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Abstract

For a large number of single input-single out-
put (SISO) typically used in the process industries
the Internal Model Control (IMC) design procedure
is shown to lead to PID controllers, occasionally
augmented with a first order lag. These PID con-
trollers have as their only tuning parameter the
closed loop time constant or equivalently, the
closed loop bandwidth. On-line adjustments are
therefore much simpler than for general PID control-
lers. As a special case, PID tuning rules for
systems modeled by a first order lag with deadtime
are derived analytically. The superiority of these
rules in terms of both closed loop performance and
robustness 1s demonstrated.

I. Performance and Robustness Measures

In this paper we will generally use as perfor-
mance measure the closed loop bandwidth, defined as
the range of frequencies over which the closed loop
amplitude ratio (See Fig. 1)

Y| = [|-BS
Vs 1l+ge
is approximately unity. Occasionally we will also
refer to the Integral Square Error (ISE) caused by
a setpoint or disturbance step change, to compare
the performance of different controllers.

In practice the plant g is not known exactly
but only an approximate model § is available. The
modelling error can be represented either in addi-
tive form

(69)

ge = gc + e, (2)
or in multiplicative form
- - EE
8 g(lﬂm)’ em 1 (3)

The multiplicative (“relative") error ej is in
general physically more meaningful. 1In most practi-
cal situations Iem| approaches a maximum value
equal to or greater than 1 for high frequencies.

An example would be the error introduced by a Padé
approximation for a time delay:

g = e80
1- 2
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As w varies |ep| oscillates between O and 2 (Fig. 3).

Assuming that g, § and c have no poles in the
open right half plane (RHP) the closed loop system
in Fig. 1 will be stable for all plants g for which
the Nyquist plot of gc does not encircle (-1,0).
This implies that the magnitude of the additive
error e, has to be bounded by

leal < |1+gc| %)

corresponding to the following bound for the multi-
plicative error

[gceq| < |148c]

-1
a1y o _Bc
or lea] < 11+@™| = 535l (5)
As a measure of robustness we will use the maximum
peak (a) of the closed loop transfer function
o = Max =55
w 1t8c
1t follows from (5) that for a particular a stabi-
lity is guaranteed for all perturbations satisfying

e o] <3

a is convenient and widely accepted to be moreuseful
than gain and phase margins. Gain and phasemargins
only measure the robustness with respect to model
uncertainties which are independent of w. There-
fore they tend to be overly optimistic.

I1. Internal Model Control (IMC)

IMC was introduced by Garcia and Morari (1982)
but a similar concept has been used previously and
independently by a number of other researchers.
The design procedure concentrates on the IMC con-
troller g, (Fig. 2) and consists of two steps:

Step 1: Factor the model

E=E B (8)
such that g, contiins all the time delays and RHP
zeros and that g is stable and does not involve

predictors
Step 2: The controller is

g=g1ls 9

where the low-pass filter f has been selected such
that g, is proper or, 1f "derivative action" is
allowed, such that g.has a zero excess of at most 1.



The closed loop relationships for Fig. 2 are

g.8
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e = ys'y = 1+gc(g_g) (ya'd)
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For the special case of a perfect model (§=g) (10)
and (11) reduce to

y = g8ly;d) +d = g iy ) +d  (12)

e = (gDl ¢E)

The control system obtained in this manner has a
number of attractive properties which will be stated
in the following. We will assume throughout that
gcg and g have all poles in the open LHP.

(75-d) an

Pl: Assume § = g. Then the system is effectively
open loop and "closed-loop stability" fs implied by
the stability of g. and g (cf. (12)). While for
the classical structure (Fig. 1) it is not at all
clear what type of controller c and what parameter
choices lead to closed loop stable systems, the IMC
structure guarantees closed loop stability for all
stable controllers g..

P2: Assume § = g. Then the closed loop transfer
function is g, f (cf. (12)). g4f is mostly at the
designers discretion except that g, has to contain
all the delays and RHP zeros and f has to b2 of high
enough order such that differentiation is avoided
in g.. Thus the closed loop transfer function can
be designed directly and not indirectly via ¢ as in
the classic controller design procedure (Fig. 1).

P3: Assume § = g. For step inputs in y, and d the
ISE is minimized when g, and f are selected such

that |g4f| = 1 (Holt and Morari, 1984). This im-
plies that f has to be unity and g, has the form of
an allpass. os -Bis+1
- —_— >
T » 8,20 a

where B;l are all the RHP zeros and 6 is the time
delay present in g.

P4: Select g, such that
g8 (0 = EO (15)

Then the control error vanishes asymptotically for
all asymptotically constant inputs yg and d.
(Follows from (11) via Final Value Theorem). In
order to satisfy (15) we will adapt the following
convention for g,(s) and f(s) = n(s)/d(s)

g,(0) = n(0) = 40 = 1 (16)

P5: f satisfying (16) is generally selected to be

of the form
1

(es+1)T

If § = g and |g4| = 1 then |y/y | = |£|. Thus, the
parameter e which can be adjusted by iﬁe operator,
is the closed loop time constant and ¢ is theclosed
loop bandwidth. The larger e is, the slower is the

Qan

f(s) =

Tesponse and the smaller are the actions of the
manipulated variable. For (17) the maximum peak
a= 1, i,e. the robustness characteristicse are
good.

vo: Select g, to satisfy (15), (16) and (18)

L e»| =0 (18)
s=0
Then the control error vanishes asymptotically for
all asymptotically ramp shaped inputs y_. and d
(Brosilow, 1983). (Follows from (11) via Final
Value Theorem). With the adapted conventions (16),
(18) becomes

da'(0) - n'(0) = g (0) (19)

where the prime denotes differentiation with respect
to s.

P7: An example of a filter satisfying (19) is
(2e-g; (0))s+1
f = e (20)
(es+l)

As explained in P5 the adjustable parameter ¢ is
the closed loop time constant and 1/¢ is the closed
loop bandwidth.

Typical values of 3{(0) are

d -80 d

L (™% -0 £ (-8s4l) - -8
ds s=0 ds g=0

4 -Bstl -

3s Castl 28

s=1
Since in general §{(0)< 0 this implies
a = Max f|l >1

ax g, f|

i.e., o 1s strictly greater than unity for all f's
satisfying (19). This indicates that tighter per-
formance specifications (no offset for ramps) have
to be paid for with decreased robustness margins.

P8: It follows from (11) that for closed loop
stability the Nyquist plot of gife; should not en-
circle (~1,0). As a sufficient condition (Small
Gail Theorem) bounds can be placed on the magnitude

|&s fey,| <1
1

or Ifl < m f: (21)

Assuming for simplicity |g,.| = 1 it becomes obvious
that the filter magnitudeng has to be small
wherever the uncertainty |ey| is large. Because
Ieml approaches or exceeds 1 for high frequencies
in all practical aituatiois, the closed loop time
constant € and bandwidth # is limited by the degree
of model uncertainty. The closed loop bandwidth
can never be larger than the bandwidth over which
the process model is valid. The models used inpro-
cess control are usually sufficiently good to set
€ .equal to the open loop time constant or smaller.
In summary, the key advantage of the IMC design

procedure is that all controller parameters are
related in a straightforward and unique manner to
the model parameters. There is only one adjustable
parameter € which has intuitive appeal because it
is equal to the closed loop time constant and thus
ietermines the speed of respomse of the system.

is the bandwidth of the closed loop system which

€



must always be smaller than the bandwidth over which
the process model is valid. Thus, a good initial
estimate of € is available a priori. ¢ can then be
adjusted on-line 1f necessary.

III. IMC ves. Classical Control

For linear systems the IMC controller g, can
be simply viewed as an alternate parameterization
of the classic controller ¢, albeit a very useful

one. Through the transformation
g n-1
cmt— o £ (22)

l—gcg f-l_g+

Fig 1 and 2 become equivalent. It is obvious from
(22) that if there are no delays in g, ¢ isrational
and can be implemented as a lead/lag network. While
it is generally not at all obvious how to select
the proper combination of leads and lags for the
best effect, IMC determines all the parameters
except one (g) is a simple fashion from the model.
€ is left for on-line adjustment. A further nice
feature is that, as long as § = g, the closed loop
system is stable for all ¢ > 0. Thus, for the nomi-
nal system § at least, € can be chosen without pay-
ing any attention to closed loop stability.

It is natural to expect that for certain
classes of process models the lead/lag network c
obtained from (23) via the IMC design procedurewill
be equivalent to a PID controller. Indeed, we
found that IMC leads to PID controllers for virtu-
ally all models common in industrial practice
(Table 1), the only major exception being systems
with LHP zeros. Note that Table 1 includes sys-
tems with integrators and RHP zeros. Occasionally
the PID controllers have to be augmented with a
first order lag with time constant Tp. A few re-
marks are in order:

Rl: When the PID controller of the specified form
is applied to the model the closed loop system is
stable for all values of € > 0.

R2: For about one third of the studied cases €
appears only in the denominator of the expression
for the controller gain k.. Thus, qualitatively at
least, decreasing the controller gain has as direct
an effect on the speed of response and bandwidth as
does increasing e¢. For most of these cases the
tuning of PID controllers is known to be quite
simple.

For the majority of process models € appears
in a complex manner in all the parameters (kc’ T
TD) of the controller e.g.K and R. It is not sur-
prising that for a number of these processes the
trial and error tuning of PID controllers is noto-
riously difficult. The IMC parametrization shows
how all the controller parameters have to be ad-
justed simultaneously in the most effective manner.

R3: In all cases we required that there should be
no offset for step changes. If the process has an
integrator and a step disturbance enters through
that integrator and thus becomes a ramp, it is
logical to require that there should be no offset
for ramp changes. This performance specification
was met in cases I,K,N,0,R,and § by assuming the
filter f to be of the form (20).

R4: Whenever the closed loop transfer function is
not strictly proper, e.g.D, one has to require that

lin [gyf] <1 (23)

Otherwise, (21) will be violated for high frequen-
cies where |ey; 1 and instability is bound to occur
in all practical situations. This explains why

€ > g was specified for D,F,L,N,P and R. € =B8/2
gives a gain margin of 2.

R5: No systems with LHP zeros are listed in Table
1. For these systems a sequence of lags should be
used first to cancel all the zeros. After the zeros
have been removed the PID settings for the remain-
ing system can be obtained from the table.

R6: Table 1 is also useful for systems with delays.
To obtain a rational model for which controller set-
tings are available in Table 1 a Padé approximation
may be used for the delay. This procedure is
11lustrated in the next two examples.

-56
Example 1: g(s) = T3 (24)
With a first order Padé approximation
- &
g(s) = ——————— (25)

(1+ 38) (re+1)
Entries F and G in Table 1 yield the desired PID

controller parameters.
~80
l-kle
Example 2: g(s) = —— (26)
With a first order Padé approximation
1k + S(14k))s
g(s) = ——F—— (26)
(1+ EB)B

If k3 > 1 a controller from entries P through S can
be selected. If kj < 1 the LHP zero should be first
removed by a simple lag. Then the PID parameters
can be obtained from entries J or K.

As 1is shown by (21) and was explained in P8,
the bandwidth % cannot be larger than the bandwidth
over which the model is valid. The Padé approxima-
tion introduces a modelling error and therefore e
cannot be made arbitrarily small. |ep|is shown for
Ex. 1 and 2 in Fig. 3. For a first order Padé
approximation |emT reaches 1_at w® = 3. Therefore
(21) requires that £ <3 or % < 3/0. If the system
model with the delays in place is valid over a
bandwidth larger than 3/9, closed loop bandwidth
has been wasted by approximation. Better control
could be obtained by choosing a higher order appro-
ximation or equivalently not restricting the con-
troller to be of the PID type. For example a
second order Padé approximation would allow a band-
width up to & = 5/0 (Fig. 3). A higher order
lead/lag metwork would be required for the imple-
mentation. An alternmative is use no approximation
at all and to implement a Smith Predictor. In
theory this would allow to extend the bandwidth to
=, However, because of the inherent restrictions
on the response from a delay, bandwidth is not that
important. Also, in practice, the bandwidth over
which the model is valid is limited, and a PID con-
troller yields as good results as a Smith Predictor.



IV. IMC Based PID Control For a First Order
Lag With Deadtime

Because the first order lag/deadtime model
plays such a dominant role in process control it is
worthwhile to discuss Ex. 1 in more detail. The
PID parameters obtained from F in Table 1 for the
model (25) are listed compactly in Table 2. For
system (24) with this controller the closed loop
expression is

e—(g)ss
y=- - -+ (28)
(1“5 E)es -(Q)CS
50 (es) + e e

We note “hree important properties of (28)

L4 The closed loop response is independent of the
system time constant

° Time is scaled by ¢

L The shape of the response depends on €/® only

This implies that if we specify a value for e/6 all

systems regardless of k, T and & will have an iden-

tical response except that the time scale will
change according to ©. If the deadtime in system A
is twice as long as the deadtime in system B, then
for a specific €/© A will have the identical
response as B except that it will take exactly
twice as long.

The effect of €/0 on performance and robustness
is shown quantitatively in Fig. 4, where both J =
ISE and a have been plotted as a function of e/6.

J has been normalized by Jpin, the minimum error
which can be achieved with the best possible contxrol
system, a Smith Predictor with a PI controller.
J/Jgin reaches a minimum of 1.092 for /6 = 0.68.
At this pointa = 1.3. For practical purposes a
better compromize between performance and robustness
is attained for £/6 = 0.8 where the ISE is almost
minimal but o has dropped to 1. This choice is
reasonable if the bandwidth over which the first
order lag/deadtime model is valid is at least equal
to the bandwidth over which the Padé approximation
is valid, 1.e. 3/6. Otherwise €/6 has to be
increased.

The obvious question here is if it would ever
be worthwhile to use a Smith Predictor. If ISE is
the performance measure of choice, the answer is
"hardly". At the very best an improvement of less
than 107 can be expected. If this improvement is
important, one has to ask 1f it is feasible. It is
feasible only if the first order lag/deadtime model
is valid over a bandwidth larger than 3/6. For
large 8/t the bandwidth can indeed be larger than
that in practice and a Smith Predictor Controller
can yield improvements, albeit small ones.

Next we will compare the IMC-PID parameters
with the calssic tuning rules by Ziegler and Nichols
(1942) and Cohen and Coon (1953) (Fig. 5-7). For
all these rules performance and robustness depend
strongly on 6/t while for the IMC rules performance
and robustness are independent of ©/1t. The Cohen-
Coon rules give reasonable performance (J/Jpin < 1.3)
for 0.6 < § < 4. In this range a varies between2.5
and 1.1, 1.e. the robustness is quite poor especial-
1y for small ratios ©/t. The performance obtained
with the closed loop Ziegler-Nichols parameters

is good for the range 0.3 < € < 3 but the robust-
ness is poor except for § ¥ 0.5." For 6/t > 4 the
closed loop system is unstable when the closed loop
Ziegler-Nichols parameters are used. In terms of
performances the open loop Ziegler-Nichols para-
meters are only useful in the range 0.2 < ? < 1.4,

Conclusions

We have shown that for most systems commonly
encountered and for most models generally used in
process control the PID controller is the natural
choice. In the absence of nonlinearities, con-
straints or multivariable interactions it is impos-
sible to improve the performance with more complex
controllers unless higher order more accurate pro-
cess models are available.

In particular, we derived that thepossible ISE
improvement offered by a Smith Predictor Controller
over a PID controller for a first order lag with
deadtime is at most 10% regardless of ©/t.

At first sight these statements might seem like
a negative judgement on IMC for the majority of
problems in process control, but just the opposite
is the case: IMC formed the basis of all the rules
in Tables 1 & 2. 1If we used IMC directly and if we
did not insist on the traditional PID parameters, no
rules and no involved tables would be needed in the
first place. The IMC design technique is generally
applicable regardless of the system involved. No
special provisions are required to deal with every
single type of system. The complexity of the rules
in Tables 1 and 2 demonstrates that the PID para-
meters K., Ty and 1p are the consequence of a long
hardware traaition rather than because they repre-
gent the most practical tuning tools. The unfortu-
nate parameterization of the PID controller might
also explain why some of the "IMC clones" have
claimed improvements in control quality over PID
for simple systems where properly tuned PID control-
ler might also explain why some of the "IMC clones"
have claimed improvements in control quality over
PID for simple systems where properly tuned PID
controllers would have yielded an equally good
result.
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Table 1: IMC based PID controller parameter. The adjustable parameter ¢ is the time constant, 1/¢ the bandvidth of

PID Controller: kc(l-'H'Da-O-

the closed loop system. Occasionally s lag (tpe+l)~! has to be added to the PID controller.

Comments:

1.
2.
3.
4.

Practical equipment € > 8 (¢ = 28 gives gaip margin of 2)
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1SE optimal for setpoint step changes

No offset for setpoint step changes

No offset for setpoint rays changes/disturbance step changes




2541

¢ 2541
1 e
5 = 1+ND)

D 1

T T
2 (3)-0'1

IMC based PID parameters for g(s) =

k e 59/(1s+l). €/6 = 0.68 for minimum
ISE. As a practical recommendation
e/o » 0.8.
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Figure 1. Classical Feedback Controller

Figure 2. Internal Model Control Structure
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