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It has been shown previocusly (Morari, 1983) that the quality of con-
trol achievable for a certain system (its dynamic resilience) is 1lim-
ited by the nonminimum phase characteristies of the plant, constraints
on the manipulated variables and model uncertainty. Model uncertainty
requires the controller to be detuned and performance to be sacri-
ficed. The goal of this paper is to quantify this well known qualita-
tive statement. A general discussion of the model uncertainty problem
is followed by the derivation of two sensitivity measures, the condi-
tion number and the structured singular value. Both require minimal
assumptions about the controller, and are relatively easy to evaluate.
Therefore they should be effective tools for screening alternate
designs in terms of their resilience characteristics.

Introduction

Increased process integration and tight operating conditions are put-
ting greater demands on plant control system performance than any
time in the past. If a plant is designed only on the basis of steady-
state considerations, then it is not uncommon that unfavorable process
dynamics make it impossible to achieve the expected steady—state per-
formance. For years it has been demanded by representatives of indus-
try and academia that control aspects should be paid attention to
during the design phase rather than afterwards. It has been postu-
lated that well designed plants would be easy to control and that
advanced control techniques would be uncalled for. What has hampered
progress until now is that - short of simulation - no techniques for
the assessment of "controllability" of a particular design were avail-
able, Simulation is complex and has a number of shortcomings: A
complete dynamic model has to be available, specific controller struc-
tures, types and parameters have to be assumed, and specific inputs
have tq be chosen which might or might not correspond to those actu-
ally occurring in practice. All these choices might bias the selection
of the "most controllable" design in an erroneous manner,

Dynamic Resilience of the Nominal Plant

Morari (1983) suggested to remove the problem of "controllability"
assessment from the problem of controller selection. The best closed
loop control performance achievable for a system for all possible
constant parameter controllers was defined as its dynamic resilience.
Thus "dynamic resilience" is an expression of the system inherent limi-
tations to control quality which is not biased by possible controller
inadequacies. The evaluation of dynamic resilience was simplified
through the use of the Internal Model Control (IMC) structure depicted
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in Fig. 1B. It can be shown to be equivalent to the classic feedback
structure in Fig. 1A through the transformation

Q = (I+CP)C (1a)
¢ = (I-QF)"Q (1b)

We assume throughout the paper that the nxn plant P with u as its
input and y as its output is open loop stable. P is generally differ-
ent from the model or nominal plant P, "Q is the IMC controller and C
the classic feedback controller. For the IMC structure

y = PQU+(P-P)Q)"! (r-d) + d (2)
and in the case of no model-plant mismatch (p=P) we have

y = PQ(r-a) +d
= H(r-d) +d (3)

where we have defined Q = P~ .

Ideally the nominal closed—loop transfer matrix i = I and perfect con-—
trol would be achieved. However, generally, there are prgperties in-
herent in the plant itself which prevent us from choosing H = I. From
(3) it is clear that for stability Q should be stable. Thus H has to
contain all the RHP zeros of P to cancel the RHP poles of P™!. Also Q
has to be causal which implies }hat H generally has to include delay
terms when they are present in P. ~Finally, Q has to be proper for the
control action to be bounded. If P is proper this requires H to roll
off sufficiently fast at some frequency, which depends on the tight-
ness of the constraints. These three limitations (RHP zeros, time
delays and constraints on the control action) on the quality of con-
trol which can be achieved have been discussed in quantitative detail
by Morari (1983) and Holt and Morari (1984) and will not be considered
further in this paper.

The Effect of Uncertainty

If the actual plant is not equal to the model (p £ B), (2) rather than
(3) describes the closed loop relationship and the stability of Q is
not sufficient for closed loop stability. For robust stability it is
both necessary and sufficient that f is chosen such that

(det (T+(P-P)P™ ') ()

does not encircle the origin as s traverses the Nyquist D contour for
any_plant P within the family @ of possible plants. Thus, the choice
of H is further restricted by the requirement of robust stability.
The objective of this article is to present a framework within which
the limitations on the nominal response H imposed by model uncertainty
can be evaluated.

Let us first discuss the steady state (w=0) robust stability condition.
If there are only performance requirements at o = 0 then the robust
stability requirement at all other frequencies can be satisfied easily
by rolling off H sufficiently fast. (For H small enough (4) is always
nonzero regardless of (p-P)). (4) will always encircle the origin if
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it starts (w=0) on the negative real axis. Thus, a robust controller
with steady-state offset o for the nominal plant, i.e.

A(0) = (1-a)I (5)
exists if and only if

det (=2

1-a

I+P(0)P(0)™1) > 0 ¥Pe T (6)

It follows that a robust controller with integral action (o=0) exists
for the family Il if and only if

det(P(0)P(0)"Y) > © ¥Pe 1 (7

Plants for which the determinant of the steady-state gain matrix
changes sign, cannot be controlled with controllers containing integ-
ral action. (7) also tells us that the only information we need about
a plant in order to have perfect steady state control is the sign of
the "gain" of the plant expressed as the sign of detP(0).

Nothing has been assumed about the description of the set I of possi-
ble plants. However, in order to get quantitative bounds on H for
nonzero frequencies, such descriptions are needed. Before introducing
them we will briefly discuss what kinds of uncertainties are typically
found in process industries.

Types of Uncertainties in the Process Industry

1. All real processes are nonlinear. The "poor mans method" for
dealing with nonlinear systems is to use linear models with "unc-
ertain" coefficients arising from linearization at different
points of the operating region, This introduces "uncertainty"
over the whole frequency range.

2. Some processes are represented quite accurately by linear models.
However, different operating conditions can lead to changes of
the 1linear model parameters, For example throughput/flowrate
changes can affect deadtimes and time constants.

3. Finally, even though the underlying process might be essentially
linear, the model parameters and even the model order are rarely
known precisely. This type of uncertainty is relatively small at
low frequencies and tends to increase with frequency.

Uncertainty Descriptions

Associated with each element of a transfer matrix are generally
uncertainties of all three types discussed above, The overall result
is that the frequency response at each frequency lies in some region
in the complex plane. The shapes and sizes of these regions can vary
greatly. Most commonly these regions are approximated by discs in
the complex plane. These discs have frequency dependent radius 25 (w)
and are centered at the frequency response of the 'mominal" plant.
Depending on the shape of the "true" region, the disecs may include
many extra plants, and may thus impose conservativeness on any res-
ults derived from such a description.

One attempt to generalize the uncertainty structures is reported by
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Chen and Brosilow (1984), They allow regions of completely general
shape and not just circles and then perform a '"region arithmetic" to
test for robust stability and performance. The procedure is com-~
pletely numerical, also conservative and depends on the choice of a
particular controller.

In the following we will study two types of uncertainty descriptions
for transfer matrices. The first type is matrix norm bounds, which
require no knowledge about bounds on the uncertainty of the individual
elements. This is called an nunstructured" uncertainty description by
Doyle (1982). The other type of uncertainty description assumes
uncertainty norm bounds for the individual elements to Dbe available
which makes it possible for the uncertainty to be "localized" in par-
ticular elements. The Structured Singular Value (Doyle, 1982) is a
valuable tool for analyzing these nstructured" uncertainties.

Bounds on H Imposed by Uncertainty

A. Uncertainty described by matrix norm bounds

There are three commonly used ways of describing the uncertainty of
transfer matrices (Doyle & Stein, 1981); multiplicative output and
input uncertainties

P = (I+Lg)P or Lg = (P-P)F7? (8a)
p = P(+Lp) or Ly = PT'P-P) (8b)

and additive uncertainty _ .
p = P+ LporLy = (PP) (8c)

Three different families T of plants are obtained by defining norm
bounds on these uncertainties

g = {P: ||L0H < fo(w)} (9a)
np = {P: |[Lg]] < 21w} (9b)
My = {P: |{uall < 2aw)} (9¢)

Here ||+|| denotes the induced 2-norm of a matrix, g and &y are gen-
erally small at low frequencies and approach a constant value larger
or equal to one for high frequencies when little or nothing is known
about the plant. % usually has the "opposite" shape. The three fam-
ilies (9) give regions of different "shape" around the nominal plant.
This means that the uncertainty descriptions are not equivalent,
except for the SISO case. We may start from one uncertainty descrip-
tion and get bounds for another, but any such change of family will
introduce conservativeness by adding plants not present in the origi-
nal family.

Because of the norm type of uncertainties defined- above, (4) will
encircle the origin for some plant in @ if and only if there is a
plant in 1, which makes (U4) identically zero for some w. That is, the
closed loop system (2) is robustly stable ¥Pe I iff

det(I+(P-P)P~'H) # 0 ¥w, ¥Pe I (10)
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where T may be any of the families defined in (9).

At low frequencies within the bandwidth of the closed loop system H=
I and the robust stability requirement derived from (10) becomes
approximately

det(PP™!) # 0, ¥w for which H = I, ¥Pe T (11)

Because P is assumed to be strictly stable det P~} # 0, ¥w and (11)
reduces to ’

det P # 0, ¥w for which H = I, #¥Pe I (12)

P will be singular (det P = 0) for a particular o if P has a zero on
the imaginary axis or the family of plants has zeros which can move
across the imaginary axis. The important conclusion emerging from
this discussion is that for robust stability all potential RHP plant
zeros have to be well outside the bandwidth of the closed loop
system, This is also supported by our earlier remark that perfect
control is impossible in the present of RHP zeros.

It should be emphasized that (10) is a necessary condition for robust
stability only if convex sets of plants as defined by (9) are consi-
dered. For other sets of plants (4) has to be checked directly for
encirclements., For example, consider the SISO case with dead-time
uncertainty

H=1,P#0%¥w 1,=1{P:P="PeS0 0<0<8

(11) is met but (4) encircles the origin and therefore the system is
unstable., The set I, is not convex and therefore (10) does not apply.
PP™! = e7085 crosses the negative real axis for w = w/8 and (4) then

indicates that for stability it is necessary that |ﬁ| <1 for w, > /9.

On the other hand the multiplicative uncertainty for the set of plants
M, is L = e™98 - 1 and one can define a convex set I, of possible
plants by norm-bounding L

M, = {P: L{(w)] < 2.}
where

i 5 (emtwe-1]y  w< w8

2 w> /e

This set includes the nominal plant ﬁ, the "real" plants P = Pe™S0 and
clearly many other plants - among them plants which have a zero on
the imaginary axis at s > n/3% i. This is seen from the Nyquist plot
of P at each frequency which will be represented by disecs with radius
zz(m)ﬁ centered at the nominal plant P. These discs will include the
origin (i.e. plants with zeros on the imaginary axis) for fL,(w) > 1,
i.e. w > w/38. According to (12) it is therefore necessary for stabil-

ity that Iﬁl < 1 for w, > 1/38. Comparing the exact condition w, with
w, Wwe note the conservativeness introduced by the norm bounds.

For the case of multiplicative output uncertainty Doyle and Stein
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(1981) obtained the following necessary and sufficient condition for
(10) (i.e. for robust stability)

~ 1
|1E[] < TGy e (13)

(13) shows that perfect control (f§=I1) of the nominal plant will not De
possible because of robustness considerations for frequencies where
the uncertainty %,(w) > 1. Note that f,(w) < 1 implies that the set I,
will not include plants with zeros on the imaginary axis.

For multiplicative uncertainty at the plant inputs a necessary and
sufficient condition for (10) is

= n oy 1 a
[|B B P H<EI_(35 ¥ o (1)
A sufficient condition for (14) is
1 1
H| K —=— 7 (15)
H H k(P) 1

where the condition number « is defined as
B = |81 1IFH (16)

k is always greater than unity. (15) indicates that well conditioned
plants (small x) are preferable because they show less model error
sensitivity and put less severe constraints on the closed 1loop
transfer matrix H. Therefore k was suggested by Morari (1983) as a
property to be considered for the dynamic resilience assessment.

There are some flaws in this idea. First of all, in the absence of
detailed uncertainty information Lo is just as good (or as bad) an
uncertainty measure as 27. Therefore, there is no good theoretical
reason of why the sufficient condition (15) which suggests the condi-
tion number as a sensitivity measure should be paid more attention to
than the necessary and sufficient condition (13). Practical experience
revealed a number of other deficiencies of (15): 1) As already menti-
oned error bounds are more naturally defined for individual matrix
elements than for the whole matrix in terms of &y or 20- It is there-
fore exceedingly difficult to construct nonconservative estimates of
%1 or fig. 2) x, & and g are strongly dependent on the scaling of
the system inputs and outputs. 3) A comparison of two plants on the
basis of the condition number based on (15) is only meaningful if the
conservativeness' introduced by (15) is similar. 4) The associated
errors 1 should be similar. In view of the described problems in
obtaining {7 it appears difficult to guarantee that this is the case.

B. Robustness, scaling and the condition number

In this section we will try to deal with the main problems of (13) and
(15), namely the difficulties in determining %1 and fg in practical
situations and the associated conservativeness, and the scaling depen-—
dence of the condition number. We will assume that the uncertainties
are additive and described by (8¢) and that i =h + I, i.e. that the
nominal closed loop transfer matrix f is diagonal with identical res-—
ponses. Starting from the robust stability criterion (10)
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det(I+(P-P)P~'H) # 0, ¥Pe N, ¥u (10)

we find the necessary and sufficient conditions for robust stability

||(p-B)P || < 1 ¥Pe My, ¥uw an
. o PPl g
H|| = |n} < - — ¥Pe My, ¥ (18)
1] = 6] < || o e e v

The first term appears to be a more meaningful definition of a "rela-

From (18) we also learn that
perfect control of the nominal plant (H=I) may be combined with robust
stability if and only if

|I;-Bl|
TEIIRG)

¥Pe Ny, ¥w for which H # I (19)

(19) is necessary and sufficient for P to remain nonsingular for Pellp
and thus it is equivalent to (12).

Uncertainty bounds are most naturally described in terms of the indi-
vidual elements, but to apply (18) and (19) it is important to be able
to construct non-conservative matrix norm-bounded sets Ilj. The least
conservative bounds on I may be obtained whenever the absolute
errors (uncertainties) Apl in all the elements of P are equal. In
this case we may choose QA(w) = n Apjj which will include some more
plants than the original set and we derlve from (18) a sufficient con-
dition for robust stability

. 1
|f] < i ¥ w (20)
[P~}]] aPiy n

Consequently, in the case of equal absolute errors in the elements,
the unscaled minimum singular value o(P) = 1 / ||P7!|| will be a good
measure of the systems sensitivity to uncertainty.

Unfortunately, the absolute error is strongly scaling dependent, and
often with elements of different magnitude it is more reasonable to
assume the relative errors of the elements, which are unchanged by
scaling with diagonal matrices, to be similar, It therefore makes
sense to scale the system in order to make all the elements similar
in magnitude, because this will correspond to similar absolute errors
in the elements of the scaled matrix. Let the scaled system be

Ps = SIPSZ (21)

Here S, and S, are real diagonal matrices. For the rescaled system
robust stability is insured iff

det[I+(Pg—Pg)Pg™? S,HS," 1 # 0, ¥Pe My', ¥u (22)

or because H and S, are diagonal, iff
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det[I+(Pg-Pg)Pg™*H] # 0, ¥Pge Ip', ¥u (23)

Note that we have introduced a different family Ty' described Dby an
additive norm bound of the type (9¢) which we expect to describe the
actual set of possible plants less conservatively because of the scal-
ing. From (23) we can find an expression equivalent to (18)

. . P—Ps| ||~
|18 | = [&] < A 2 sl | L ¥pge my', W (21)
| [Ps] | k(Pg)

All the heuristic procedin‘es to minimize the condition number of a
matrix tend to make the magnitudes of the matrix elements similar.
This suggests that the sensitivity of different designs to model/plant
mismatch can be compared on the basis of their minimized condition
numbers if the following assumptions are satisfied:

1. The desired closed loop transfer function fi=nI

2. The scaling which minimizes the condition number leads to a
"gight" i.e. not too conservative family Ip'.

3. The "relative errors" ||Pg-Pg|| / ||Ps|| are similar for the dif-
ferent designs.

Assumption 2 will probably be satisfied for a transfer matrix that has
similar relative errors -in the elements, and assumption 3 will be
probably be satisfied if the two designs have the same relative error
of the elements.

Vv f:ef
Grosdidier et al. (1984) established a l&a-er bound on the minimized
conditions number at w = 0 in terms of the p = 1 and » norms of the
Relative Gain Array thus avoiding a messy optimization problem.

The idea of comparing minimized «'s was applied successfully by Morari
et al. (1984) to a simulation example but did not provide much insight
in the experimental work by Levien (1984) unless very large «'s were
found and the sensitivity problems were almost obvious. While a «k
comparison is very simple (as a first step «(0) evaluated on the basis
of the steady-state model might provide some insight), the information
obtained from this test is limited and only meaningful when the
assumptions stated above are satisfied. However, if at an early
design stage nothing specific is known about the model errors and
their structures, a comparison of the «'s is probably the only feasi-
ble method for screening alternatives. If, on the other hand, error
bounds on the individual transfer matrix elements are available, the
following method is largely superior.

C. Uncertainty described by norm bounds on individual elements

Matrix norm uncertainty bounds may be very conservative because the
uncertainty which might be localized at a single transfer matrix ele-
ment gets distributed evenly over all elements. The concept of
Structured Singular Values (SSV) introduced by Doyle (1982) suggests
an approach for overcoming the deficiencies of the matrix norm uncer-
tainty bounds. Let us assume that norm bounds Q,ij(w) on the additive
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errors of the individual transfer matrix elements 5ij are available
and define the corresponding family of plants IIg.

g = {P: |pij—pij| < Q.ij(m)} (25)

This kind of uncertainty description is more detailed than the matrix
norm bounds discussed previously. Howeever, still some restrictive
assumptions about the uncertainty descriptions are needed: 1) The indi-
vidual elements are norm-bounded, 2) The uncertainty of the elements
are independent (while in practice one element might Dbe large only
when another is small).

For simplicity in notation we will discuss only 2x2 systems here. The
extension to larger systems is conceptually straightforward. For sta-
bility considerations the block diagram in Fig. 1B can be cast into the
form shown in Fig. 2 where

- (Ay1841) (Ay2by2)
P-p = EAL = [(Auzzl) (Azzzzz)] (26)

and the magnitude of the elements Aij in the diagonal perturbation
matrix A is bounded by one (|Aij| £ 1). L contains the information on

the maximum additive error of each element (i.e. the radii of the
uncertainty discs). We define the set of structured perturbations X(8)

X(8) = {A = diag {Ai}: |Ai| < 8} (27)
The SSV py of a matrix F is defined as
W NF) = min{s|det(I+FA) = O for some AeX(8)} (28)

i.e. p is the inverse of the smallest § which makes the system singu~-
lar at each frequency. Because of the convexity of the uncertainty
region, some plant Pellg will make (4) encircle the origin if and only
if det(I+FA) is zero for some Pe Ilg. Thus the system in Fig. 2 with

F = LP™!HE (29)
is robustly stable ¥Pe IIg iff & > 1, i.e.
wF) <1 ¥o (30)

In theory (29) and (30) may be used to generate all allowable H:_ con—-
versely, for a particular chosen closed loop transfer matrix H, u can
be interpreted as the sensitivity of the closed loop system to struc-
tured perturbations X(8). A large y indicates high sensitivity and
implies that the set of structured perturbations for which the closed
loop system remains stable is small (§ is small). At the design stage
when the relative dynamic resilience is to_be determined, H is not
known yet but rather the restrictions on H imposed by model error
sensitivity are of interest. 1In order to ~detegmine these restrictions
from (29) and (30) let us again assume H = hI. Then it is easy to
show that the system is robustly stable if and only if
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Al = [5] ¢ =z W0 (31

— w(LPT'E)
(31) should be compared with (18). Both conditions bound the norm of
the closed loop transfer matrix. They indicate how much the con-

trollers have to be detuned because of model uncertainty.

On the basis of (2U4) which was derived from (18) we suggested to
assume the relative model error for different systems to be the same
and to compare the minimized condition numbers as a measure of how
sensitive they are to these errors. 1In (31) u contains information on
both the sensitivity and the error. Thus sensitive systems with small
model error and insensitive systems with large model error can be
compared.

The SSV u(F) in (29) and (30) clearly depends on the structure of H and
tradeoffs are possible. Even for diagonal H there may be a trade-off
between the speeds of the different loops. Unfortunately (31) does
not reveal any of these potential trade-offs. If one output is more
important than the other it is wise to put weights into E accordingly.
For example, if E in our 2x2 example is chosen as

(t2w2+1)7? 0 (12w2+1)7! 0
By = 2,.2,4)-1 2,.2,.1)1 (32)
0 (t202+1) 0 (t2w?+1)

then with 1, < 1, output y, can be emphasized over y,. These weights
will decrease u in the frequency range o > 1/1t,. The performance tra-
deoff is advantageous if the observed decrease in p is larger than

when a single 1 = V1,17, i8 used in (33). Note that the resulting lﬁl

has to include_ the weights in (32) in addition to the constraints
imposed by w(LP™'Ey) > 1 through (31). Allowing interactions in H
could also be effective in reducing u. It does not seem possible to
derive an expression like (31) when H has of f-diagonal elements.

It is evident that p offers advantages over « but at this point we
have not discussed how it can be computed. (28) is just a definition
which does not suggest a particular computational technique. Doyle
(1982) has shown that

maﬁx p(FU) = u(F) < miDn g (DFD™1) (33)
where p is the spectral radius, § the maximum singular value, U is in
general a block diagonal matrix with each block unitary and D is a
diagonal matrix with positive elements. In our case where A is diago-
nal, U is diagonal with complex elements on the unit circle. The max-—
imization of p is nonconvex. The minimization of § is convex but
equality is achieved only for dim(F) £ 35 though experience has shown
the bound to be quite tight.

An alternate method is to use circular arithmetic (Henrici) which is a
generalization of interval analysis (Moore, 1966) to the complex
plane, Circular arithmetic defines the usual arithmetic operations
(addition, multiplication and division) for circular regions in the com-
plex plane. With each of the A; a disc, det (I+FA) defines a region in
the complex plane. A circle containing this region can be found by
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evaluating det(I+FA) according to the rules of circular arithmetic.
Decreasing § decreases the size of the resulting circle, The largest §
for which the resulting circle does not include the origin is a lower
bound on y~!. This technique is very simple; we are currently testing
its convervativeness.

Robust Performance

Assume that we are comparing the dynamic resilience of two systems by
evaluating their respective SSV's y, and p, as defined by Eg. (31), Our
preceding discussion suggests that if yu; < u,, ¥w system 1 shows less
model error sensitivity and should lead to superior performance.
Though this is likely to happen, especially when p, and yu, are signifi-
cantly different, the conclusion is not entirely correct. If we
select H = hI satisfying

] = (34)

then the nominal response of system 1 will indeed be superior. Recall
however that (31) is necessary and sufficient for robust stability in
case the family of plant is trui§_§iven by norm bounds on the additive
uncertainties of the elements and H = hl. This means that there will
be at least one plant P in the family Ny of permitted plants for
which the closed loop system will be on the limit to instability. To

achieve reasonable performance for all plants in I, IHI might have to
be selected significantly less than yp~!'. Thus, a measure of the best
possible robust performance achievable for the family of plants Ig
would be a more useful measure of dynamic resilience than u. Though
this is true in principle, this idea is not very practical at the
design stage where often many different systems have to be evaluated.
The first difficulty is that for a performance assessment to be mean-
ingful frequency dependent weights have to be assigned to each
input/output pair because other frequencies in addition to "crossover"
are important for performance., The second problem is that, unlike the
computation of yu, determining the optimal robust performance requires
an optimally robust controller to be designed, at present even for 2x2
systems an unresolved problem.

Conclusions

Model uncertainty requires feedback controllers to be detuned and
performance to be sacrificed. The amount of detuning necessary and
the resulting performance deterioration depend on the sensitivity of
the plant. Different measures for this sensitivity were proposed.
The condition number of the plant can be evaluated without specifying
the expected model uncertainty. If it is minimized over all scaling
matrices and if it is reasonable to assume that the additive model
uncertainty of the scaled system can be norm bounded without too much
conservativeness it may be a good measure. Furthermore, to allow a
comparison of different systems on the basis of the condition number,
their "relative errors" should be equal. The structured singular
value p is a much better sensitivity measure but requires for its com-
putation the expected uncertainty to be specified, Furthermore, the
tools for computing u are quite limited at present.
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