From Theorem 5 follows the necessary and suficienf 

condition for robust stability: 

p(Lp-‘BE) < 1 VW (42) 

where p is computed with respect to the diagonal 
matrix As. In principle, this condition may be used to 
generate all nominal closed loop transfer matrices Ef 
for which the closed loop system is robustly stable. 
Alternatively, it may be used to check whether a 
particular design meets the robust stability require- 
ment. However, at the design stage (when dynamic 
resilience is to be determined), fi is not known, but 
rather the restrictions on Z? as imposed by the 
uncertainty are of interest. In order to obtain an 
explicit bound on R from (42), assume that fi = fiZ, 
that is, assume the nominal response is decoupled with 
identical responses. From (42) follows: 

R.S. (A = fiZ) iff a(B) = 161 < ’ 
p(Lp- ‘E) 

VO. 

(43) 

Again, this bound shows that the system has to be 
detuncd and performance be sacrificed when the 
uncertainty is large, that is, in this case when p(LP- ‘E) 
> 1. &LP- ‘E) is a measure of the dynamic resilience 
which takes into account both the size of the un- 
certainty and the sensitivity of the plant to uncertainty. 
In Section V(3), a numerical example incorporating 
condition (43) is provided. 

Upper bounds for p (LP- ’ Z? E). Alternative suficient 
robust stability conditions for this uncertainty descrip- 
tion have been derived by Kouvaritakis and Iatchman 
(1985) and by Kantor and Andres (1983). Kouvariakis 
and Latchman’s (1985) condition provides a tight 
upper bound on ~1 

&LB- ‘BE) < min S(D1-4D2) 
D,,D~U(&~~- ‘h’,) 

= k* (A, A - ‘P). 
_ 

(44) 

Here A = { aij] and D1 and D2 are diagonal matrices 
with real, positive entries. Kouvaritakis and Latchman 
(1985) claim that (44) is an equality, but their proof is 
wrong (Doyle, 1986). However, the bound is tight in 
most cases and is useful since it is easier to compute 
than p(LP-‘Z?E). Another upper bound which is even 
easier to compute, but is more conservative, is given by 
Kantor and Andres (1983) 

p(LP-‘BE) G p(AIP-‘&I). (45) 

The spectral radius of’ the positive matrix A l P- ‘Z? l is 
easily computed as the Perron-Frobenius root of the 
matrix. 

Special case: equal relative uncertainty. Consider 
the special case when all the elements have the same 
relative uncertainty r, i.e. 

A = rlP(. (46) 

Assuming fi = EZ and using (44) and (45), the robust 
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stability condition (42) becomes 

R.S. if IL;1 c l/rk*(lP/, p) Vo (47) 

if IRI < l/rp((PJ /P_‘l) VW. (48) 

These conditions obviously also hold for the case when 
the relative uncertainties are different provided that r is 
replaced by the largest relative uncertainty in any 
element, rmax 

where 

rmax(W) = max rij(w) 
iJ 

(49a) 

yij = max !!!!I$% . 
PEn I I W’b) 

Note that k*( IP(, P) can be viewed as a minimized 
condition number. A more thorough discussion of this 
result appears in Section V. 

V. THE CONDITION NUMBER AS A SENSlTlVlTY 

MEASURE 

This section discusses the use of the condition 
number y(P) as a sensitivity measure with respect to 
uncertainty. A plant is called ill-conditioned if the 
condition number y(P) is high. Physically, this means 
that the gain of the plant is strongly dependent on the 
input direction (see Notation). We give two interpret- 
ations to the condition number: 

(1) 

(2) 

(1) 

.* ~ , 
ility sensitivity measure with respect to indepen- 
dent uncertainty on the elements with similar 
relative magnitude. 
r(P) is a robust performance sensitivity measure 
with respect to input uncertainty [as discussed 
following eq. (12)]. 

The minimized condition number. Y*(P) is a stab- 

y*(P) as a sensitivity measure 
It has been argued previously in a somewhat quali- 

tative manner (Grosdidier et al., 1985) that for robust 
stability the minimized condition number y*(P) is a 
measure of sensitivity with respect to model un- 
certainty. Furthermore, there is a direct relationship 
between large elements in the Relative Gain Array 
(RGA) and y*(P) (Grosdidier et al., 1985J and large 

Assume the nominal response is decoupled, fi 
= diag {&> and assume the system is nominally stable. 
Then robust stability is guaranteed 

if l&i;il < 
1 

Vo, Vi (50) r ,,rt (P) 

which is satisfied 

if IKi;ir < (51) 

y*(P) is the minimized condition number and r:(P) 
is the minimized “absolute” condition number as 
defined in the Notation. The minimized condition 
numbers y*(p) and y:(p) are similar in magnitude since 
(Lemma 2, Appendix 2) 

Condition (50) in Theorem 6 is very similar to 
condition (47) involving k*( IPI, P), but there are two 
differences: 
(1) Condition (50) also holds the when the decoupled 

nominal responses are not identical. 
(2) Condition (50) is less conservative since y:(p) 

< k*(IPI, P) (use a( IL&P& I) =Z S(D1 IP@,)). 

By comparing (47), (48), (50) and (51) the following 
chain of inequalitites is obtained 

y*(P) < y:(P) c k*(IPl, P) d p(lPl IPit). (52) 

Condition (50) is clearly conservative if the individ- 
ual relative uncertainties on the elements, rij, are 
different in magnitude. However, from the discussion 
following eq. (44), the bound is expected to be tight 
when the relative error bounds are equal; in fact, the 
bound is the tightest possible for 2 x 2 plants. 

Theorem 7. (2 x 2). Assume fi = ii1 and rij = rmax. 
Then condition (50) in Theorem 6 is necessary and 
sufficient for robust stability. 

In particular, Theorem 7 implies that, for the case of 
equal relative element uncertainty [using the no- 
menclature from Section IV(5)], 

(2 x 2): .u(LP-‘E) = rv,*(P) _ 
eIements in the RGA are often claimed to indicate 
sensitivity to model uncertainty. It will be shown that 

and for higher order systems ryl(P) is expected to give 

the minimized condition number r*(P) and the RGA 
a tight upper bound on p(LP-‘E). 

are useful measures with respect to element un- 
certainty, but only if the relative errors of the transfer Improved condition at steady state. The uncertainty 
matrix elements are independent and have similar description above assumes that each transfer matrix 
magnitude bounds. This proves to be a restrictive element is given by 
assumption in many cases. 

Express the uncertainty in terms of the largest 
relative uncertainty, rmnx, in any of the transfer matrix 
elements (49). This uncertainty description is in- 
dependent of scaling. 

Theorem 6. Condition number criterion. Let II be any 
set of plants such that P and P have the same number 
of RHP (unstable) poles, and define rmax as in (49). 

pij = @ij( 1 + r;jAii), I Aij( K 1 

where Aij is a complex scalar. This may be reasonable at 
non-zero frequencies, but does not make any physical 
sense at steady state (o = 0) where P, P and Aii are real. 
Theorem 7 may therefore be conservative at o = 0 
where complex perturbations cannot occur. For- 
tunately, for 2 x 2 systems it turns out that we can 
derive a tight condition by replacing r:(P) by y*(p). 
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Indeed, for the case of equal relative uncertainty, 

(2 x 2): &,,(LP ‘E) = ry*(P) (w = 0). (54) 

Theorem 4B and (54) may be combined into the 
following theorem. 

variable systems with large RGA should already be 
avoided at the design stage: When y$ (or y*) or 
equivalently II RGAIIr is large, then the performance 
measured in terms of (61 is very restricted [cf (50)] even 
if the model uncertainty rmax is small. 

Theorem 8. (2 x 2). Integral Control (fi(‘) = I). 
Assume the uncertainties of the elements in P(O) 
are independent and real and have equal relative 
magnitude bounds r. Then for open loop stable 
systems, robust stability and integral control may be 
achieved 

(3) Integral control of high purity distillation column 
(example) 

itf y*(P(O)) < l/r. (55) 

If the magnitude bounds on the relative uncertain- 
ties are not equal, and r is replaced by r_, Theorem 8 
provides a sufficient condition for robust stability and 
integral control. Theorem 8 is unique to 2 x 2 systems; 
numerical examples show no such relationship for 
systems of higher dimensions. 

This example will illustrate that the stability bounds 
(50) and (55) can be extremely conservative if the 
element uncertainties are not independent. Once again 
consider the distillation column of Table 1, but this 
time with reflux L and boilup V as the manipulated 
inputs. The steady state gain matrix is 

and 

Theorems 7 and 8 give very clear interpretations of 
the minimized condition numbers as sensitivity 
measures: y*@(O)) and y,*(P(jo)) are accurate 
measures of sensitivity only if the plant uncertainties 
are given in terms of independent (uncorrelated) norm- 
bounded elements with equal relatioe error bounds. For 
other uncertainty structures the minimized condition 
number may be a very misleading sensitivity measure, 
and bounds on the uncertainties such as (55) may he 
arbitrarily conservative. This will he illustrated by a 
subsequent example. 

(RGAh, = 35.07, IIRGAIII = 138.275, 

y*(p) = y:(P) = 138.268, y(P) = 141.7. 

From the high condition number, y* (P), one might 
conclude that the plant may become singular for very 
small perturbations. This would be true if the un- 
certainty had the form of independent element errors, 
but not necessarily otherwise. To illustrate this point 
consider conditions for using integral control (Z?(O) 
= I) under two different assumptions about the 
uncertainty. 

(2) Relationship to the RGA 
A relationship between y*(P) and the induced l- and 

co-norms of the RGA has heen conjectured by 
Grosdidier et al. (1985): 

Case 1. The elements are assumed independent and 
norm bounded with equal relative error r. From 
Section N(5), eq. (43) implies that robust stability with 
integral control may be achieved 

iff p(L.P-‘E)< 1 (w =0) 

Y*(P) c 2maxCIIRGAlLt, IIRGAllisl* (56) 

Numerical examples show that this bound does not 
hold for systems of dimension 4 x 4 or higher. 
However, for 2 x 2 systems (56) holds even with y:(P), 
and a stronger result is: 

where ~1 is computed with respect to the real pertur- 
bation matrix As. Here: 

_ r-1 0 1 Oi L = r 
&=I0 1 0 lIP 

Theorem 9. (2 x 2). y.*(P) < IIRGAI(r. (57) 

Note that for 2x 2 systems IIRGA((, = 2(iRGA((ir 
= 2 II RCA IliDo . Numerical examples for 3 x 3 and 4 x 4 
systems support the following extension to systems 
with higher dimensions: 

LP-‘E=r 

35.07 - 27.65 35.07 - 27.65 
34.07 - 27.65 34.07 - 27.65 
43.22 - 34.07 43.22 -34.07 
43.22 - 35.07 43.22 - 35.07 

which gives 

Conjecture 1 (n x n): y:(P) < I(RGAII, + k(n) 

with k(2) = 0, k(3) z 1 and k(4) = 2. 

(58) 

The use of the function k(n) was suggested by Nett 
(1986). For real matrices and high condition numbers, 
IIRGA 11, approaches y;(p). The bound (58) appears to 
be most conservative for small condition numbers. 
Note that these relationships also hold for the 
frequency dependent RGA if it is defined as in the 
Notation. 

pc,,,(LP-‘E) = 138.268r 

which is equal to ry*(P) as expected from (54). The 
upper bound p(IpIIP-‘I) on y*(P) (52) happens to 
give the same result, i.e. p(lPlIP-‘I) = 138.268. 
Consequently, robust stability with integral action is 
possible 

1 
iff rc-= 

v*(P) 
0.0072. 

Theorems 6 and 7 and Conjecture 1 provide at least In practice, the variation in each element (mainly due 
a partial explanation of why ill-conditioned multi- to nonlinearities) is much larger than O-7%, and 
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integral control does not seem to be possible for this 
distillation column. 

Case 2. A more realistic uncertainty description for 
this high purity distillation column is the following 
additive uncertainty (Skogestad and Morari, 1986) 

P-q_; -:I 
which may be written in terms of one real scalar A- 
block 

1 
P-P= W,AW,, W, =ldl _-l 

[ 1 , 

W, = [l -11, [A( < 1. 

This highly structured uncertainty is mainly due to the 
material balance constraints which cannot be violated. 
Using Theorem 5, robust stability and integral control 
(Z?(O) = Z) are possible iff 

Here 
r,,(W,P’W,) < 1 (w = 0). 

w,P-‘w, = O*(dl. 

Consequently, robust stability and integral control are 
possible for any value of d and the elements may even 
change sign without causing stability problems. Thus, 
despite the high condition number, the system is not at 
all sensitive to this physically-motivated model error. 

VI. CONCLUSIONS 

To guarantee robust stability, model uncertainty 
requires feedback controllers be detuned and perform- 
ance be sacrificed. To what extent detuning proves 
necessary depends on the size of the uncertainty as well 
as the sensitivity of the plant. 

(I) General case 
The Structured Singular Value p(M) is by definition 

the best measure of the effect of uncertainty on 
performance: 

robust stability iff p(M) < 1 Vu. (27) 

However, here the issue is not control system design 
but rather process design. From this viewpoint, sys- 
tems whose closed-loop stability and performance are 
very sensitive to model errors are undesirable because 
they are either impossible to control or require that 
enormous effort be put into the design of the control 
system. Condition (27) assumes that a control system 
has already been designed and is therefore unsuitable 
for screening purposes at the design stage. If additional 
assumptions are made on the type of model un- 
certainty and the control structure, achievable per- 
formance can be related directly to characteristics of 
the system itself. In the following summary it is 
assumed that the nominal closed-loop system is 
decoupled (R = EZ) with identical responses. This 
proves to be a reasonable assumption at low frequen- 
cies, and leads to the least conservative bounds. 

(II) Uncorrelated element uncertainty 

P-P= EAL 
A = diag {A,), 5(Ajj) < 1 

robust stability iff 

IQ-= 1 
p(LP-‘E) vw’ 

(III) Vncorrelated element uncertainty with similar 
relative errors 

Each element: pij = p’ij(l+ rijA;j), IAijl < 1. 
Largest relative error: rmax = max rip 

ij 
(1) Robust stability if 

IRI < l 
r,,rdT 

VW. (50) 

(2) 2 x 2 systems, rij = r Vi, j, complex A,: 
robust stability iff (Theorem 7) 

(3) 2 x 2 systems, rij = r Vi, j, real Aij: 
integral control and robust stability may be 
achieved ifY 

It;cO)l = 1 -= rv*(;(o)). (5% 

The minimized condition number y* (or y.*) or 
equivalently the RGA is a reliable indicator of closed- 
loop sensitivity to element uncertainty only if the 
relative errors of the transfer matrix elements are 
independent (uncorrelated) and have similar magni- 
tude bounds. 
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NOTATION 

C(s) 

P(s) 

&9 

El 

IIGH, 

llGll2 

IlGlli, 

rational transfer matrix of fixed-parameter 
controller 
n x n square rational transfer matrix of 
actual plant = {pij} 
n x n square rational transfer matrix of nom- 
inal plant = {pij} 

set of all possible plants, i.e. P E II and P Q II 
matrix G with all elements replaced by their 
absolute value 
= c 1 gu 1; l-norm of matrix G 

=r ] 
112 

C 19ii12 ;2-norm or Frobenius norm 

of &trix G 

= max 5 Igij(; induced l-norm (“max 
j i=l 

column sum”) 

IlGlli, = max c lgij[; induced co-norm (“max 
1 j=l 

row sum”) 
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RGA(G) = G x (G-l)T where x denotes element-by- 
element multiplication (also called the Schur 

P(G) 

W3 

or Haddemard product) 
spectral radius of G, i.e. magnitude of largest 
eigenvalue 
maximum singular value or spectral norm of 
the transfer matrix G, which at each 
frequency is equal to the induced 2-norm 

_a(‘3 minimum singular value 

~(‘3 
~a(‘3 
Y*(G) 

we have the property u(G) = l/r?(G- ‘) 
= c?(G)/c(G); condition number 
= a( IG()/c(G); absolute condition number 
minimized condition number, Y*(G) 
= min y(D,GD& where D1 and D2 are diag- 

DC,& 

~2 6) 

onal matrices with real, positive entries. For 
G, 2 x 2 and real: 

i 

1 + K1’2 K>O 

y*(C) = Il-K1’2I 

1 K<O 

(Grosdidier, 1985) 
minimized absolute condition number, 

1 + IKI”’ 
(2x2): y.*(G)= ,l_K,,2, (Appendix 2) 

K(G) Rijnsdorps interaction measure for 2 x 2 
plant 

K(G) = %.?!k 
911922 

’ WY structured singular value (see Appendix I). 
The Laplace variable s or jw is omitted in most cases. 
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APPENDIX 1. THE SSV p AND ITS PROPERTIES 
Dejinition (Doyle, 1982) 

The function r(M), called the structured singular value 
(SSV) is defined at each frequency such that g-‘(M) is equal 
to the smallest a(A) needed to make (I + AM) singular, i.e. 

p-‘(M) = mjn{Gldet (1 +AM)=O for some A,&(A)<6(w)}. 

(Al-l) 

A is a block diagonal perturbation matrix. p(M) depends on 
the matrix M and the structure of the perturbations A. The 
definition of p may be extended by restricting A to a smaller 
set, e.g. A real. The above definition is not in itself useful for 
computing fi since the optimization problem implied by it 
does not appear to be easily solvable. Fortunately, Doyle 
(1982) has proven several properties of p which makes it more 
useful for applications. 

Properties of p (Doyle, 1982) 
(1) 

(2) 

(3) 

(4) 
(5) 

The follb&ng dounds exist for p: 

p(M) i p(M) i e(M) (Al-2) 

p(M) = p(M) in the case A = 61. p(M) = o(M) in the case 
A is “unstructured”, i.e. A is a full matrix. 
Let @ he the set of all unitary matrices with the same 
structure as A, then 

F~;P(MU) = p(M). (Al-3) 

This optimization problem is in general not convex. 
Let 9 bc the set of real positive diagonal matrices 
D = diag (di Ii > where the size of each block (size of Ii) is 
equal to the siie of the blocks Ai. Then for 3 or fewer 
blocks 

F~~~(DMD-‘) = p(M). (Al-4 

For four or more blocks numerical evidence suggests that 
(Al-4) gives a tight upper bound on fl(M). A good 
estimate for the scaling matrix D is found by minimizing 
IIDMD-’ II2 (the Frobenius norm). 
fi(aM) = Icx~,u(M), a is a scalar. 
For real matrices M with real, non-repeated pertur- 
bations, the search in (Al-3) may be performed with real 
matrices u only, and only the cornerpoints (“+- 1”) need 
to be considered. For (20) and (21) in Theorem 4 this 
implies that only cornerpoints for the possible P(O)‘s need 
to be checked. 
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APPENDIX 2. PROOF OF THEOREMS 
Proof of Theorem 3 

The proof uses condition (26) from Section IV which 
applies to any stable norm bounded perturbation. The 
interconnection matrix M for the norm bounded additive set 
of plants, HA, is (rearrange Fig. 4 to get Fig. 6) 

M = W,C(I+PC)-‘W, = W,P-‘fiW,. (A2-I) 

Using P - P = W,A,W, we find det (I+ A,M) = det (I 
+A,W,P-‘Z?W,)=det(I+W,A,W,P-‘fi)=det (I+(P 
- P)P-‘A), and assuming nominal stability and using (26) it 
is found that robust stability is guaranteed 

iff det(I+(P-P)P-‘A)#0 VPEH,. (A2-2) 

Theorem 3 follows from (A2-2) by assuming R = 1. 

Proof of Theorem 4A 
Applying the Nyquist stability condition to (8) we see that 

closed loop stability requires that the image of 

det(l+(P-P)Pm’@ (A2-3) 

does not encircle the origin as a transverses the Nyquist D 
contour for any PE II. For the case of integral control, the 
image starts from (w = 0) det P(O)P(O)- t. Using the strictly- 
proper assumption, the image ends at (w = co) det I = 1. The 
image of (A2-3) will therefore always encircle the origin if it 
starts on the negative real axis and the system will be unstable. 

Proof of Theorem 48 
Necessity: Follows from Theorem 4A. 
Sufficiency: For this uncertainty description robust stab- 

ility is guaranteed (Theorem 5) 

iff p(W,P-‘RW,) < 1 VW (A2-4) 

iff det(I+(P-_)P-‘@#OVw,VPoH, (A2-2) 

o = Or (A2-2) with A(O) = I is satisfied if (21) is satisfied. 
w > 0: For stable plants, it is always possible to select a 

controller such that H = iir and (61 Q l/p(W,P-’ W1)Vw, 
i.e. such that (A2-4) holds. This proves that by assuming (21), 
(A24) is satisfied for all w, and robust stability can always be 
achieved. 

Proof oj Theorem 6 
Consider any set of plants ll, such that all PC II have the 

same number of RHP poles. Assuming nominal stability, the 
Nyquist stability condition applied to (8) implies that robust 
stability is guaranteed if and only if the image of det (I + (P 
-P)P-‘fl) does not encircle the origin as s traverses the 
Nyquist D-contour for all PE Il. A sufficient condition for 
robust stability using the small gain theorem is therefore 

__ 
p((P-P)P_‘a, < 1 VW, VPErI. (A2-5) 

Here the spectral radius p is invariant under similarity 
transformations. In particular, let D, and D2 be real diagonal 
“scaling” matrices. Then for any PE Il we have 

p((P--)P-‘fi) = ~(DI(P--)D*D;‘P-‘D~‘D,~D;~) 

< ~(D,(P--)D,D;‘?-‘D;LD,AD;‘) 

(for k? = diag {&Ii)) (A2-6) 

(A2-7) 

Combining (AZ-5) and (A2-7) and choosing the scalings D1 

and D2 to get the least conservative bound, R.S. is guaranteed 

if min @)r 
WhpD, I 

< I VW 
DI.DI -o(DtPDz) 

(fi = diag{&}) 

(AZ-S) 

which is equivalent to 

a(Q) < 
1 

r,,&(p) 
(A = diag {Iii} ). (50) 

This proves condition (50). Condition (51) follows directly 
from (50) by applying Lemma 2 below. 

Lemma 1. 
Consider any set of plants fI. Then, 

fnax (a(D, (P - P)D,) < rlMX a( IDI pD2 I) (A2-9) 
PEII 

and equality applies if the set II is norm bounded with 
independent elements and all elements have the same relative 
uncertainty. 

Proof. 
Let A be the matrix which bounds each element in P - P 

IP-PI s A(U) vpen. (A2- 10) 

Then 

FF; 5(P - P) < 6(A) s r,_ c?( 1 PI). (A2-11) 

[The first inequality is an equality if all P satisfying (A2-10) 
may occur in practice.] The last inequality follows trivially 
since A i rmax IPI. It will be an equality if the relative 
uncertainty bounds of the elements are equal. To derive 
(A2-9), note that the relative errors ri, and r,, are unchanged 
by applying the diagonal scalings D, and D2 to the plant. 

Comment. 
Note that the bound involves IDlijDj? f and not D, IPIDz. 

The last would be more conservative since for D, and D2 real 
and positive L%(lD,PD+I) < O(D, /PlD2). 

Lemma 2. 
Let G be a matrix of size n x n. Then 

S(G) < B(IG() s &k(G) 

ProoJ 

(A2-12) 

The following property is proved by Stone (1962) 

L IlGll 
J;; 

2 =S d(G) < llGllz. 

Using the obvious property l/Gll~ = 11 /Cl 112 we get 

ZtIGl) s IIGliz G ,/hG). QED 

Proof of Theorem 7 
Let P be a nonsingular 2 x 2 transfer matrix and consider 

the case of independent elements with equal relative errors r. 

d12(1+h2) 
&(I + rk2) 1 

> IAijl < 1 VO. 

(AZ- 13) 

Comparing (50) with (43) we see that Theorem 7 holds if it can 
be proved for this uncertainty description that 

(2 x 2): p(LP-‘E) = ryZ.(P). (53) 

Since both ~(Lk’E) and rr.*(P) scale linearly with r, (53) is 
equivalent to the following statement 

&LP_‘E) < 1 ory.‘(P) < 1 

Note from (43) that p(LP-‘E) < 1 is a condition for having 
“perfect control” (if = I). Then using Theorem 3, which 
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applies to robust stability and “perfect control”, we get 

p(Lp-‘E) =Z l+c-detP(jw)) # 0, VP. 

Theorem 7 will therefore be correct if for each frequency 

rV$ (P) < l odet (P(jw)) # 0, VP (A2-14) 

i.e. if it can prove the following statement: -At each frequency 
the smallest r which makes 

det P = 0 is r = l/y.‘(p)“. (A2-15) 

Define at each frequency 

and use 

detP=O iff (l+rAli)(l+rAZ2)=~(l+rAlZ)(1+rA21). 
(A2- 16) 

The smallest r which satisfies (A2-16) is found for A, 1 = AZ2 
= A,, A,2 = AZ, = A2 and 

(1 +rAi)’ = K(1 +rA#. 

Introduce A, = ei91, A2 = ei+l, where Cpi and & are free to 
be chosen, to find: 

1-lkl 1/2eW/3 = rI,(l/z,i(S+9.)_,,id,, 

The left-hand side is fixed. Using geometrical arguments it is 
evident that the smallest r satisfying this expression is found 
when #I~ and r& are chosen such that the two terms on the 
right hand side are aligned and in the direction of the left hand 
side: 

11 -d’ZJ 
r = l+(KIl/l’ 

(A2-17) 

The derivation of the expression for y.’ (P) is very tedious but 
straightforward and follows the derivation for y*(p) 
(Grosdidier et al., 1985). This derivation shows that r given in 
(A2-17) is equal to l/y:(p) which proves (A2-15) and thus 
proves the theorem. 

Proof of Theorem 8 
The proof is similar to that of Theorem 7. The set of plants 

is again given by (A2-13) but the perturbations are assumed to 
IX real (- l < Au < 1) and all the elements in P are also 
assumed to be real. As for the proof of Theorem 7, (54) is 
proved if we can prove the following statement is proved: 

“The smallest r which makes 

det P = 0 (P and A,, real) is r = l/y*(p)“. (A2-18) 

It is necessary to find the smallest r which satisfies (A2-16) 
when Ai, is real. 

Case 1: K c 0. In this case (A2-16) cannot be satisfied for 
any r -z 1, but it may clearly be satisfied if r - l (e.g. choose 
A,= = - 1 and Ai, = - 1). Consequently, the smallest r 
which makes det P = 0 in this case is r = 1, and since y*(p) 
= 1 for K < 0 (Grosdidier, 1985) we have r = l/y*(p). 

Case 2a: IC z 1. Only cornerpoints of (A2-16) need to be 
checked (see Appendix 1). Then it is obvious that the smallest 
r which satisfies (A2-16) for K > 1 is the solution of (choose 
A,i = AZ2 = 1, A,2 = AZ1 = - 1) 

(1 +r)z = rc(1 -r)Z 

which has as its smallest root r = (6 - I)/(&+ 1) = 11 

-J;;Ilu+J;;). 

Case 26: 0 < K < 1. The smallest r which satisfies (A2- 16) in 
this cast is a solution of 

(1 -r2) = ~(1 +r)2 

which has as its smallest root r = (1 - A)/( I+ A) = 11 
-J;;Ilu+~~..*P)~ IS given in the Notation. From this it 
is evident that r is equal to l/y*(p) also for K > 0 and this 
proves statement (A2-18). QED 

Proof of Theorem 9 
For 2 x 2 systems the RGA becomes 

4, = 
dl1 a22 1 

=- _ 
PlIP22 -d12Pz1 I-U 

(A2-19) 

IIRGAII, =~(I~~~I+I~-~III)=~~. (A2-20) 

Using the expression for y.’ (inverse of eq. A2-17) 

1+ l?cl”2 

y.‘= ((K~-2~K~“2COS~/2+1)“Z 

~ t+2(Kl”2+lKI 
II--K1 

G llRGAlli. QED 


