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High purity distillation columns are inherently ill-conditioned because

the product compositions are very sensitive to changes in the product flow

rates.

This may cause performance problems if the uncertainty changes the

directionality of the plant. This is the case for the traditional LV-

configuration, where input uncertainty on the manipulated variables changes the

directionality at the input of the plant, and makes it impossible to use an

inverse based controller ("decoupler"). For the DV-configuration (direct

material balance) the input uncertainty poses no problem. The structured

singular value, u, is used as a tool to study the effect of uncertainty on

stability and performance in a systematic manner. Finally, large elements in

the RGA are found to imply poor performance when there is input uncertainty.



I. INTRODUCTION
It is well known that ill-conditioned plants cause control problems
(Morari and Doyle, 1986, Skogestad and Morari, 1985). By ill-conditioned we
mean that the gain of the plant is strongly dependent on the input direction,
or equivalently that the plant has a high condition number
Y(G(Jw)) = 3(G(Jw))/a(G(jw)) m

Here G(G) and o(G) denote the maximum and minimum singular values of the plant
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||| |2 denotes the usual Euclidian norm. We also say that an ill-conditioned

plant is characterized by strong "directionality" because inputs in directions

corresponding to high plant gains are strongly amplified in the plant, while
inputs in directions corresponding to low plant gains are not.

The main reason for the control problems associated with ill-conditioned
plants is "uncertainty". Uncertainty in the plant model may have several
origins:

1. There are always parameters in the linear model which are known only
approximately. For the distillation column such parameters may be the
relative volatility or the number of theoretical stages.

2. Measurement devices have imperfections. This may give rise to
uncertainty on the manipulated inputs in a distillation column, since
they are usually measured and adjusted in a cascade manner.

3. At high frequencies even the structure and the model order is unknown,
and the uncertainty will exceed 100% at some frequency.

y, The parameters in the linear model may vary due to nonlinearities or
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changes in the operating conditions. Examples of this are given in
Section V.

For "tight control" of ill-conditioned plants the controller has to
compensate for the strong directionality by applying large input signals in the
directions where the plant gain is low, that is, a controller similar to G~! in
directionality is desirable. However, because of uncertainty, the direction of
the large Iinput may not correspond exactly to the low gain in the plant and
the amplification of these large input signals may be much larger than
expected from the model. This will result in large values of the controlled
variables y (Fig. 1), leading to poor performance or even instability.

The concept of directionality is clearly unique to multivariable systems,
and extensions of design methods developed for SISO systems are likely to fail
for multivariable plants with a high degree of directionality. Furthermore,
since the problems with ill-conditioned plants are closely related to how the
uncertainty affects the particular plant, it is very important to model the
uncertainty as precisely as possible. Most multivariable design methods (LQG,
LQG/LTR, INA/DNA, IMC, etc.) do not explicitly take the uncertainty description
into account, and these methods will in general not give acceptable designs
for ill-conditioned plants.

A distillation column will be used as an example of an ill-conditioned
plant. Here the product compositions are very sensitive to changes in the
external flows (high gain in this direction), but quite insensitive to changes
in the internal flows (low gain in this direction). Distillation columns are a
major consumer of energy in the chemical industry, and there is a large
potential for savings by maintaining tighter control of the product

compositions. One interesting property of distillation columns is that the
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condition number may be arbitrary large if the purity of the products is
sufficiently high. In this paper the main emphasis is on general properties of
ill-conditioned plants, rather than on the control system design for a real

distillation column.

II. DISTILLATION COLUMN EXAMPLE

Fundamentals of Distillation Control

The ijective of a distillation column (Fig. 2) is to split the feed, F,
which is a mixture of a light and a heavy component, into a distillate product,
D, which contains most of the light component, and a bottom product, B, which
contains most of the heavy component. The compositions zp, yp and xg of these
streams refer to the mole fractions of light component. Perfect separation
would be obtained with yp = 1 and xg = 0. The driving force for this
separation is the difference in volatility between the heavy (H) and light (L)

component, which can be expressed by the relative volatility

o - YL/ XL
YH/XH
- mole fraction in liquid
y - mole fraction in vapor in equilibrium with x

For a binary separation yg = 1-yL and xyg = 1-x, and we get

X
Y = Tila-1x (@)

(the subscript L is generally dropped for the light component). In a
distillation column separation is improved over what can be obtained with one
stage (Eq. 2), by stacking stages on top of each other as shown in Fig. 2.

In such a distillation column there are five controlled variables

- Vapor holdup (expressed by the pressure p)
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manipulated variables for composition control, i.e.,

_ |8 JAL
Axg|” © | AV
This choice is often made since L and V have an immediate effect on the
product compositions yp and xp, respectively. By linearizing the steady state

model and assuming that the dynamics may be approximated by a first order

response with time constant t = 75 min, we derive the following linear model

R R ]
This is admittedly a very crude model of this strongly nonlinear plant, but
the model is simple and displays the main features of the distillation column
behavior. The use of a low order model for this high order plant turns out to
be a good approximation, since one time constant is usually dominating (Moczek,
et al., 1965). In Section V we will consider the nonlinearities in more detail,
and discuss how these may be treated as uncertainty on the linear model (3).

Singular Value Analysis of the Model

The condition number of the plant (3) is
Y(Gry) = 141.7
and the 1-1 element of the RGA is

ALY = (1—%—8%)_1 = 35..1
which shows a high degree of directionality in the plant. More specific
information about this directionality is obtained from the Singular Value
Decomposition (SVD) of the steady state gain matrix

G =U zvH

or equivalently since VH - y-:
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- Liquid holdup in accumulator (Mp)
- Liquid holdup in column base (Mp)
- Top composition (yp)

-  Bottom composition (xp)

and five manipulated inputs
- Distillate flow (D)
- Bottom flow (B)
- Reflux (L)
- Boilup (V) (controlled indirectly by the reboiler duty)
- Overhead vapor (Vi) (controlled indirectly by the condenser duty)

Because the composition dynamics are usually much slower than the flow
dynamics, we will make the simplifying assumption of perfect control of holdup
(i.e., p, Mp, Mp constant) and instantaneous flow responses. With these
assumptions and using the mole fractions of the light component at each stage
as state variables, we easiljf derive the nonlinear model shown in the Appendix.
Different control configurations are obtained by choosing different inputs
pairs (e.g., L and V) for composition control; the remaining three manipulated
inputs are then determined by the requirement of keeping p, Mp and Mp under
perfect control. Irrespective of the control configuration, the two operating
variables corresponding to the high and low plant gain are, as we shall see,

the external flows (product flow rates, D and B) and the internal flows (which

are changed by changing the reflux L and boilup V while keeping D and B
constant).

Model of the Distillation Column

1
The distillation column described in Table 2/ will be used as an example.
The overhead composition is to be controlled at yp = 0.99 and the bottom

composition at xg = 0.01. Consider first using reflux L and boilup V as
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Gv = ()0
Gv = 0(Gu
where
L = diag(s, o) = diag(1.972, 0.0139)
e _[o.707  o0.708 o _[0.625  0.781
velv vi- [—0.708 0;707] U-[o ul- [0;781 —0'.625]

The large plant gain, §(G) = 1.972, is obtained when the inputs are in the

. . au] - [0.707]
direction [dv] =V = [—0.708J' Since

dB = -dD = dL - dV (4)

this physically corresponds to the direction with the largest change in the

external flows, D and B. From the direction of the output vector U = LO'625J,

0.781
we see that changes in the external flows move the outputs in the same

YD*XB

direction, i.e., mainly affect the average composition 5

Any column with products of high purity is sensitive to changes in the
external flows because the distillate rate D has to be about equal to the
amount of light component in the feed. Any imbalance leads to large changes
in the product compositions. Assume in our example that the distillate flow D
is increased by 5% to 0.525 kmol/min. Since there is only 0.5 kmol/min of
light component in the feed at least 0.025 kmol/min of this has to be heavy
component. The best attainable value for the top composition, even with total
reflux, is then yp = 0.5/0.525 = 0.952. This is far from the desired yp = 0.99.

The low plant gain, o(G) = 0.0139, is obtained for inputs in the direction

dL | T §
|_va =y = B;g% From (4) observe that physically this corresponds to

changing the internal flow only (dB = dD = 0), and from the output vector u =
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0.781
-0.625

], we see that the effect is to move the outputs in different
directions, i.e., to change yq - xg. Thus, it takes a large control action to
move the compositions in different directions and to make both products purer
simultaneously.

The notion that some changes are more "difficult" than others is
important, -since it implies that some disturbances may be "easier" to reject
than others. Let d be the effect of the disturbance on the outputs (Fig. 1),
or let d represent a setpoint change. A disturbance d which has a direction
close to U, is expected to be "easy" to reject since it corresponds to the high
plant gain. Similarly, a disturbance close to u in direction is expected to be
more difficult. The disturbance condition number, Y4(G), gives a more precise
measure of how the disturbance is "aligned" with the directions of the plant

(Skogestad and Morari, 1986a).
|67 |
Yd(G) = —H—d—ﬂ'z— a(G) (5)
Y4(G) ranges in value between 1 and Y(G). A value close to 1 indicates that
the disturbance is in the "good" direction (i) corresponding to the high plant
gain, 5(G). A value close to Y(G) indicates that the disturbance is in the

"bad" direction (u) corresponding to the low plant gain, ¢(G). We will consider

the following two disturbances (actually setpoint changes) in the simulations

Vs, = BJ with Yg,(G) = 110.5

Vot |O0] Wit Te(0) = 12:3
¥s, corresponds to a setpoint change in yp only, and is seen to be a

change with a large component in the "bad" direction. The direction of yg,
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corresponds to that of a feed flow rate disturbance (Table 1) and it is seen
to have a large component in the "good" direction corresponding to the high
plant gain.

Linear Closed Loop Simulations

Linear simulations of the distillation column using the model (3) will now

be used to support the following three claims regarding ill-conditioned plants:
1. Inverse-based controllers are potentially very sensitive to uncertainty
on the input variables.
2. Low condition-number controllers are less sensitive to uncertainty, but
the response is strongly dependent on the direction of the disturbance.
Mot ol Uk reeUlgmd planty ore
3. Changing—-the plant may make the plant ifisensitive to uncertainty on the

input variables.

1. Inverse-based controllers are potentially very sensitive to uncertainty

on the input variables

The inverse-based controller

- ki (1+758) [39.9&2 31.487

K, _
C(s) = = G[y(®) e _ng?] , ki - 0.7 min 6)

ATARSE s
may be derived by using the IMC design pr'oced“urf/e with a first order filter or
by using a steady state decoupler plus a PI controller. This controller
should in theory remove all the directionality of the plant and give rise to a
decoupled first order response with time constant 1.43 min. This is indeed
confirmed by the simulations in Fig. 3A and Fig. 4A for the case with no
uncertainty. In practice, the plant behavior will be different from the model,
and for the simulations in Fig. 3B and 4B an error of 20% in the change of

each of the manipulated inputs is assumed:

dL = 1.2 dLs, dV = 0.8 dV, (7)



_10_
(dL and dV are the actual changes in the manipulated flow rates, while dLc and
dV, are the desired values as computed by the controller). It is important to
stress that this kind of diagonal input uncertainty, which stems from the
inability to know the exact values of the manipulated variables, is always
present, although the actual size of the uncertainty may vary. For the
setpoint change in yp (Fig. 3B) the simulated response with uncertainty differs
drastically from the one predicted by the model, and the response is clearly
not acceptable. The response is no longer decoupled, and Ayp and Axg reach a
value of about 6 before settling at their desired values of 1 and 0. The
uncertainty has less deteriorating effect for the feed rate "disturbance" (Fig.
4B) which occurs mostly in the "good" direction.

There is a simple physical explanation for the observed poor response to
the setpoint change in yp. To accomplish this change, which occurs mostly in
the "pad" direction corresponding to the low plant gains, the inverse-based
controller generates a large change in internal flows (dL + dV), while trying
to keep the changes in the external flows (dB=-dD=dL-dV) very small. However,
uncertainty with respect to the values of dL and dV makes it impossible to
keep dL-dV small and the consequence is large changes in the Mf flows.
This results in large changes in the compositions because of the high plant
gain in this direction. This particular problem may be avoided by controlling
D or B directly as will be shown below.

A more mathematical way of showing how the uncertainty changes the plant
is as follows: Let the plant transfer model be G(s) and assume there is

uncertainty with respect to each of the manipulated variables, i.e., the actual

("perturbed") plant is
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Gp = G(I+A) , A = [A‘ o]

o A,

where A, and A, represent the relative uncertainty for each input. With an
inverse based controller, C(s) = c(s)G(s)™!, the loop transfer matrix becomes
GpC = c(s)G(I+A)G™* = c(s)(I+GAG™?) (8)

The error term

G, ;AG

LV

- [35.1 A-34.1 A, -27.7 A*27.7 Az] ©)

LV - [43.2 A,-43.2 A, -34.1 A+35.1 A,
is worst when A, and A, have different signs. With A, = 0.2 and A, = -0.2 (as

used in the simulations, Eq. (7)) we find

-+ 138 -11.1]
GLveG 1y = [17;2 -13.‘8J
The elements in this matrix are much larger than one, and the observed poor
response is not surprising.

2. Low condition number controllers are less sensitive to uncertainty, but

the response is strongly dependent on the direction of the disturbance.

The poor response for the case with uncertainty in the example above was
caused by the high condition-number controller which generates large input
signals in the directions corresponding to the small plant gain. The simplest
way to make the closed loop system less sensitive to the input uncertainty is
to use a low condition number controller which does not have large gains in
any particular direction. The problem with such a controller is that little or
no correction is made for the strong directionality of the plant. This results
in a closed loop response which depends strongly on the disturbance direction,
as shown below. The diagonal controller

C(s) = K, (75s8+1) [1 0]

- ! _1J , ke = 2.4 min™ (10)
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consists of two equal single loop PI controllers and has a condition number of
one. As seen from the simulations in Fig. 5 and 6 the quality of the closed
loop response depends strongly on the disturbance direction, but is only
weakly influenced by uncertainty. The response to Ys, is very sluggish, while
the response to yg, is fast initially, but approaches the final steady state

sluggishly. Note that a disturbance in the "good" direction

Yo = O = {8:%% with  Yg(G)=1

generates a first order nominal response with time constant 1/2.4:5(G) = 0.21

min. A disturbance in the "bad" direction

Vg = u = [—06768215] with Yd(G)=141.7

generates a first order nominal response with time constant 1/2.4:0(G) = 30
min, All other responses are linear combinations of these two extremes
(Fig.5A and 6A4).

. }

Aot 0 i capai bl dlhnke e
3. ~Changing the plant-may make-the system—ifisensitive to uncertainty on the

input variables

We already argued physically that the plant might be made less sensitive
to uncertainty by controlling the external flows directly. Consider the case
of distillate flow D and boilup V as manipulated variables ("direct material
balance control") (Shinskey, 1984). Assuming perfect level and pressure

control, i.e., dL = dV - dD, we have

[S\ﬂ ) [_c; 1] [?nﬂ (1)

and the following linear model is derived from (3)



-13-

v -l 1] - s | ok Gons) (12)
In practice the condenser level loop introduces a lag between the change in
distillate flow, dD, and the reflux flow, dL (which is the input which actually
affects the compositions), but this is neglected here. It is important to note
that with (11) and without input uncertainty, identical responses may be
obtained with the LV-plant (3) and the DV-plant (12) by using multivariable
controllers. The plant (12) is also ill-conditioned

o.144%
Y(Gpy) = 70.8 , Apy = 05

In this case the SVD yields

s . [1-393 0 7 - [1.000 -0.0017 ; _[0.630 0.777]
=] 0 0.0197) " T |-0.001 1.000 ]’ " ~ [0.777 -0.630

dDJ in the direction of ¥(Gpy) =

The high gain corresponds t¢c an input L av

L:ggg?J, which, as expected, corresponds to a change in the external flows.

The low gain again corresponds to a change in the internal flows (dD=0). Note
that in this case there is one manipulated variable (dD) which acts in the high
gain, and one (dV) which acts ino the low gain direction. This "decomposition"
is significant, since uncertainty in dV, does not affect the external flows, dD..
The value of the RGA of %jSS suggests that the system may be difficult to
control using decentralized control, but also suggests a plant which is not
sensitive to uncertainty (Grosdidier, 1986). To confirm that the system is
much less sensitive to uncertainty in this case, consider the following

inverse-based controller

ks L k(+T58) g 451027
Co(s) = = Gpy(s)™ = st [ s C}Eggéj , ks = 0.7 min™  (13)

Without uncertainty this controller gives the same response as controller C.(s)
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with the LV-configuration. However, in this case the decoupled first order
response with time constant 1.43 min is maintained also when there is
uncertainty on the manipulated variables (Fig. 7 and 8). The following error
with respect to dD and dV was used

dD = 1.2 dDg, dV = 0.8 dV, (14)

From this example we see that ill-conditioned plants by themselves may

not give performance problems if the uncertainty is appropriately aligned with

the process. For the DV-configuration we find the error matrix GAG™! (8)

-1 Bl@ A,+0.55 A, 0.45 A,-0.45 AZ:I

VA by =/bo.55 a10.55 4, 0.55 4,40.45 a,

{

and with A, = 0.2 and A, = -0.2 corresponding to (14)

Y ]-0.02 0.18]]
DV ~[-0.22 0.02

GpyAG
The elements in this matrix are small compared to one, and good performance is
maintained even in the presence of uncertainty on each input. The nonzero off-
diagonal elements explain why the response in Fig. 7B is not completely

decoupled.

ITI. ROBUSTNESS ANALYSIS WITH u

It is quite evident from the linear simulations above that multivariable
systems exhibit a type of "directionality" which may make the closed loop
response strongly dependent on the particular disturbance and model error
assumed. One of the major weaknesses with the simulation approach is that it
may be very difficult and time-consuming to find by trial-and-error the
particular disturbance and model error which causes control problems.
Therefore there is a need for a tool which solves the following robust

performance problem in a more systematic manner:
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Given a nominal plant, an uncertainty description, a set of possible
disturbances and setpoint changes, a desired performance objective, and a
controller: Will the "worst case" response satisfy the desired performance
objectives?

If performance (allowed size of input and output signals) is defined using
the H®-norm and the uncertainty is described in terms of norm bounds in the
frequency domain, this problem is solved fairly easily by computing Structured
Singular Value u (Doyle, 1982) of a particular matrix N at each frequency
(Doyle, 1985). The elements in the matrix N are determined by the nominal
model, the size and nature of the uncertainty, and the performance
specifications. Robust performance is guaranteed if and only if p(N) < 1 for
all frequencies.

Some Definitions

Let us make a pause to define some of the terms used above more
carefully. Achieving robust performance is clearly the ultimate goal of the
controller design. However, it may be easier to solve this problem by first
considering some subobjectives which have to be satisfied in order to achieve
this:

Nominal Stability (NS): The model is assumed to be a reasonable

approximation of the true plant. Therefore the closed 1loop system with the
controller applied to the (nominal) plant model has to be stable.

Nominal Performance (NP): In addition to stability, the quality of the

response should satisfy some minimum requirements - at least when the
controller is applied to the plant model. For mathematical convenience we
will define performance in terms of the weighted H*-norm of the closed-loop

transfer function between external inputs (disturbances and setpoints) and
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"errors" (may include yp-yps» XB-XBs,» manipulated inputs u, etc.). The simplest
example of such a performance specification is a bound on the weighted
sensitivity function

o(W,pSWp) < 1 ¥Yw, S = (I+GC)™! (16a)
The input weight wzp is often equal to the disturbance model. The output
weight W,p is used to specify the frequency range over which the errors are to
be small and (if W,p is not equal to wp(s)I) which outputs are more important.

Robust Stability (RS): The closed loop system must remain stable for all

possible plants as defined by the uncertainty description.

Robust Performance (RP): The closed loop system must satisfy the

performance requirements for all possible plants as defined by the uncertainty
description. As an example we may require (16a) to be satisfied when G is
replaced by any of the possible perturbed plants Gp as defined by the
uncertainty description.
5(Wp(I+GpC) T Wop) < 1 Yw,  ¥Gp (16b)

Most controller design methods (even "modern" optimal control, LQG), only
address the problems of Nominal Stability and Nominal Performance. The
stability margins in the classical frequency domain design methods, are an
attempt to address the Robust Stability problem, but these margins may be
misleading and are a very indirect method.

Conditions for Robust Stability and Robust Performance

The definition of Robust Performance given above is of no value without
simple methods to test if conditions like (16b) are satisfied for all possible
perturbed plants Gp. Below we will state computationally useful conditions
for RS and RP using the Structured Singular Value u for the case when the

uncertainty (the possible plants Gp) is modelled in terms of a set of norm-
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bounded perturbations on the nominal system. By use of weights each
perturbation is normalized to be of size one:
5(A1) < 1 Yw

The perturbations, which may occur at different locations in the system, are
collected in the diagonal matrix A

A = diag{A,, ..., Ap}
and the system is rearranged to match the structure in Fig. 9. We will not go
into detail on how this is done at this point. This will become clearer by
studying the distillation column example in Section IV and V. The signhal d in
Fig. 9 represents the external inputs (weighted disturbances and setpoint
changes) affecting the system. The signal e represents the weighted errors,
or more generally the signals which are to be kept "small". The
interconnection matrix N in Fig. 9 is a function of the nominal plant G, the
controller C and the uncertainty weights. Performance weights are also
absorbed into N such that the performance specifications involving e and d are
normalized:

Robust Performance Specification: (Fig. 9)

g(E) < 1 Yo , ¥aA a7

~

where e = Ed, E = Ny, + NuyA(I-N;, A)'Ny,
An example of such a performance specification is Eq. (16b). With these
assumptions for the uncertainty and performance we have the following results

(Doyle, 1985).

N.S. <=> N stable (internally) (18)
N.P. <=> uyp = sup o(N,,) < 1 (19)
- w .
R.S. <=> 1Rg = SUp g (Ny) < 1 (20)

R.P. <=> = su (N) <1 (21)
Ee HRP 01)) Ll(AAP)
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The quantities wyp, MRS and pgp represent the ™Mp-norms" and are introduced as a
convenient notation. The conditions for N.P. and R.S. are necessary in order to
satisfy the R.P. condition. Note that ua(N,;) is a function of both the matrix
N,, and the structure of the uncertainty A. The Robust Performance condition
(21) is computed with respect to the structure diag(A,Ap), where Ap is a full
matrix of the same size as N,,. The use of u is less conservative than using
any other matrix norm. In particular,

up () < 5(N)
and the equality holds only when A is a full matrix. The use and implications
of conditions (19)-(21) will hopefully become clearer by studying how these
results apply to the distillation column example.

IV. p-ANALYSIS OF THE DISTILLATION COLUMN

Praoblem Definition

To study Robust Stability and Robust Performance of the distillation
column using p, the uncertainty and performance specifications must be defined.
The same uncertainty and performance specifications will be assumed for the
LV-configuration (3) and the DV-configuration (12). (In general, it is
reasonable to use the same performance specifications, but the uncertainty may
be different).

Uncertainty: The uncertainty with respect to the manipulated inputs
which was discussed in Section II may be represented as multiplicative input
uncertainty (Fig. 10)

Gp = G(I+wr(s)Ap), a(a) < 1 Yo (22)
where wy(s) describes the magnitude of the relative uncertainty on each

manipulated input
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wils) = 0.2 2 (23)

This implies an input error of up to 20% in the low frequency range as was
assumed for the simulations. The uncertainty increases at high frequencies,
reaching a value of one at about w = 1 min~!. The increase at high frequency
may take care of the neglected flow dynamics. For the LV-configuration it

allows for a time delay of about 1 minute in the responses between L and V
and the outputs yp and xg. It may also represent neglected valve dynamics,
dynamics for the heat transfer in the reboiler (for V), etc.

At first the uncertainty will be assumed to be unstructured, i.e., the
perturbation matrix Ar is a full 2x2 matrix. This does not make much sense
from a physical point of view, but is done for mathematical convenience. It
will turn out that this assumption does not make any difference for the LV-
configuration. The set of possible plants is now generated from Eq. (22) by
allowing any 2x2 matrix A7 which satisfies ©(A7) < 1, Wo.

Performance: We will consider the simple case with

[ 2yps
¥s 7| axps
(setpoint changes in yp and xg) as external inputs and
=y -y = YD~ YDs
S XB~XBs
as errors. These signals are related through the sensitivity function
e = =Sp ¥s, Sp = (I+GpC)_1
ys and e are related to the weighted external inputs (d) and errors (&) by
yS=w2P a, e=W1pe
and we have

Ed, E = -W,pSpWzp (24)

D>
]
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We choose to express the performance specifications through the weights

Wp = I, Wip = wpl , wp(s) = 0.5 19or! (25)

The Robust Performance specification (17) then becomes

5(Sp) < 1/|wP| , Yw (26)
This bound on the sensitivity function Sp should be satisfied for all allowable
Gp given by (22). The performance weight wp(s) (25) implies that we require
integral action (wp(0) = =) and allow an amplification of disturbances at high
frequencies of at most a factor of two uf&imlwp(iw)r‘ = 2).‘ A particular
sensitivity function which exactly matches the performance bound (26) at low
frequencies and satisfies it easily at high fr%quenoies is

s =%g—8—;7> I

This corresponds to a first order response with time constant 20 min.

Performance and Stability Conditions
With the information given above the matrix N in the AN-structure (Fig. 9)

becomes

N - [_:II:;EG Sin , S = (I+GC)™ (27)

This matrix is found from Fig. 10 by assuming that the loops are "broken"
(A7=0) at the input and output of the block Ar. As an example with A1=0, the
transfer function from the external inputs (d=yg) to the errors (e=wp(y-yg)) is

Ny, = -wp(I+GC)™*
Similarly, the transfer function from @ to the input of At is

N, = wp C(I+GC)™!
Conditions for Nominal Performance and Robust Stability are derived from (19)

and (20) by using (27)
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NP <=> 3(8) < 1/|w Yu , S = (I+GC)™? (28)
- . - . P

R.S. <> a(Hp < 1/|wg|  ¥w, Hp = CG(I+GC)™" = CSG (29)
The condition for Robust Stability is expressed in terms of © since A7 is
assumed to be a full matrix. Note that S is the nominal sensitivity function
at the output of the plant, while Hy is the closed loop transfer function as
seen from the input of the plant. In some cases GC = CG (in particular this is
the case for the controllers C.(s), C.(s) and Cs(s) in our examples) and we have
Hr=H, H=GCI+GC)™*=1-35
where H is the closed loop transfer function as seen from the output of the
plant. However, this will generally not be the case for multivariable
systems.
The Robust Performance specification (26) should be satisfied for all
plants given by (22). From (21) one finds
R.P. <=> u(AIAP)(N) <1, Ve (30)

Analysis of the LV-Configuration

The set of possible plants is given by (22) with G = Gy (3). We will

analyze the LV-configuration for the inverse-based and the diagonal controller.

Ci(s) = cu(8)Gyy (s) (31)
Cu(s) = 02(5)[3) _01] (32)
We will first consider the choices c¢,(s) = % and c¢,(s) = w used
in the simulations in Section II, and then let
o) = K, oe) - KT 33)

and see if Robust Performance can be improved with other choices for k;, and k..

Finally, we will consider the "u-optimal" controller, Cu(s), i.e., the
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controller which minimizes ugp. We found this controller through a software
package which uses a somewhat simplified version of the p-synthesis procedure
described by Doyle (1985). The simplification involves only considering the
upper left corner when minimizing the He-norm of Eq. (7.3) in Doyle's paper
(1985)., This means that the resulting controller is not necessarily optimal.

Nominal Performance and Robust Stability. One way of designing controllers

which meét the N.P. and R.S. specifications is to use multivariable loop
shaping (Doyle and Stein, 1981). For Nominal Performance, 0(GC) must be above
|wP| at low fr'equenoiest For Robust Stability with input uncertainty, &(CG)
must lie below 1/|w1| at high frequencies (Fig.' 11)._

For the inverse-based controller (31) we get §(C,G) = o(GC,) = Icll and it

is trivial to choose a c¢,(s) to satisfy these conditions. The choice c,(s) =

%—7 which was used in the simulations gives a controller which has much

better nominal performance than required, and which can allow about two times
more uncertainty than assumed. This is also seen from Fig. 12 and 13 where
the Nominal Performance and Robust Stability conditions (28) and (29) are
displayed graphically.

For the diagonal controller (32) we find 5(C.G) = 1.972 'cz| and o(GC) =
070139 Icz|, and the difference between these two singular values is so large
that no choice of ¢, is able to satisfy both N.P. and R.S. This is shown

2.4(1+75s)

graphically in Fig. 12 and 13 for the choice c,(s) = 3

Robust Performance. In the case with input uncertainty a sufficient

("conservative") test for Robust Performance in terms of singular values is
(Doyle, 1986)

RP. <= Y- 5(wpS) + S(wHp) <1 ¥u (34a)
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or R.P. <= g(wpS) + Y - G(wiHp) <1 ¥w (34b)
Here Y denotes the condition number of the plant or the controller (the
smallest one should be used). These conditions indicate that the use of an
ill-conditioned controller (Y(C,)=141.7) may give very poor Robust Performance
even though both the Nominal Performance (G(wpS)<1) and Robust Stability
conditions (G(wiHr)<1) are individually satisfied. If a controller with a low
condition number (Y(C,)=1) is used we see that we get R.P. for "free" provided
we have satisfied N.P. and R.S. This is always the case for SISO systems and
gives a partial explanation for why Robust Performance was never an important
issue in the classical control literature (Doyle, 1986).

Conditions (34) are very useful since they directly show how the Robust
Performance condition is related to N.P. and R.S. and the condition number.
However, (34) may be very conservative and in order to get a "tight" condition
for R.P. the p-condition (30) has to be used where N is given by (27). u for
R.P. is plotted in Fig. 14 and 15 for the two controllers C,(s) and C,(s) used
in the simulations. As expected, the inverse-based controller C.(s) is far
from meeting the Robust Performance requirements (pgp is about 5.8), even
though the controller was shown to achieve both N.P. and R.S. On the other
hand, the performance of the diagonal controller C,(s) is much less affected
by uncertainty. (ugp = 1.71).

Optimizing k, and k, wrt. R.P. For the inverse-based controller the "optimal"

value for k, is 0.14 corresponding to a value of ygp equal to 3.3 which stilf
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implies poor performance. This value for k, seems reasonable since it
corresponds to a loop shape k,/s which is further away from the R.S.
constraint in Fig. 11.

For the PI-controller, the optimal gain is k, = 2.4, which is the value
already used (ugp = 1.70). It is not clear how low ugp can be made if C(s) is
only restricted to be diagonal (decentralized control); we were able to get uRp
down to 1.42 by a trial-and-error procedure.

u-Optimal Controller. The synthesis method (Doyle, 1985) used to design the

"w-optimal™ controller gives controllers of very high order, but by employing
model reduction, we were able to find a "p-optimal" controller with 6 states.
u for R.P. for this controller is shown as a function of frequency in Fig. 16.
(The p-plot is not quite flat as it should be for the optimal case). The peak
value for p is 1.06, which means that this controller "almost" satisfies the
Robust Performance condition. This value for pgp is significantly lower than
for the diagonal PI controller, C,(s), and the time responses are also better
as shown in Fig. 16 and 17. 1In particular, the approach to steady state is

much faster. The state space realization of this p-optimal controller is

shown in Fig. 18. At low frequencies the controller is approximately

cyts) = 12758 [13% %] w<on (35)

The condition number at low frequency is 2.1, and the controller gives some
compensation for the directionality of the plant (Y(G) = 141.7, while Y(GC)) =
Y(C,G) = 66.5).

Structure of Ar. Note that A7 was assumed to be a "full" matrix in all the
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calculations above. It turns out that for this particular plant (3), the same
values are found for ugg and ugp also when Ar is assumed to be diagonal, which
is a more reasonable assumption from physical consideration (there is no
reason to expect that the manipulated variables will influence each other).
For the DV-configuration below. It is of crucial importance to model A7 as a
diagonal matrix and not as a full matrix.

Analysis of the DV-Configuration

The set of possible plants is given by (22) with G = Gpy (12), but with Ar
restricted to be diagonal. We will again consider an inverse-based and a

diagonal PI controller
Ks -1
Ca(s) = 3 GDV (S) (13)

1+1s [-0.15 0
Culs) = —5 Lo —7.5] (36)

In the simulations in Section -II we studied the controller C,(s) with k; = 0.7.
For this controller the Nominal Performance and Robust Stability conditions
are identical to those of controller C,(s) and the LV-configuration. However,
based on the simulations and other arguments presented before, u for Robust
Performance is expected to be much better. This is indeed the case, as seen
from the p-plots in Fig. 20. uwgp is 0.965, which means that the performance
criterion is satisfied for all possible model errors. The uncertainty block A1
was assumed to be diagonal. If A7 were full (which is not the case) the value
of ugp is about 4.1. The reason for the high value in this case is that the
off-diagonal elements in A7 introduce errors in D when V is changed.

Even lower values for u are obtained by reducing the gain k, in C,(s) from

0.7 to 0.13._ ka = 0.13 gives pgp = 0.63. In fact, this controller seems to be

very close to the p-optimal controller for this plant, as we were not able to
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reduce ygp below this value by applying the software.

With C.(s) which consists of two PI-controllers, wygp = 1.15. This is
almost acceptable, although the value of ugpp is significantly higher than for
the inversed-based controller C,(s) with k; = 0.13. Thus a decentralized

oH5
controller gives acceptable performance in spite of the value of 9/5/ for the

RGA which indicates strong interactions (Grosdidier, 1986)).

The potential conservativeness in using o instead of u is clearly
illustrated by considering the Robust Stability test for this case (Fig. 21).
Using uAI(HI) (A7 diagonal) we see that the system satisfies the R.S. condition.
However, by looking at G(Hy) (or equivalently by computing u with Ar a full
matrix), we would erroneously expect the system to become unstable for very

small errors on the inputs.

V. UNCERTAINTY MODELLING

In this section we will first discuss in somewhat general terms how to
quantify uncertainty and then consider as an example, other sources than input
uncertainty for the distillation column. In order to use the framework for
analyzing systems with uncertainty outlined in Section III, we need to model
the uncertainty as norm bounded perturbations. Since the uncertainty
structure is very problem dependent, it is difficult to give general methods
for how to do this. However, the examples given below for the distillation
column should be sufficient to show that most uncertainties occurring in
process control can be modelled as norm bounded perturbations.

Choosing the Right Structure

It may be very important that the correct structure is chosen for the
uncertainty description, i.e., that the uncertainty is modelled as it occurs

physically. We will illustrate this by considering the following two examples:
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- multiplicative uncertainty at the input (Fig. 22A) or at the output of
the plant (Fig. 22B)

-  output uncertainty as multiplicative (Fig. 22B) or inverse
multiplicative uncertainty (Fig. 22C)

Choices of Multiplicative Uncertainty. The distillation column (and any other

plant) has multiplicative uncertainty at the input of the plant. Simply
shifting this uncertainty to the output of the plant (and using wp=wy) will, in
general, give a completely different system. As an example, for the LV-
configuration using controller C,(s) we found ppp = 5.78 with the uncertainty
at the input of the plant, but pgp is only 0.96 if this uncertainty is shifted
to the output. Recall condition (34) which showed that with input uncertainty
and using an ill-conditioned controller, Robust Performance might be poor even
when the R.S. and N.P. conditions were satisfied individually. We do not have
this problem when the uncertainty is at the output. In this case we get a R.P.
condition similar to (34) but without the condition number

R.P. <= o(wpS) + G(woH) <1 Vuw
This illustrates that output uncertainty usually puts much less constraints on
the design of the controller than input uncertainty, and for ill-conditioned
plants one should be careful to model the uncertainty at the location where it
is actually occurring.

Choices of Output Uncertainty. We will show below that parametric uncertainty

in the time constant may represented as inverse multiplicative uncertainty

(I + weA)T'G (37)
Approximating it as the seemingly similar multiplicative uncertainty

(I + wplp)G (38)

has drastically different implications. For Robust Stability (37) imposes a
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constraint on the sensitivity
u(S) < VWl » S = (I+GC)™! (39)

and (38) on the complementary sensitivity

u(H) < 1/([wp|) » H = GC(I+GO)™ (40)
(37) is best suited to describe pole variations while (38) is better for the
modelling of zero variations. (37) cannot be used to describe uncertain high
frequency dynamics. (38) cannot be used to model plants which have poles that
can cross the jw-axis.

Simplify if possible. The two examples above illustrated that it may be very

important to model the uncertainties as they occur physically. However, this
is not always of crucial importance, and whenever possible the uncertainty
description should be simplified by lumping various uncertainties into a single
perturbation. There are two reasons for this: 1) Computations are simpler, 2)
Introducing too many sources -of uncertainty may be very conservative since it
becomes very unlikely for the "worst case'" to occur in practice. In
particular, the individual uncertainties may be correlated, and it may be
impossible for the "worst case" to occur. This will be illustrated for the
distillation column later.

Representing Nonlinearities as Uncertainty for the Distillation Column

In addition to the input uncertainty, the main source of "uncertainty" for
the distillation column are nonlinearities. All the developments below are
for the LV-configuration. However, because of (11) they also apply to the DV-
configuration.

A simulation using the equations given in the Appendix and the input
uncertainty (7) reveals that the system is unstable with the inverse-based

controller C,(s) (6). Our linear analysis predicted Robust Stability, and the
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reason for the discrepancy are nonlinearities which were neglected. One way
of handling nonlinearities within a linear framework is to treat them as
uncertainty. This is clearly not a rigorous way of handling nonlinearities,
but this approach is taken in lack of anything better.

Nonlinear open loop responses to large changes (+6.2%) and a small change
(0.003%) in boilup V (keeping L constant) are shown in Fig. 23. These
responses may be approximated by linear first order responses:

-1.380
T3s5+1

_ dyp -0.047
V + 6.2%. [GXB] = W dav (lHa)

-0.933
2675+1

dyp | 1.027
Vv o+ o‘,_oo3%: [de} = | =75 | AV (41b)

" 0.045 )
I65+1

V- 6.2%: [jig] 2 —,}éfs’% av (41c)
Note that the smallest eigenvalue of the linearized plant corresponds to a
time constant of 220 min. The value T = 75 min used in the nominal model (3)
represents an average value of the time constants found in the nonlinear
simulations.

Time constant uncertainty. From the following simple formula for estimating

the linearized time constant (Skogestad and Morari, 1986b).

NTM;i/F

T = Zms” (h2)

z = %-(1-YD) YD +-§ xp(1-xp)

_ yp{1-x5)
InS 1n 50D
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\ff{e find that the time constant reaches its largest value when both products
have equal purity (xB=1—yD=O.Oj), and this explains the observation that the
time constant is large for small changes in V and much smaller for large
changes. In our case Ny = 41, Mj/F = 0.5 min, z = 0.01, InS = 9.19 and we find
Te = 223 min. The new steady state reached by increasing V by 6.2% is yp =
0.71403, xg = 0.000602. For this operating point we find InS = 8.33, z = 0.102
and 1o = ol min. The observed variations in the time constant may be captured

with the following linear model

1

- 0
1+tpS
o) = | D R (432)
0 T+1pS
tp = t(+rgdep), |A1D| <1 We (43b)
8 = T(1+rTATB) , IATB' <1 Yu (43c)

Here 1 = 75 min and r; is a constant expressing the relative uncertainty in
the time constants._ The scalars Arp and Aqgp are independent which allows for
different values for tp and tg. Note that this model implies that both inputs
always have the same time constant with respect to yp and xg. This is indeed
what is observed when linear analysis is applied at different operating points,
and this also applies to disturbances in F, zp, etc. This pole uncertainty may
be written in terms of an inverse multiplicative uncertainty at the output of
the plant as shown in Fig. 24. It is fortunate that it occurs at the output
since we know that the system is less sensitive to uncertainty at the output
than at the input of the plant. Also note that this kind of inverse output
uncertainty puts a constraint on the sensitivity function S, similar to a
performance requirement. The Robust Stability test for this uncertainty alone

is
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Ha,(8) < 1/|wT' , we(s) = r¢ —T;—i

where A; is a diagonal 2x2 matrix. Clearly, we need r¢ < 1 to satisfy this
bound. It may seem strange that we have chosen the nominal value of 1 to he
75 minutes, since it is clearly not possible to include even the linearized
time constant (230 min) in the model (43). Recall, however, that we are trying
to represent a nonlinear system. The linearized time constant only applies in
a very small operating region, and as the system moves away from this steady
state (maybe because of instability) the time constant will be small. It is
therefore much more important to include the smallest value observed for the
time constants in the approximation (43).

Gain uncertainty. We observe from (41) that the linearized gains vary

tremendously with operating conditions. However, the gains are clearly
correlated and it is of crucial importance to take this into account to avold a
hopelessly conservative uncertainty description. If the elements in the steady
state gain matrix (3) were assumed to be independent, the gain matrix would
become singular for relative errors in each of the elements exceeding

(Skogestad & Morari, 1985)

1 1
= = 0.007 44)
ey 1383
Here Y*(G) is the minimized condition number
Y¥(@) = min Y(D,GD,) (45)

19v2
D, and D, are diagonal matrices with real, positive entries. Physically

we know that the distillation column will not become singular and a more
structured uncertainty description is needed. Skogestad and Morari (1986c)
have suggested that for small changes in D/B the variations in the steady

state gains may be captured with additive uncertainty on the elements using a
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single perturbation Ag- For the LV-configuration

1 -1]
Gva(O) = GLy(0) + rg Ag l_g —D—}
B

Agl <1 (L6)

~G1y(0) + [ 1D] rg bg [1 11,

This model does not match our date%%oo well, where large variations in D/B are
observed. .However, under closed loop we do not expect large changes in D/B,
though the changes in L and V individually may be large and (46) with D/B = 1
will be used to represent the gain variations.

It is important to note that the additive uncertainty in (46) does not

change the singular vectors ¥ and v. A SVD of the perturbation matrix

H '” in (46) yields

7 - [0.707] - [0.707]
-0.7074 °’ -0.707

The direction of the "input" singular vector ¥ is the same as that of the
nominal plant (3), while the "output" singular vector G is almost perpendicular
to that of the nominal plant. This means that this source of nonlinearity is
also Mnice" in that it mainly changes the plant at the output. Physically this
means that changes in the external flow (D and B) are always the changes with
the largest effect, and this is exactly what we would expect from physical

considerations, also for the nonlinear plant.

Choice of values for rp and rg. There is clearly a correlation between the

variations in the time constant and gains which is not captured by the proposed
uncertainty description (Fig. 24). However the main effect of Dboth these

uncertainties is to change the direction of the output singular vectors, u and
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4. None of them add RHP-zeros. In order to make computations simpler and to
avoid conservative results (by neglecting the correlation between A; and Ag), a
reasonable approach may therefore be to use only one of these uncertainties to
describe the effect of nonlinearity. This is the approach taken here and we
choose £o use the time constant uncertainty only. One reason for not choosing
the gain uncertainty, is that this introduces uncertainty at steady state,
which will normally not be the case since the setpoints are not changed
significantly.

The trajectory taken by the plant under closed loop may be very different
from the open loop responses, and open loop data such as (41) may not be
appropriate to determine the value of r¢. We therefore decided to use
nonlinear closed loop simulations to find an appropriate value for rq. In

particular, closed loop simulations which are at the limit to instability are

convenient, since these results may easily be compared to values of prg for

the robust stability of the linear approximation. To determine the value of

r the following procedure was used:

1. Nonlinear closed loop simulations were carried out for a large feed rate
disturbance (+30%) with the inverse-based controller C,(s), k, = 0.7.
The feed rate disturbance was chosen as the most difficult disturbance
(Skogestad and Morari, 1986a) which would take the system furthest away
from the nominal steady state. To make the elements in the matrix (9)
large, the relative errors on the manipulated inputs L and V were chosen
with different signs. These errors were increased until the system was
at the limit to instability. The limiting values were

dL = 1.04 dL, dV = 0.96 dV,

2. uRrg was computed for the LV-configuration with 4% input uncertainty
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(wy=0.04) and with various values for the relative uncertainty on the

time constants, rq. rq = 0.35 was found to give wgg = 1, i.e.,

correspond to a system at the limit to instability.

The value found for r; using this procedure is clearly not the only
possible (note that no error was assume in the gains), but hopefully
represents a reasonable compromise between representing all possible plants
and avoiding a very conservative uncertainty description.

Effect of additional uncertainty on ugs and ugp. With the additional time

constant uncertainty (43) the interconnection matrix N becomes

-wiCSG  -WiCS  wiCS

wSG weS  wo(I-8)

N=| wpsg  wpS  -wpS (7

u(N) for R.P. (Table 2) is computed with respect to the structure
diag{Ar,A¢,Ap} where A7 and Ap are mfull" 2x2 matrices and A¢ is a diagonal 2x2
matrix. For computational convenience the matrix A; is assumed complex.

The inverse-based controller C,(s), is, of course, not robustly stable. (It
was shown to be unstable with 4% input uncertainty and now there is 20%).
uRg is increased from 0.53 to 4,77 by adding 35% time constant uncertainty.
The p-values for the diagonal controller, C,(s), and the "p-optimal", Cu(s), are
seen to be only weakly influenced by adding the pole uncertainty. Robust
stability is still predicted for the py-optimal controller. This is confirmed
by nonlinear simulations.

To confirm that the gain uncertainty does not significantly change these

results, similar calculations were also done with the nonlinearities
represented as uncertainty on the gains (Table 3). Interestingly enough, it

turns out that choosing rg = 0.35, rp = 0 gives very similar results as rg = 0,
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rp = 0.35, although u increases more for low and less for high frequency with
the gain uncertainty (Fig. 25). Furthermore, combination of these uncertainties
were found to add up approximately in a linear fashion with respect to the
value of p. This confirms that in this case, these two sources of uncertainty
(pole and gain uncertainty) have a very similar effect on the plant, and that
for computational simplicity we need to use only one of them. Similar results
are found f‘or‘ the pv-configuration (Table 3), although the pole uncertainty is
found to be worse thman the gain uncertainty.
The conclusions with respect to the effect of the nonlinearities for the
distillation column are
1. The main effect of the nonlinearities is to change the "directions" at
the output of the plant.
2. Representing this effect by uncertainty in the time constant seems to be
a good approach.
3. Since output uncertainty may be thought of as a output "disturbance",
controllers which were found to give good Robust Performance in Section

IV, are not affected very much by these nonlinearities.

VI. RELATIONSHIP TO THE RGA

Because of the extensive use of the RGA as a tool for evaluating control
configurations for distillation column (Shinskey, 198”), we will briefly discuss
some relationships between the RGA and uncertainty for 2x2 systems.

As defined, the RGA is primarily a tool for investigating the use of
decentralized control. FEach element in the RGA is defined as the open loop
gain divided by the gain between the same two variables when all other loops

are under "perfect" control
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(3y3/ auj)uk;éj Gain all other loops open

Mj = (Gyi/3uzduy gy ~ Gain all other loops closed (48)
For 2x2 plants
A 1-A11 1 E1282:
RGA = \:1—)\“ s ] N T v (49)

The RGA therefore tells something about how the system is changed as loops
are changed from being "open" to being "closed". Such changes are frequently
done in the process industry, for example due to failures in measurements or
actuators, and it is clearly desirable to be able to do this without upsetting
the rest of the system or having to retune the controllers. It is therefore
desirable to choose pairings of inputs and outputs which have Aij close to one.
Pairing of variables with negative values of Aij is not desirable since the
loop gains in this case may change sign as we open or close other loops.
Consequently, from the definition of RGA we can clearly see some useful
properties of this measure. However, the RGA is used as a measure of control
quality in a much wider sense than suggested by its definition. In particular,
large elements in the RGA are suggested to imply a plant which is
fundamentally difficult to control. We will look at this in the context of
uncertainty.

Result 1. Relative Uncertainty (2x2) (Skogestad & Morari, 1985)

Let the uncertainty be given in terms of equal relative errors r on each

of the individual elements

g1 (1+ray,) g.1.(1+rA,,)
P~ [821(1+PA21) Eoo(1+00) | |A13l <1 (50)

The plant will remain nonsingular for any real perturbations IAij|<1 if and

only if
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1

@ B1)

r <

which is satisfied if

1

r < TTRGATT; * | |RGA| |, = 2|>\“| + 2|]—)\11| (52)
The result in (51) has already been used in (44). Note in particular that it is
impossible to have integral control for a plant which may become singular at
steady state. Consequently, if there are large values in the RGA and | |RGA||,
is large, we can allow only very small uncertainties in the elements without
having control problems. The main restriction with this result is the
assumption made about the independent uncertainty on the elements. For
distillation columns, even though ||RGA||, is large and the elements in G may
vary widely with operating conditions, the elements are strongly correlated,
and it can be shown that the plant will never become singular. For
distillation column control, Result 1 does therefore not "explain" why plants
with large values of the RGA are difficult to control. However, since
uncertainty on the manipulated inputs is always present, and since performance
is usually measured at the output of the plant, the following result is of

more interest.

Result 2. Input Uncertainty (2x2)
Let A, and A, represent the magnitude of the relative uncertainty of each

of the manipulated inputs. The matrix GAG™' (Eq. 8) becomes

g2
Ay — (A-A
N s
A SeEh (A-45) A2l A
B

The matrix GAG™! arises when we have input uncertainty and use a inverse-based

controller. As argued before, large elements in the matrix GAG™! implies that
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the system is sensitive to this uncertainty. The following is clear from (53)

1. Large values of A, always imply poor performance since the diagonal
elements will be large in magnitude.

2. However, performance can be bad even if A,; is small. This will happen
if g,,/822 OF g2,/8:, is large. One example is a triangular plant which
always has A,, = 1, but which will be sensitive to input uncertainty if
the 6ff—diagonal element is large.

If an inverse based controller is not used, the arguments above do not
hold. However, in this case the response will be strongly dependent on the
disturbance directions. In conclusion, Eq. (53) at least gives one reason for

why distillation columns with large elements in the RGA are fundamentally

difficult to control.
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Appendix. Simplified nonlinear dynamical model of distillation column with
total condenser.

Assumptions:

- Constant molar flows

- No vapor holdup (immediate vapor response, dViop = dVptp)

- Liquid holdup Mj constant (immediate liquid response, dLtgp = dlptm)
- Vapor Liquid Equilibrium (VLE) and perfect mixing on each stage

- Perfect level control in accumulator and column base, pressure

constant
N - no. of equilibrium (theoretical) stages including the reboiler
N7=N+1 - total no. of stages including total condenser
Np - feed stage location

Material balance describing change in holdup of light component on each tray:
i=2,N (ifNp, 1 ANpdR):

Mi%i = Lisq Xie1 * Vi1 ¥Vi-1 - Li x4 - Vi i
Above feed location, i = Np + 1

Mij%j = Li+1 X1 * Vi-q¥i-1 - Lixy - Viyi + Fyyp
Below feed location, i = Np

Mi%i = Li+1 Xis1 * Vi-1 Vie1 - Lixi - Viyi + FLxp
Reboiler, i = 1

Mpki = Li+1 Xi+1 - Vivi - Bxi, XB = X
Total condenser, i = Nt

Mp%j = Vi-1 ¥i-1 - LiXi - D Xi,  ¥p = XNg
VLE on each tray

yi = mx—l , 1 = ?,N
Flow rates
i > Np (above feed): Lj =L, Vi
i < Ng (below feed): Ly L+F, Vi
F, = gfF , Fy = F - F,
D Ny - LNy = V + Fy - L (accumulator holdup constant)
L, - V, = L + F, - V (column base holdup constant)

V + Fy

I
<

B
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Compositions xp and yg are found by solving the flash equations for the feed

Fzp = Fxp + Fyyp
OXp

YF = T+(a-1 SXF
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Binary separation, constant molar flows

Relative volatility a=1.5

no. of theoretical trays N =}O

Feed tray location Np = 21

Feed rate and composition F = 1 kmol/min, zg = 0.5
Fraction of liquid in feed qgr = 1.0

Product compositions yp = 0.99, xg = 0.01

Product rates D = B = 0.5 kmol/min

Tray holdup Mj; = 0.5 kmol, 1 = 2,40
Accumulator and column base holdup Mp = 32.1 kmol, Mp = 11.1 kmol

Computed at steady state from nonlinear model (Appendix)

Reflux rate L

2.71 kmol/min (1.39 Lpin)

Boilup rate V = 3.21 kmol/min

Linearized steady state gains

dyp| T0.878 -0.8647] [dL] , [0.394 0.881
ldeJ - [1.‘082 -1.096] [dv] * [0.586] aF + [1;119] dzF

Table 1. Data for distillation column example.
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5s+1

Input Uncertainty, wy = 012 DEs+T

rq=rg=0 r;=0.35 rg=0.35
NP MRS MRP | RS MRP | MRS  WRP
LV-configuration
Inverse-Controller, C;(s),k;=0.7 0.50 0.53 5.78| 4.77 7.50| 4.83 7.53
Diagonal PI, Cn(s),k,=2.4 1.50 1.39 1.70| 1.61 1.91| 1.47 1.82
Optimal Inverse, C,(s), k, = 0.14 0.50 0.20 3.29| 2.60 4.18| 2.62 14.19

"u-optimal", C(s) 0.79 0.72 1.06| 0.99 1.29| 0.87 1.24

DV-configuration

Inverse-controller,C,(s),ks=0.7 0.50 0.53 0.97| 0.83 1.18| 0.53 1.07
Diagonal PI,C.(s) 0.81 0.37 1.14| 0.85 1.61| 0.61 1.45
Optimal Inverse,C,(s),ks;=0.13 0.50 0.20 0.63| 0.47 0.811 0.20 0.73

Table 2. Values of uyp, Mg and wrp for distillation column with diagonal input
uncertainty, and effect on wgs and pgp (uyp is unchanged) by adding time

constant uncertainty (r;) and gain uncertainty (rg).
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Figure 1. Classical linear feedback structure with error e as input to
the controller. d represents the effect of the disturbance
on the outputs-y.
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Figure 2. Two product distillation column with single feed and total

condenser. Details are shown of the flows and holdups on a
plate.
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Figure 3 and 4. Closed loop responses Ayp and Axg with inverse-based
controller, C,(s8), k, = 0.7 (time in minutes).
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Figure 5 and 6. Closed loop responses Ayp and Axg with diagonal controller,
C.(s), k, = 2.4 (time in minutes).
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Figure 7 and 8. DV-configuration. Closed loop responses Ayp and Axg with
inverse-based controller, C.(s), ks = 0.7 (time in minutes).
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A = diag{Al’ evay An}

EM—
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d
Figure 9. General representation of system with uncertainty A. d
: represents weighted external inputs, e represents weighted
errors.
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Figure 10. Block diagram of system with input uncertainty and with
: setpoints as external inputs. Rearranging this system to fit
Fig. 9 gives N as in Eq. (27).
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Figure 11. Multivariable loop shaping. For Nominal Performance, gﬂGC)

must lie above LwP| at low frequencies. For Robust
Stability with input 'uncertainty, G(CG) must lie below 1/|w1|
at high frequencies.
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Figure 12.

Figure 13.

Figure 14.
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The inverse-based controller, C,(s), k; = 0.7 has much better
Nominal Performance than required by the condition §(S) <
1/pr4, ¥w. The diagonal controller, C,(s), k, = 2.4, does
not satisfy the N.P. condition at low frequency.

The inverse-based controller, C,(s), k; = 0.7 is guaranteed
Robust Stability since G(Hp) < 1/|wll , ¥Yw. The diagonal
controller, C,(s), k, = 2.4 will give an unstable system for
some of the plants defined by (22), since the R.S condition
is not satisfied at all frequencies. :

6]
- RP
4—
2......
13 NP
-__R_S _________ Pl N
T3 T2 -1 I 1 12

= The
—plots for inverse-based controller, Ci(s), k, = 0.7.
1;,ygtem has very good performance when t}hg plant is equal to
the plant model, and is guaranteed stability for all plants

given by (22), but robust performance is poor.
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Figure 15. u-plots for diagonal controller, Ci(s), k, = 2.4.

Figure 16. u-plots for "u~optimal" controller, Cu(s)._
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Figure 17 and 18. Closed-loop responses Ayp and Axg with "u—oﬁtimal"
controller, Cu(s) (time in minutes).
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y-plots for inverse-based controller,

Robust Stability for controller C.(s).

Using G(Hr) instead of u(Hy) will be very conservative in this
case, and one would mistakenly conclude that the system
does not satisfy the R.S. condition u(H) < 1/|wr|-



_52—

A
FG—F
Yo Aol
B
G Vo
Zﬂs'r — VV—P
C
+G ¥

Three common uncertainty representations. (A) Input
multlpl%catlve uncertainty; (B) Output multiplicative
uncertainty; (C) Output inverse multiplicative uncertainty.

Figure 22.
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(—) Nonlinear open loop responses Ayp and Axg for changes
in boilup V (reflux L constant).
(---) Approximation with linear first order response (Eq.

).
A: 'V + 6.2%, B: V + 0.003%, C =V - 6.2%.

Figure 23.
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Figure 24, . Block diagram representation of gain uncertainty and time
constant uncertainty.
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Figure 25.

p-plots for R.P. for diagonal controller, C.(s), k, = O.7.
The addition of gain or time constant uncertainty is seen to
have a similar and not too significant effect on the value
of u.

(—)d):r; = rg =0, (==):rg =0.35, {===9: r; = 0.35






