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Abstract

This paper provides an overview of commercially available model predictive control (MPC) technology, both linear and

nonlinear, based primarily on data provided by MPC vendors. A brief history of industrial MPC technology is presented first,

followed by results of our vendor survey of MPC control and identification technology. A general MPC control algorithm is

presented, and approaches taken by each vendor for the different aspects of the calculation are described. Identification technology

is reviewed to determine similarities and differences between the various approaches. MPC applications performed by each vendor

are summarized by application area. The final section presents a vision of the next generation of MPC technology, with an emphasis

on potential business and research opportunities.

r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Model predictive control (MPC) refers to a class of
computer control algorithms that utilize an explicit
process model to predict the future response of a plant.
At each control interval an MPC algorithm attempts to
optimize future plant behavior by computing a sequence
of future manipulated variable adjustments. The first
input in the optimal sequence is then sent into the plant,
and the entire calculation is repeated at subsequent
control intervals. Originally developed to meet the
specialized control needs of power plants and petroleum
refineries, MPC technology can now be found in a wide
variety of application areas including chemicals, food
processing, automotive, and aerospace applications.
Several recent publications provide a good introduc-

tion to theoretical and practical issues associated with
MPC technology. Rawlings (2000) provides an excellent
introductory tutorial aimed at control practitioners.
Allgower, Badgwell, Qin, Rawlings, and Wright (1999)
present a more comprehensive overview of nonlinear
MPC and moving horizon estimation, including
a summary of recent theoretical developments and

numerical solution techniques. Mayne, Rawlings, Rao,
and Scokaert (2000) provide a comprehensive review of
theoretical results on the closed-loop behavior of MPC
algorithms. Notable past reviews of MPC theory include
those of Garc!ıa, Prett, and Morari (1989); Ricker (1991);
Morari and Lee (1991); Muske and Rawlings (1993),
Rawlings, Meadows, and Muske (1994); Mayne (1997),
and Lee and Cooley (1997). Several books on MPC have
recently been published (Allgower & Zheng, 2000;
Kouvaritakis & Cannon, 2001; Maciejowski, 2002).
The authors presented a survey of industrial MPC

technology based on linear models at the 1996 Chemical
Process Control V Conference (Qin & Badgwell, 1997),
summarizing applications through 1995. We presented a
review of industrial MPC applications using nonlinear
models at the 1998 Nonlinear Model Predictive Control
workshop held in Ascona, Switzerland (Qin and
Badgwell, 2000). Froisy (1994) and Kulhavy, Lu,
and Samad (2001) describe industrial MPC practice
and future developments from the vendor’s viewpoint.
Young, Bartusiak, and Fontaine (2001), Downs (2001),
and Hillestad and Andersen (1994) report development
of MPC technology within operating companies. A
survey of MPC technology in Japan provides a wealth of
information on application issues from the point of
view of MPC users (Ohshima, Ohno, & Hashimoto,
1995).
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In recent years the MPC landscape has changed
drastically, with a large increase in the number of
reported applications, significant improvements in
technical capability, and mergers between several of
the vendor companies. The primary purpose of this
paper is to present an updated, representative snapshot
of commercially available MPC technology. The in-
formation reported here was collected from vendors
starting in mid-1999, reflecting the status of MPC
practice just prior to the new millennium, roughly 25
years after the first applications.
A brief history of MPC technology development is

presented first, followed by the results of our industrial
survey. Significant features of each offering are outlined
and discussed. MPC applications to date by each vendor
are then summarized by application area. The final
section presents a view of next-generation MPC
technology, emphasizing potential business and research
opportunities.

2. A brief history of industrial MPC

This section presents an abbreviated history of
industrial MPC technology. Fig. 1 shows an evolution-
ary tree for the most significant industrial MPC
algorithms, illustrating their connections in a concise
way. Control algorithms are emphasized here because
relatively little information is available on the develop-
ment of industrial identification technology. The follow-
ing sub-sections describe key algorithms on the MPC
evolutionary tree.

2.1. LQG

The development of modern control concepts can be
traced to the work of Kalman et al. in the early 1960s
(Kalman, 1960a, b). A greatly simplified description of
their results will be presented here as a reference point
for the discussion to come. In the discrete-time context,

the process considered by Kalman and co-workers can
be described by a discrete-time, linear state-space model:

xkþ1 ¼ Axk þ Buk þGwk; ð1aÞ

yk ¼ Cxk þ nk: ð1bÞ

The vector u represents process inputs, or manipulated
variables, and vector y describes measured process
outputs. The vector x represents process states to be
controlled. The state disturbance wk and measurement
noise nk are independent Gaussian noise with zero
mean. The initial state x0 is assumed to be Gaussian
with non-zero mean.
The objective function F to be minimized

penalizes expected values of squared input and state
deviations from the origin and includes separate state
and input weight matrices Q and R to allow for tuning
trade-offs:

F ¼ EðJÞ; J ¼
XN

j¼1

ðjjxkþj jj2Q þ jjukþj jj2RÞ: ð2Þ

The norm terms in the objective function are defined as
follows:

jjxjj2Q ¼ xTQx: ð3Þ

Implicit in this formulation is the assumption that all
variables are written in terms of deviations from a
desired steady state. It was found that the solution to
this problem, known as the linear quadratic Gaussian

(LQG) controller, involves two separate steps. At time
interval k; the output measurement yk is first used to
obtain an optimal state estimate #xkjk:

#xkjk�1 ¼ A #xk�1jk�1 þ Buk�1; ð4aÞ

#xkjk ¼ #xkjk�1 þ Kf ðyk � C #xkjk�1Þ: ð4bÞ

Then the optimal input uk is computed using an optimal
proportional state controller:

uk ¼ �Kc #xkjk: ð5Þ
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Fig. 1. Approximate genealogy of linear MPC algorithms.
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Here, the notation #xijj refers to the state estimate at time
i given information up to and including time j: The
Kalman filter gain Kf is computed from the solution of a
matrix Ricatti equation. The controller gain Kc can be
found by constructing a dual Ricatti equation, so that
the same numerical techniques and software can be used
for both calculations.
The infinite prediction horizon of the LQG algorithm

endows the algorithm with powerful stabilizing proper-
ties. For the case of a perfect model, it was shown to be
stabilizing for any reasonable linear plant (stabilizable
and the states are detectable through the quadratic
criterion) as long as Q is positive semidefinite and R is
positive definite.
Extensions to handle practical issues such as control-

ling outputs, achieving offset-free control, and comput-
ing the steady-state targets followed rapidly
(Kwakernaak & Sivan, 1972). However, constraints on
the process inputs, states and outputs were generally not
addressed in the development of LQG theory.
LQG theory soon became a standard approach to

solve control problems in a wide range of application
areas. Goodwin, Graebe, and Salgado (2001) estimate
that there may be thousands of real-world applications
of LQG with roughly 400 patents per year based on the
Kalman filter. However, it has had little impact on
control technology development in the process indus-
tries. The most significant of the reasons cited for this
failure include (Richalet, Rault, Testud, & Papon, 1976;
Garc!ıa, Prett, & Morari, 1989):

* constraints;
* process nonlinearities;
* model uncertainty (robustness);
* unique performance criteria;
* cultural reasons (people, education, etc.).

It is well known that the economic operating point of
a typical process unit often lies at the intersection of
constraints (Prett & Gillette, 1980). A successful
industrial controller for the process industries must
therefore maintain the system as close as possible to
constraints without violating them. In addition, process
units are typically complex, nonlinear, constrained
multivariable systems whose dynamic behavior changes
with time due to such effects as changes in operating
conditions and catalyst aging. Process units are also
quite individual so that development of process models
from fundamental physics and chemistry is difficult to
justify economically. Indeed, the application areas
where LQG theory had a more immediate impact, such
as the aerospace industry, are characterized by physical
systems for which it is technically and economically
feasible to develop accurate fundamental models.
Process units may also have unique performance criteria
that are difficult to express in the LQG framework,

requiring time-dependent output weights or additional
logic to delineate different operating modes. However,
the most significant reasons that LQG theory failed to
have a strong impact may have been related to the
culture of the industrial process control community at
the time, in which instrument technicians and control
engineers either had no exposure to LQG concepts or
regarded them as impractical.
This environment led to the development, in industry,

of a more general model based control methodology in
which the dynamic optimization problem is solved on-
line at each control execution. Process inputs are
computed so as to optimize future plant behavior over
a time interval known as the prediction horizon. In the
general case any desired objective function can be used.
Plant dynamics are described by an explicit process
model which can take, in principle, any required
mathematical form. Process input and output con-
straints are included directly in the problem formulation
so that future constraint violations are anticipated
and prevented. The first input of the optimal
input sequence is injected into the plant and the problem
is solved again at the next time interval using
updated process measurements. In addition to
developing more flexible control technology, new
process identification technology was developed to allow
quick estimation of empirical dynamic models from test
data, substantially reducing the cost of model develop-
ment. This new methodology for industrial process
modeling and control is what we now refer to as MPC
technology.
In modern processing plants the MPC controller is

part of a multi-level hierarchy of control functions. This
is illustrated in Fig. 2, which shows a conventional
control structure on the left for Unit 1 and a MPC
structure on the right for Unit 2. Similar hierarchical
structures have been described by Richalet, Rault,
Testud, and Papon (1978) and Prett and Garc!ıa
(1988). At the top of the structure a plant-wide
optimizer determines optimal steady-state settings for
each unit in the plant. These may be sent to local
optimizers at each unit which run more frequently or
consider a more detailed unit model than is possible at
the plant-wide level. The unit optimizer computes an
optimal economic steady state and passes this to the
dynamic constraint control system for implementation.
The dynamic constraint control must move the plant
from one constrained steady state to another while
minimizing constraint violations along the way. In the
conventional structure this is accomplished by using a
combination of PID algorithms, lead-lag (L/L) blocks
and high/low select logic. It is often difficult to translate
the control requirements at this level into an appropriate
conventional control structure. In the MPC methodol-
ogy this combination of blocks is replaced by a single
MPC controller.
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Although the development and application of MPC
technology was driven by industry, it should be noted
that the idea of controlling a system by solving a
sequence of open-loop dynamic optimization problems
was not new. Propoi (1963), for example, described a
moving horizon controller. Lee and Markus (1967)
anticipated current MPC practice in their 1967 optimal
control text:

One technique for obtaining a feedback controller
synthesis from knowledge of open-loop controllers is
to measure the current control process state and
then compute very rapidly for the open-loop
control function. The first portion of this func-
tion is then used during a short time interval, after
which a new measurement of the function is
computed for this new measurement. The procedure
is then repeated.

There is, however, a wide gap between theory
and practice. The essential contribution of industry
was to put these ideas into practice on operating
units. Out of this experience came a fresh set of
problems that has kept theoreticians busy ever since.

2.2. IDCOM

The first description of MPC control applications was
presented by Richalet et al. in 1976 Conference (Richalet
et al., 1976) and later summarized in 1978 Automatica

paper (Richalet et al., 1978). They described their
approach as model predictive heuristic control (MPHC).
The solution software was referred to as IDCOM, an
acronym for Identification and Command. The distin-
guishing features of the IDCOM approach are:

* impulse response model for the plant, linear in inputs
or internal variables;

* quadratic performance objective over a finite predic-
tion horizon;

* future plant output behavior specified by a reference
trajectory;

* input and output constraints included in the for-
mulation;

* optimal inputs computed using a heuristic iterative
algorithm, interpreted as the dual of identification.

Richalet et al. chose an input–output representation
of the process in which the process inputs influence the
process outputs directly. Process inputs are divided into

(every second)
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Fig. 2. Hierarchy of control system functions in a typical processing plant. Conventional structure is shown at the left; MPC structure is shown at the

right.
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manipulated variables (MVs) which the controller
adjusts, and disturbance variables (DVS) which are
not available for control. Process outputs are referred to
as controlled variables (CVs). They chose to describe the
relationship between process inputs and outputs using a
discrete-time finite impulse response (FIR) model. For
the single input, single output (SISO) case the FIR
model looks like:

ykþj ¼
XN

i¼1

hiukþj�i: ð6Þ

This model predicts that the output at a given time
depends on a linear combination of past input values;
the summation weights hi are the impulse response
coefficients. The sum is truncated at the point where
past inputs no longer influence the output; this
representation is therefore only possible for stable
plants.
The finite impulse response was identified from plant

test data using an algorithm designed to minimize the
distance between the plant and model impulse responses
in parameter space. The control problem was solved
using the same algorithm by noting that control is the
mathematical dual of identification. The iterative nature
of the control algorithm allows input and output
constraints to be checked as the algorithm proceeds to
a solution. Because the control law is not linear and
could not be expressed as a transfer function, Richalet
et al. refer to it as heuristic. In today’s context the
algorithm would be referred to as a linear MPC
controller.
The MPHC algorithm drives the predicted future

output trajectory as closely as possible to a reference
trajectory, defined as a first order path from the current
output value to the desired setpoint. The speed of the
desired closed-loop response is set by the time constant
of the reference trajectory. This is important in practice
because it provides a natural way to control the
aggressiveness of the algorithm; increasing the time
constant leads to a slower but more robust controller.
Richalet et al. make the important point that dynamic

control must be embedded in a hierarchy of plant
control functions in order to be effective. They describe
four levels of control, very similar to the structure
shown in Fig. 2:

* Level 3—Time and space scheduling of production.
* Level 2—Optimization of setpoints to minimize costs

and ensure quality and quantity of production.
* Level 1—Dynamic multivariable control of the plant.
* Level 0—Control of ancillary systems; PID control of

valves.

They point out that significant benefits do not come
from simply reducing the variations of a controlled
variable through better dynamic control at level 1. The

real economic benefits come at level 2 where better
dynamic control allows the controlled variable setpoint
to be moved closer to a constraint without violating it.
This argument provides the basic economic motivation
for using MPC technology. This concept of a hierarchy
of control functions is fundamental to advanced control
applications and seems to have been followed by many
practitioners. Prett and Garc!ıa (1988), for example,
describe a very similar hierarchy.
Richalet et al. describe applications of the MPHC

algorithm to a fluid catalytic cracking unit (FCCU)
main fractionator column, a power plant steam gen-
erator and a poly-vinyl chloride (PVC) plant. All of
these examples are constrained multivariable pro-
cesses. The main fractionator example involved
controlling key tray temperatures to stabilize the
composition of heavy and light product streams. The
controller adjusted product flowrates to compensate
for inlet temperature disturbances and to maintain
the level of a key internal tray. The power plant
steam generator problem involved controlling the
temperature and pressure of steam delivered to the
turbine. This application is interesting because
the process response time varied inversely with load on
the system. This nonlinearity was overcome by
executing the controller with a variable sample time.
Benefits for the main fractionator application were
reported as $150; 000=yr; due to increasing the flowrate
of the light product stream. Combined energy savings
from two columns in the PVC plant were reported as
$220; 000=yr:

2.3. DMC

Engineers at Shell Oil developed their own indepen-
dent MPC technology in the early 1970s, with an initial
application in 1973. Cutler and Ramaker presented
details of an unconstrained multivariable control algo-
rithm which they named dynamic matrix control (DMC)
at the 1979 National AIChE meeting (Cutler & Ra-
maker, 1979) and at the 1980 Joint Automatic Control
Conference (Cutler & Ramaker, 1980). In a companion
paper at the 1980 meeting Prett and Gillette (1980)
described an application of DMC technology to an
FCCU reactor/regenerator in which the algorithm was
modified to handle nonlinearities and constraints.
Neither paper discussed their process identification
technology. Key features of the DMC control algorithm
include:

* linear step response model for the plant;
* quadratic performance objective over a finite predic-

tion horizon;
* future plant output behavior specified by trying to

follow the setpoint as closely as possible;
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* optimal inputs computed as the solution to a least-
squares problem.

The linear step response model used by the DMC
algorithm relates changes in a process output to a
weighted sum of past input changes, referred to as input
moves. For the SISO case the step response model looks
like:

ykþj ¼
XN�1

i¼1

si Dukþj�i þ sNukþj�N : ð7Þ

The move weights si are the step response coefficients.
Mathematically the step response can be defined as the
integral of the impulse response; given one model form
the other can be easily obtained. Multiple outputs were
handled by superposition. By using the step response
model one can write predicted future output changes as
a linear combination of future input moves. The matrix
that ties the two together is the so-called Dynamic

Matrix. Using this representation allows the optimal
move vector to be computed analytically as the solution
to a least-squares problem. Feedforward control is
readily included in this formulation by modifying the
predicted future outputs. In practice the required matrix
inverse can be computed off-line to save computation.
Only the first row of the final controller gain matrix
needs to be stored because only the first move needs to
be computed.
The objective of a DMC controller is to drive the

output as close to the setpoint as possible in a least-
squares sense with a penalty term on the MV moves.
This results in smaller computed input moves and a less
aggressive output response. As with the IDCOM
reference trajectory, this technique provides a degree
of robustness to model error. Move suppression factors
also provide an important numerical benefit in that they
can be used to directly improve the conditioning of the
numerical solution.
Cutler and Ramaker showed results from a furnace

temperature control application to demonstrate im-
proved control quality using the DMC algorithm.
Feedforward response of the DMC algorithm to inlet
temperature changes was superior to that of a conven-
tional PID lead/lag compensator.
In their paper Prett and Gillette (1980) described an

application of DMC technology to FCCU reactor/
regenerator control. Four such applications were
already completed and two additional applications were
underway at the time the paper was written. Prett and
Gillette described additional modifications to the DMC
algorithm to prevent violation of absolute input
constraints. When a predicted future input came
sufficiently close to an absolute constraint, an extra
equation was added to the process model that would
drive the input back into the feasible region. These were
referred to as time variant constraints. Because the

decision to add the equation had to be made on-line, the
matrix inverse solution had to be recomputed at each
control execution. Prett and Gillette developed a matrix
tearing solution in which the original matrix inverse
could be computed off-line, requiring only the matrix
inverse corresponding to active time variant constraints
to be computed on-line.
The initial IDCOM and DMC algorithms represent

the first generation of MPC technology; they had an
enormous impact on industrial process control and
served to define the industrial MPC paradigm.

2.4. QDMC

The original IDCOM and DMC algorithms provided
excellent control of unconstrained multivariable pro-
cesses. Constraint handling, however, was still some-
what ad hoc. Engineers at Shell Oil addressed this
weakness by posing the DMC algorithm as a quadratic
program (QP) in which input and output constraints
appear explicitly. Cutler et al. first described the QDMC
algorithm in a 1983 AIChE conference paper (Cutler,
Morshedi, & Haydel, 1983). Garc!ıa and Morshedi
(1986) published a more comprehensive description
several years later.
Key features of the QDMC algorithm include:

* linear step response model for the plant;
* quadratic performance objective over a finite predic-

tion horizon;
* future plant output behavior specified by trying to

follow the setpoint as closely as possible subject to a
move suppression term;

* optimal inputs computed as the solution to a
quadratic program.

Garc!ıa and Morshedi show how the DMC objective
function can be re-written in the form of a standard QP.
Future projected outputs can be related directly back to
the input move vector through the dynamic matrix; this
allows all input and output constraints to be collected
into a matrix inequality involving the input move vector.
Although the QDMC algorithm is a somewhat ad-
vanced control algorithm, the QP itself is one of the
simplest possible optimization problems that one could
pose. The Hessian of the QP is positive definite for linear
plants and so the resulting optimization problem is
convex. This means that a solution can be found readily
using standard commercial optimization codes.
Garc!ıa and Morshedi wrapped up their paper by

presenting results from a pyrolysis furnace application.
The QDMC controller adjusted fuel gas pressure in
three burners in order to control stream temperature at
three locations in the furnace. Their test results
demonstrated dynamic enforcement of input constraints
and decoupling of the temperature dynamics. They
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reported good results on many applications within Shell
on problems as large as 12� 12 (12 process outputs and
12 process inputs). They stated that above all, the
QDMC algorithm had proven particularly profitable in
an on-line optimization environment, providing a
smooth transition from one constrained operating point
to another.
The QDMC algorithm can be regarded as represent-

ing a second generation of MPC technology, comprised
of algorithms which provide a systematic way to
implement input and output constraints. This was
accomplished by posing the MPC problem as a QP,
with the solution provided by standard QP codes.

2.5. IDCOM-M, HIECON, SMCA, and SMOC

As MPC technology gained wider acceptance, and
problems tackled by MPC technology grew larger and
more complex, control engineers implementing second
generation MPC technology ran into other practical
problems. The QDMC algorithm provided a systematic
approach to incorporate hard input and output con-
straints, but there was no clear way to handle an
infeasible solution. For example it is possible for a
feedforward disturbance to lead to an infeasible QP;
what should the control do to recover from infeasibility?
The soft constraint formulation is not completely
satisfactory because it means that all constraints will
be violated to some extent, as determined by the relative
weights. Clearly some output constraints are more
important than others, however, and should never be
violated. Would not it make sense then to shed low
priority constraints in order to satisfy higher priority ones?
In practice, process inputs and outputs can be lost in

real time due to signal hardware failure, valve saturation
or direct operator intervention. They can just as easily
come back into the control problem at any sample
interval. This means that the structure of the problem
and the degrees of freedom available to the control can
change dynamically. This is illustrated in Fig. 3, which
illustrates the shape of the process transfer function

matrix for three general cases. The square plant case,
which occurs when the plant has just as many MVs as
CVs, leads to a control problem with a unique solution.
In the real world, square is rare. More common is the fat

plant case, in which there are more MVs available than
there are CVs to control. The extra degrees of freedom
available in this case can be put to use for additional
objectives, such as moving the plant closer to an optimal
operating point. When valves become saturated or lower
level control action is lost, the plant may reach a
condition in which there are more CVs than MVs; this is
the thin plant case. In this situation it will not be possible
to meet all of the control objectives; the control
specifications must be relaxed somehow, for example
by minimizing CV violations in a least-squared sense.
Fault tolerance is also an important practical issue.

Rather than simply turning itself off as signals are lost, a
practical MPC controller should remain online and try
to make the best of the sub-plant under its control. A
major barrier to achieving this goal is that a well
conditioned multivariable plant may contain a number
of poorly conditioned sub-plants. In practice an MPC
controller must recognize and screen out poorly condi-
tioned sub-plants before they result in erratic control
action.
It also became increasingly difficult to translate

control requirements into relative weights for a single
objective function. Including all the required trade-offs
in a single objective function means that relative weights
have to be assigned to the value of output setpoint
violations, output soft constraint violations, inputs
moves, and optimal input target violations. For large
problems it is not easy to translate control specifications
into a consistent set of relative weights. In some cases it
does not make sense to include these variables in the
same objective function; driving the inputs to their
optimal targets may lead to larger violation of output soft
constraints, for example. Even when a consistent set of
relative weights can be found, care must be taken to avoid
scaling problems that lead to an ill-conditioned solution.
Prett and Garc!ıa (1988) commented on this problem:

CV's

MV's

Square
Plant

CV's Fat 
Plant

MV's

Over-determined

CV's

MV's

degrees of freedom < 0

Plant
Thin

degrees of freedom = 0
Unique solution

degrees of freedom > 0
Under-determined

Fig. 3. Process structure determines the degrees of freedom available to the controller. Adapted from Froisy (1994).
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The combination of multiple objectives into one
objective (function) does not allow the designer to
reflect the true performance requirements.

These issues motivated engineers at Adersa, Setpoint,
Inc., and Shell (France) to develop new versions of MPC
algorithms. The version marketed by Setpoint was called
IDCOM-M (the M was to distinguish this from a single
input/single output version called IDCOM-S), while the
nearly identical Adersa version was referred to as
hierarchical constraint control (HIECON). The ID-
COM-M controller was first described in a paper by
Grosdidier, Froisy, and Hammann (1988). A second
paper presented at the 1990 AIChE conference describes
an application of IDCOM-M to the Shell Fundamental
Control Problem (Froisy & Matsko, 1990) and provides
additional details concerning the constraint methodo-
logy. Distinguishing features of the IDCOM-M algo-
rithm include:

* linear impulse response model of plant;
* controllability supervisor to screen out ill-condi-

tioned plant subsets;
* multi-objective function formulation; quadratic out-

put objective followed by a quadratic input objective;
* controls a subset of future points in time for each

output, called the coincidence points, chosen from a
reference trajectory;

* a single move is computed for each input;
* constraints can be hard or soft, with hard constraints

ranked in order of priority.

An important distinction of the IDCOM-M algorithm
is that it uses two separate objective functions, one for the
outputs and then, if there are extra degrees of freedom,
one for the inputs. A quadratic output objective
function is minimized first subject to hard input
constraints. Each output is driven as closely as possible
to a desired value at a single point in time known as the
coincidence point. The name comes from the fact that
this is where the desired and predicted values should
coincide. The desired output value comes from a first
order reference trajectory that starts at the current
measured value and leads smoothly to the setpoint.
Each output has two basic tuning parameters; a
coincidence point and a closed-loop response time, used
to define the reference trajectory.
Grosdidier et al. (1988) provide simulation results for

a representative FCCU regenerator control problem.
The problem involves controlling flue gas composition,
flue gas temperature, and regenerator bed temperature
by manipulating feed oil flow, recycle oil flow and air to
the regenerator. The first simulation example demon-
strates how using multiple inputs can improve dynamic
performance while reaching a pre-determined optimal
steady-state condition. A second example demonstrates
how the controller switches from controlling one output

to controlling another when a measured disturbance
causes a constraint violation. A third example demon-
strates the need for the controllability supervisor. When
an oxygen analyzer fails, the controllability supervisor is
left with only flue gas temperature and regenerator bed
temperature to consider. It correctly detects that control-
ling both would lead to an ill-conditioned problem; this is
because these outputs respond in a very similar way to
the inputs. Based on a pre-set priority it elects to control
only the flue gas temperature. When the controllability
supervisor is turned off the same simulation scenario
leads to erratic and unacceptable input adjustments.
Setpoint engineers continued to improve the IDCOM-

M technology, and eventually combined their identifica-
tion, simulation, configuration, and control products
into a single integrated offering called SMCA, for
Setpoint Multivariable Control Architecture. An im-
proved numerical solution engine allowed them to solve
a sequence of separate steady-state target optimizations,
providing a natural way to incorporate multiple ranked
control objectives and constraints.
In the late 1980’s engineers at Shell Research in

France developed the Shell Multivariable Optimizing
Controller (SMOC) (Marquis & Broustail, 1998; Yousfi
& Tournier, 1991) which they described as a bridge
between state-space and MPC algorithms. They sought
to combine the constraint handling features of MPC
with the richer framework for feedback offered by state-
space methods. To motivate this effort they discussed
the control of a hydrotreater unit with four reactor beds
in series. The control system must maintain average bed
temperature at a desired setpoint and hold temperature
differences between the beds close to a desired profile,
while preventing violation of maximum temperature
limits within each reactor. Manipulated variables
include the first reactor inlet temperature and quench
flows between the beds. A typical MPC input/output
model would view the manipulated variables as inputs
and the bed temperatures as independent outputs, and a
constant output disturbance would be assigned to each
bed temperature. But it is clear that the bed tempera-
tures are not independent, in that a disturbance in the
first bed will ultimately affect all three downstream
reactors. In addition, the controlled variables are not the
process outputs but rather linear combinations thereof.
State-space control design methods offer a natural
solution to these problems but they do not provide an
optimal way to enforce maximum bed temperature
constraints.
The SMOC algorithm includes several features that

are now considered essential to a ‘‘modern’’ MPC
formulation:

* State-space models are used so that the full range of
linear dynamics can be represented (stable, unstable,
and integrating).
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* An explicit disturbance model describes the effect of
unmeasured disturbances; the constant output dis-
turbance is simply a special case.

* A Kalman filter is used to estimate the plant states
and unmeasured disturbances from output measure-
ments.

* A distinction is introduced between controlled vari-

ables appearing in the control objective and feedback

variables that are used for state estimation.
* Input and output constraints are enforced via a QP

formulation.

The SMOC algorithm is nearly equivalent to solving
the LQR problem with input and output constraints,
except that it is still formulated on a finite horizon. As
such, it does not inherit the strong stabilizing properties
of the LQR algorithm. A stabilizing, infinite-horizon
formulation of the constrained LQR algorithm would
come only after academics began to embrace the MPC
paradigm in the 1990s (Rawlings & Muske, 1993;
Scokaert & Rawlings, 1998).
The IDCOM-M, HIECON, SMCA, and SMOC

algorithms represent a third generation of MPC techno-
logy; others include the PCT algorithm sold by Profi-
matics, and the RMPC algorithm sold by Honeywell.
This generation distinguishes between several levels of
constraints (hard, soft, ranked), provides some mecha-
nism to recover from an infeasible solution, addresses
the issues resulting from a control structure that changes
in real time, provides a richer set of options for
feedback, and allows for a wider range of process dyna-
mics (stable, integrating and unstable) and controller
specifications.

2.6. DMC-plus and RMPCT

In the last 5 years, increased competition and the
mergers of several MPC vendors have led to significant
changes in the industrial MPC landscape. In late 1995
Honeywell purchased Profimatics, Inc. and formed
Honeywell Hi-Spec Solutions. The RMPC algorithm
offered by Honeywell was merged with the Profimatics
PCT controller to create their current offering called
RMPCT. In early 1996, Aspen Technology Inc.
purchased both Setpoint, Inc. and DMC Corporation.
This was followed by acquisition of Treiber Controls in
1998. The SMCA and DMC technologies were subse-
quently merged to create Aspen Technology’s current
DMC-plus product. DMC-plus and RMPCT are
representative of the fourth generation MPC technology
sold today, with features such as:

* Windows-based graphical user interfaces.
* Multiple optimization levels to address prioritized

control objectives.

* Additional flexibility in the steady-state target opti-
mization, including QP and economic objectives.

* Direct consideration of model uncertainty (robust
control design).

* Improved identification technology based on predic-
tion error method and sub-space ID methods.

These and other MPC algorithms currently available in
the marketplace are described in greater detail in the
next section.

3. Survey of MPC technology products

The industrial MPC technology has changed con-
siderably since the publication of our first survey 5 years
ago (Qin & Badgwell, 1996), which included data from
five vendors: Adersa, DMC, Honeywell, Setpoint, and
Treiber Controls. In late 1995 Honeywell purchased
Profimatics and formed Honeywell Hi-Spec. In early
1996, Setpoint and DMC were both acquired by Aspen
Technology. Two years later Aspen purchased Treiber
Controls so that three of the companies in our original
survey had merged into one. These mergers, continued
product development, and the emergence of viable
nonlinear MPC products (Qin & Badgwell, 1998)
changed the MPC market enough for us to believe that
an updated survey would be worthwhile.
We began collecting data for the present survey in

mid-1999, when we solicited information from eight
vendors in order to assess the current status of
commercial MPC technology. The companies surveyed
and their product names and descriptions are listed in
Tables 1 and 2. In this survey we added two new
companies offering linear MPC products: Shell Global
Solutions (SGS) and Invensys Systems, Inc. (ISI) (Lewis,
Evans, & Sandoz, 1991) in the UK. Three nonlinear
MPC vendors were also included: Continental Controls,

Table 1

Companies and products included in Linear MPC technology survey

Company Product name Description

Adersa HIECON Hierarchical constraint control

PFC Predictive functional control

GLIDE Identification package

Aspen Tech DMC-plus Dynamic matrix control package

DMC-plus

model

Identification package

Honeywell RMPCT Robust model predictive control

Hi-Spec technology

Shell Global

Solutions

SMOC-IIa Shell multivariable optimizing control

Invensys Connoisseur Control and identification package

aSMOC-I was licensed to MDC Technology and Yokogawa in the

past. Shell global solutions is the organization that markets the current

SMOC technology.
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DOT Products, and Pavilion Technologies. We believe
that the technology sold by these companies is
representative of the industrial state of the art; we fully
recognize that we have omitted some MPC vendors
from our survey, especially those who just entered the
market (e.g., Fisher-Rosemount, ABB). Some compa-
nies were not asked to participate, some chose not to
participate, and some responded too late to be included
in the paper. Only companies which have documented
successful MPC applications were asked to participate.
It should be noted that several companies make use of

MPC technology developed in-house but were not
included in the survey because they do not offer their
technology externally. These MPC packages are either
well known to academic researchers or not known at all
for proprietary reasons. The SMOC algorithm originally
developed at Shell France is included in this survey
because it is now commercially available through SGS.
MDC Technology, Inc. and Yokogawa had license
agreements with Shell.
Initial data in this survey were collected from

industrial MPC vendors using a written survey. Blank
copies of the survey form are available upon request
from the authors. Survey information was supplemented
by published papers, product literature (DMC Corp.,
1994; Setpoint Inc., 1993; Honeywell Inc., 1995), and
personal communication between the authors and

vendor representatives. Results of the linear MPC
survey are summarized in Tables 3, 4 and 6. Nonlinear
MPC survey results are summarized separately in Tables
5 and 7. While the data are provided by the vendors, the
analysis is that of the authors. In presenting the survey
results our intention is to highlight the important
features of each algorithm; it is not our intent to
determine the superiority of one product versus another.
The purpose of showing the application numbers is to
give a relative magnitude on how MPC is applied to
different areas. The absolute numbers are not very
important as they are changing fast. The numbers are
not exactly comparable as the size of each MPC
application can be very different. With this under-
standing in mind, we first discuss the overall procedure
for control design and tuning. Then we describe the
various model forms used for both the linear and
nonlinear technology. The last two sections summarize
the main features of the identification and control
products sold by each vendor.

3.1. Control design and tuning

The MPC control design and tuning procedure is
generally described as follows (DMC Corp., 1994;
Setpoint Inc., 1993; Honeywell Inc., 1995):

* From the stated control objectives, define the size of
the problem, and determine the relevant CVs, MVs,
and DVs.

* Test the plant systematically by varying MVs and
DVs; capture and store the real-time data showing
how the CVs respond.

* Derive a dynamic model either from first-principles
or from the plant test data using an identification
package.

* Configure the MPC controller and enter initial tuning
parameters.

* Test the controller off-line using closed-loop simula-
tion to verify the controller performance.

Table 2

Companies and products included in Nonlinear MPC technology

survey

Company Product name Description

Adersa PFC Predictive functional

control

Aspen Tech Aspen Target Nonlinear MPC package

Continental Controls,

Inc.

MVC Multivariable control

DOT Products NOVA-NLC NOVA nonlinear

controller

Pavilion Technologies Process Perfecter Nonlinear control

Table 3

Comparison of linear MPC identification technology

Product Test protocol Model forma Est. methodb Uncert. bound

DMC-plus step, PRBS VFIR, LSS MLS Yes

RMPCTc PRBS, step FIR, ARX, BJ LS, GN, PEM Yes

AIDAd PRBS, step LSS, FIR, TF, MM PEM-LS, GN Yes

Glide non-PRBS TF GD, GN, GM Yes

Connoisseur PRBS, step FIR, ARX, MM RLS, PEM Yes

aModel Form: finite impulse response (FIR), velocity FIR (VFIR), Laplace transfer function (TF), linear state-space (LSS), auto-regressive with

exogenous input (ARX), Box–Jenkins (BJ), multi-model (MM).
bEst. method: least-squares (LS), modified LS (MLS), recursive LS (RLS), subspace ID (SMI), Gauss–Newton (GN), prediction error method

(PEM), gradient descent (GD), global method (GM).
cThe commercial name for RMPCT is profit-controller.
dAIDA: advanced identification data analysis.
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* Download the configured controller to the destina-
tion machine and test the model predictions in open-

loop mode.
* Close the loop and refine the tuning as needed.

All of the MPC packages surveyed here provide
software tools to help with the control design, model
development, and closed-loop simulation steps. A
significant amount of time is currently spent at the
closed-loop simulation step to verify acceptable perfor-
mance and robustness of the control system. Typically,
tests are performed to check the regulatory and servo
response of each CV, and system response to violations
of major constraints is verified. The final tuning is then
tested for sensitivity to model mismatch by varying the
gain and dynamics of key process models. However,
even the most thorough simulation testing usually
cannot exhaust all possible scenarios.
Of the products surveyed here, only the RMPCT

package provides robust tuning in an automatic way.
This is accomplished using a min–max design procedure
in which the user enters estimates of model uncertainty

directly. Tuning parameters are computed to optimize
performance for the worst case model mismatch.
Robustness checks for the other MPC controllers are
performed by closed-loop simulation.

3.2. Process models

The technical scope of an MPC product is largely
defined by the form of process model that it uses. Tables
3 and 5 show that a wide variety of linear and nonlinear
model forms are used in industrial MPC algorithms. It is
helpful to visualize these models in a two-dimensional
space, as illustrated in Fig. 4. The horizontal axis refers
to the source of information used for model develop-
ment, and the vertical axis designates whether the model
is linear or nonlinear. The far left side of the diagram
represents empirical models that are derived exclusively
from process test data. Because empirical models mainly
perform fitting between the points of a data set, they
generally cannot be expected to accurately predict
process behavior beyond the range of the test data used
to develop them. At the far right side of the diagram lie

Table 4

Comparison of linear MPC control technology

Company Aspen Honeywell Adersa Adersa Invensys SGS

Tech Hi-Spec

Product DMC-plus RMPCT HIECON PFC Connois. SMOC

Linear Model FSR ARX, TF FIR LSS,TF,ARX ARX,FIR LSS

Formsa L,S,I,U L,S,I,U L,S,I L,N,S,I,U L,S,I,U L,S,I,U

Feedbackb CD, ID CD, ID CD, ID CD, ID CD, ID KF

Rem Ill-condc IMS SVT — — IMS IMS

SS Opt Objd L=Q½I;O	;y;R Q[I,O] — Q[I,O] L[I,O] Q[I,O],R

SS Opt Conste IH,OS,R IH,OH — IH,OH IH,OH IH,OS

Dyn Opt Objf Q[I,O,M],S Q[I,O] Q[O],Q[I] Q[I,O],S Q[I,O,M] Q[I,O]

Dyn Opt Constg IH IH,OS IH,OH,OS,R IA,OH,OS,R IH,OS,R IH,OS

Output Trajh S,Z S,Z,F S,Z,RT S,Z,RT S,Z S,Z,RTB,F

Output Horizi FH FH FH CP FH FH

Input Paramj MMB MM SM BF MMB MMB

Sol. Methodk SLS ASQP ASQP LS ASQP ASQP

References Cutler and Ramaker (1979)

and DMC Corp., (1994)

Honeywell

Inc., (1995)

Richalet

(1993)

Richalet (1993) Marquis and

Broustail (1998)

aModel form: Finite impulse response (FIR), finite step response (FSR), Laplace transfer function (TF), linear state-space (LSS), auto-regressive

with exogenous input (ARX), linear (L), nonlinear (N), stable (S), integrating (I), unstable (U).
bFeedback: Constant output disturbance (CD), integrating output disturbance (ID), Kalman filter (KF).
cRemoval of Ill-conditioning: Singular value thresholding (SVT), input move suppression (IMS).
dSteady-state optimization objective: linear (L), quadratic (Q), inputs (I), outputs (O), multiple sequential objectives ðyÞ; outputs ranked in order

of priority (R).
eSteady-state optimization constraints: Input hard maximum, minimum, and rate of change constraints (IH), output hard maximum and minimum

constraints (OH), constraints ranked in order of priority (R).
fDynamic optimization objective: Quadratic (Q), inputs (I), Outputs (O), input moves (M), sub-optimal solution (S).
gDynamic optimization constraints: Input hard maximum, minimum and rate of change constraints, IH with input acceleration constraints (IA),

output hard maximum and minimum constraints (OH), output soft maximum and minimum constraints (OS), constraints ranked in order of priority

(R).
hOutput trajectory: Setpoint (S), zone (Z), reference trajectory (RT), RT bounds (RTB), funnel (F).
iOutput horizon: Finite horizon (FH), coincidence points (CP).
j Input parameterization: Single move (SM), multiple move (MM), MM with blocking (MMB), basis functions (BF).
kSolution method: Least squares (LS), sequential LS (SLS), active set quadratic program (ASQP).
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models derived purely from theoretical considerations
such as mass and energy balances. These first-principles

models are typically more expensive to develop, but are
able to predict process behavior over a much wider
range of operating conditions. In reality process models
used in MPC technology are based on an effective
combination of process data and theory. First principles
models, for example, are typically calibrated by using
process test data to estimate key parameters. Likewise,
empirical models are often adjusted to account for
known process physics; for example in some cases a
model gain may be known to have a certain sign or
value.
The MPC products surveyed here use time-invariant

models that fill three quadrants of Fig. 4; nonlinear first-

principles models, nonlinear empirical models, and
linear empirical models. The various model forms can
be derived as special cases of a general continuous-time
nonlinear state-space model:

’x ¼ %fðx; u; v;wÞ; ð8aÞ

y ¼ %gðx; uÞ þ n; ð8bÞ

where uARmu is a vector of MVs, yARmy is a vector of
CVs, xARn is a vector of state variables, vARmv is a
vector of measured DVs, wARmw is a vector of
unmeasured DVs or process noise, and nARmx is a
vector of measurement noise. The following sections
describe each model type in more detail.

Table 5

Comparison of nonlinear MPC control technology

Company Adersa Aspen Continental DOT Pavilion

Technology Controls Products Technologies

Product PFC Aspen MVC NOVA Process

Target NLC Perfecter

Nonlinear

model

NSS-FP NSS-NNN SNP-ARX NSS-FP NNN-ARX

Formsa S,I,U S,I,U S S,I S,I,U

Feedbackb CD,ID CD,ID,EKF CD CD CD,ID

Rem Ill-condc — IMS IMS IMS —

SS Opt Objd Q[I,O] Q[I,O] Q[I,O] — Q[I,O]

SS Opt Conste IH,OH IH,OH IH,OS — IH,OH,OS

Dyn Opt Objf Q[I,O],S Q[I,O,M] Q[I,O,M] (Q,A)[I,O,M] Q[I,O]

Dyn Opt

Constg
IA,OH,OS,R IH,OS-l1 IH,OS IH,OH,OS IH,OS

Output Trajh S,Z,RT S,Z,RT S,Z,RT S,Z,RTUL S,Z,TW

Output Horizi CP CP FH FH FH

Input Paramj BF MM SM MM MM

Sol. Methodk NLS QPKWIK GRG2 NOVA GRG2

References Richalet

(1993)

De Oliveira and Biegler (1994,

1995), Sentoni et al. (1998),

Zhao et al. (1998), Zhao,

Guiver, Neelakantan, and

Biegler (1999) and Turner

and Guiver (2000)

Berkowitz and Papadopoulos

(1995), MVC 3.0 User Manual

(1995), Berkowitz, Papadopoulos,

Colwell, and Moran (1996),

Poe and Munsif (1998)

Bartusiak and

Fontaine (1997)

and Young

et al. (2001)

Demoro, Axelrud,

Johnston, and Martin,

1997, Keeler, Martin,

Boe, Piche, Mathur,

and Johnston, (1996),

Martin et al. (1998);

Martin and Johnston

(1998) and Piche et al.

(2000)

aModel form: Input–output (IO), first-principles (FP), nonlinear state-space (NSS), nonlinear neural net (NNN), static nonlinear polynomial

(SNP), stable (S), integrating (I), unstable (U).
bFeedback: Constant output disturbance (CD), integrating output disturbance (ID), extended Kalman filter (EKF).
cRemoval of Ill-conditioning: Input move suppression (IMS).
dSteady-state optimization objective: Quadratic (Q), inputs (I), outputs (O).
eSteady-state optimization constraints: Input hard maximum, minimum, and rate of change constraints (IH), output hard maximum and minimum

constraints (OH).
fDynamic optimization objective: Quadratic (Q), one norm (A), inputs (I), outputs (O), input moves (M).
gDynamic optimization constraints: input hard maximum, minimum and rate of change constraints (IH), IH with input acceleration constraints

(IA), output hard maximum and minimum constraints (OH), output soft maximum and minimum constraints (OS), output soft constraints with l1
exact penalty treatment (OS-l1) (De Oliveira and Biegler, 1994).

hOutput trajectory: Setpoint (S), Zone (Z), reference trajectory (RT), upper and lower reference trajectories (RTUL), trajectory weighting (TW).
iOutput horizon: finite horizon (FH), coincidence points (CP).
j Input parameterization: Single move (SM), multiple move (MM), basis functions (BF).
kSolution method: Nonlinear least squares (NLS), multi-step Newton method (QPKWIK) generalized reduced gradient (GRG), mixed

complementarity nonlinear program (NOVA).
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3.2.1. Nonlinear first-principles models

Nonlinear first-principles models used by the NOVA-
NLC algorithm are derived from mass and energy
balances, and take exactly the form shown above in 8.
Unknown model parameters such as heat transfer
coefficients and reaction kinetic constants are either
estimated off-line from test data or on-line using an
extended Kalman filter (EKF). In a typical application
the process model has between 10 and 100 differential
algebraic equations.

The PFC algorithm can be used with several different
model types. The most general of these is a discrete-time
first-principles model that can be derived from 8 by
integrating across the sample time:

xkþ1 ¼ fðxk; uk; vk;wkÞ; ð9aÞ

yk ¼ gðxk; ukÞ þ nk; ð9bÞ

although special care should be taken for stiff systems.

3.2.2. Linear empirical models

Linear empirical models have been used in the
majority of MPC applications to date, so it is no
surprise that most of the current MPC products are
based on this model type. A wide variety of model forms
are used, but they can all be derived from 9 by
linearizing about an operating point to get:

xkþ1 ¼ Axk þ Buuk þ Bvvk þ Bwwk; ð10aÞ

yk ¼ Cxk þDuk þ nk: ð10bÞ

The SMOC and PFC algorithms can use this model
form. An equivalent discrete-time transfer function
model can be written in the form of a matrix fraction
description (Kailath, 1980):

yk ¼ ½I� Uyðq�1Þ	�1½Uuðq�1Þuk þ Uvðq�1Þvk

þ Uwðq�1Þwk	 þ nk; ð11Þ

Table 6

Summary of linear MPC applications by areas (estimates based on vendor survey; estimates do not include applications by companies who have

licensed vendor technology)a

Area Aspen Honeywell Adersab Invensys SGSc Total

Technology Hi-Spec

Refining 1200 480 280 25 1985

Petrochemicals 450 80 — 20 550

Chemicals 100 20 3 21 144

Pulp and paper 18 50 — — 68

Air & Gas — 10 — — 10

Utility — 10 — 4 14

Mining/Metallurgy 8 6 7 16 37

Food Processing — — 41 10 51

Polymer 17 — — — 17

Furnaces — — 42 3 45

Aerospace/Defense — — 13 — 13

Automotive — — 7 — 7

Unclassified 40 40 1045 26 450 1601

Total 1833 696 1438 125 450 4542

First App. DMC:1985 PCT:1984 IDCOM:1973

IDCOM-M:1987 RMPCT:1991 HIECON:1986 1984 1985

OPC:1987

Largest App. 603� 283 225� 85 — 31� 12 —

aThe numbers reflect a snapshot survey conducted in mid-1999 and should not be read as static. A recent update by one vendor showed 80%

increase in the number of applications.
bAdersa applications through January 1, 1996 are reported here. Since there are many embedded Adersa applications, it is difficult to accurately

report their number or distribution. Adersa’s product literature indicates over 1000 applications of PFC alone by January 1, 1996.
cThe number of applications of SMOC includes in-house applications by Shell, which are unclassified. Therefore, only a total number is estimated

here.

Empirical
First

Principles

Linear

Nonlinear

DMCplus
HIECON
RMPCT

PFC
Connoisseur

SMOC

Aspen Target
MVC

Process Perfecter

PFC
NOVA-NLC

Fig. 4. Classification of model types used in industrial MPC

algorithms.
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where q�1 is a backward shift operator. The output error
identification approach (Ljung, 1999) minimizes the
measurement error nk; which results in nonlinear
parameter estimation. Multiplying ½I� Uyðq�1Þ	 on both
sides of the above equation results in an autoregressive

model with exogenous inputs (ARX),

yk ¼Uyðq�1Þyk þ Uuðq�1Þuk þ Uvðq�1Þvk

þ Uwðq�1Þwk þ fk; ð12aÞ

where

fk ¼ ½I� Uyðq�1Þ	nk: ð12bÞ

This model form is used by the RMPCT, PFC, and
Connoisseur algorithms. The equation error identifica-
tion approach minimizes fk; which is colored noise even
though the measurement noise nk is white. The RMPCT
identification algorithm also provides an option for the
Box–Jenkins model, that lumps the error terms in to one
term ek:

yk ¼ ½I� Uyðq�1Þ	�1½Uuðq�1Þuk þ Uvðq�1Þvk	

þ ½Heðq�1Þ	�1Ueðq�1Þek: ð13Þ

For a stable system, a FIR model can be derived as an
approximation to the discrete-time transfer function
model 11:

yk ¼
XNu

i¼1

Hu
i uk�i þ

XNv

i¼1

Hv
i vk�i þ

XNw

i¼1

Hw
i wk�i þ nk: ð14Þ

This model form is used by the DMC-plus and
HIECON algorithms. Typically the sample time is
chosen so that from 30 to 120 coefficients are required
to describe the full open-loop response. An equivalent
velocity form is useful in identification:

Dyk ¼
XNu

i¼1

Hu
i Duk�i þ

XNv

i¼1

Hv
i Dvk�i

þ
XNw

i¼1

Hw
i Dwk�i þ Dnk: ð15Þ

An alternative model form is the finite step response
model (FSR) (Cutler, 1983); given by:

yk ¼
XNu�1

i¼1

Su
i Duk�i þ Su

Nu
uk�Nu

þ
XNv�1

i¼1

Sv
i Dvk�i þ Sv

Nv
vk�Nv

þ
XNw�1

i¼1

Sw
i Dwk�i þ Sv

Nw
wk�Nw

þ nk; ð16Þ

where Sj ¼
Pj

i¼1 Hi and Hi ¼ Si � Si�1: The FSR
model is used by the DMC-plus and RMPCT algo-
rithms. The RMPCT, Connoisseur, and PFC algorithms
also provide the option to enter a Laplace transfer
function model. This model form is then automatically

converted to a discrete-time model form for use in the
control calculations.

3.2.3. Nonlinear empirical models

Two basic types of nonlinear empirical models are
used in the products that we surveyed. The Aspen
Target product uses a discrete-time linear model for the
state dynamics, with an output equation that includes a
linear term summed with a nonlinear term:

xkþ1 ¼ Axk þ Buuk þ Bvvk þ Bwwk; ð17aÞ

yk ¼ Cxk þDuuk þ Nðxk; ukÞ þ nk: ð17bÞ

Only stable processes can be controlled by the Aspen
Target product, so the eigenvalues of A must lie strictly
within the unit circle. The nonlinear function N is
obtained from a neural network. Since the state vector x
is not necessarily limited to physical variables, this
nonlinear model appears to be more general than
measurement nonlinearity. For example, a Wiener
model with a dynamic linear model followed by a static
nonlinear mapping can be represented in this form. It is
claimed that this type of nonlinear model can approx-
imate any discrete time nonlinear processes with fading
memory (Sentoni, Biegler, Guiver, & Zhao, 1998).
It is well known that neural networks can be

unreliable when used to extrapolate beyond the range
of the training data. The main problem is that for a
sigmoidal neural network, the model derivatives fall to
zero as the network extrapolates beyond the range of its
training data set. The Aspen Target product deals with
this problem by calculating a model confidence index

(MCI) on-line. If the MCI indicates that the neural
network prediction is unreliable, the neural net non-
linear map is gradually turned off and the model
calculation relies on the linear portion fA;B;Cg only.
Another feature of this modeling algorithm is the use of
EKF to correct for model-plant mismatch and unmea-
sured disturbances (Zhao, Guiver, & Sentoni, 1998). The
EKF provides a bias and gain correction to the model
on-line. This function replaces the constant output error
feedback scheme typically employed in MPC practice.
The MVC algorithm and the Process Perfecter use

nonlinear input–output models. To simplify the system
identification task, both products use a static nonlinear
model superimposed upon a linear dynamic model.
Martin, Boe, Keeler, Timmer, and Havener (1998)

and later Piche, Sayyar-Rodsari, Johnson, and Gerules
(2000) describe the details of the Process Perfecter
modeling approach. Their presentation is in single-
input–single-output form, but the concept is applicable
to multi-input–multi-output models. It is assumed that
the process input and output can be decomposed into a
steady-state portion which obeys a nonlinear static
model and a deviation portion that follows a dynamic
model. For any input uk and output yk; the deviation
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variables are calculated as follows:

duk ¼ uk � us; ð18aÞ

dyk ¼ yk � ys; ð18bÞ

where us and ys are the steady-state values for the input
and output, respectively, and follow a rather general
nonlinear relation:

ys ¼ hsðusÞ: ð19Þ

The deviation variables follow a second-order linear
dynamic relation:

dyk ¼
X2

i¼1

aidyk�i þ biduk�i: ð20Þ

The identification of the linear dynamic model is based
on plant test data from pulse tests, while the nonlinear
static model is a neural network built from historical
data. It is believed that the historical data contain rich
steady-state information and plant testing is needed only
for the dynamic sub-model. Bounds are enforced on the
model gains in order to improve the quality of the neural
network for control applications.
The use of the composite model in the control step

can be described as follows. Based on the desired output
target yd

s ; a nonlinear optimization program calculates
the best input and output values uf

s and yf
s using the

nonlinear static model. During the dynamic controller
calculation, the nonlinear static gain is approximated by
a linear interpolation of the initial and final steady-state
gains,

KsðukÞ ¼ Ki
s þ

Kf
s � Ki

s

u
f
s � ui

s

duk; ð21Þ

where ui
s and uf

s are the current and the next steady-state
values for the input, respectively, and

Ki
s ¼

dys

dus

����
ui

s

; ð22aÞ

Kf
s ¼

dys

dus

����
u

f
s

; ð22bÞ

which are evaluated using the static nonlinear model.
Bounds on Ki

s and Kf
s can be applied. Substituting the

approximate gain Eq. (21) into the linear sub-model
yields,

dyk ¼
X2

i¼1

aidyk�i þ %biduk�i þ gidu2k�i; ð23aÞ

where

%bi ¼
biK

i
sð1�

Pn
j¼1 ajÞPn

j¼1 bj

; ð23bÞ

gi ¼
bið1�

Pn
j¼1 ajÞPn

j¼1 bj

Kf
s � Ki

s

u
f
s � ui

s

: ð23cÞ

The purpose of this approximation is to reduce
computational complexity during the control calculation.
It can be seen that the steady-state target values are

calculated from a nonlinear static model, whereas the
dynamic control moves are calculated based on the
quadratic model in Eq. (23a). However, the quadratic
model coefficients (i.e., the local gain) change from one
control execution to the next, simply because they are
rescaled to match the local gain of the static nonlinear
model. This approximation strategy can be interpreted
as a successive linearization at the initial and final states
followed by a linear interpolation of the linearized gains.
The interpolation strategy resembles gain-scheduling,
but the overall model is different from gain scheduling
because of the gain re-scaling. This model makes the
assumption that the process dynamics remain linear
over the entire range of operation. Asymmetric
dynamics (e.g., different local time constants), as a
result, cannot be represented by this model.

3.3. MPC modeling and identification technology

Table 3 summarizes essential details of the modeling
and identification technology sold by each vendor.
Models are usually developed using process response
data, obtained by stimulating the process inputs with a
carefully designed test sequence. A few vendors such as
Adersa and DOT Products advocate the use of first
principles models.

3.3.1. Test protocols

Test signals are required to excite both steady-state
(low frequency) and dynamic (medium to high fre-
quency) dynamics of a process. A process model is then
identified from the process input–output data. Many
vendors believe that the plant test is the single most
important phase in the implementation of DMC-plus
controllers. To prepare for a formal plant test, a pre-test
is usually necessary for three reasons: (i) to step each
MV and adjust existing instruments and PID control-
lers; (ii) to obtain the time to steady state for each CV;
and (iii) to obtain data for initial identification.
Most identification packages test one (or at most

several) manipulated variables at a time and fix other
variables at their steady state. This approach is valid as
long as the process is assumed linear and superposition
works. A few packages allow several MVs to change
simultaneously with uncorrelated signals for different
MVs. The plant test is run 24 hours a day with engineers
monitoring the plant. Each MV is stepped 8 to 15 times,
with the output (CV) signal to noise ratio at least six.
The plant test may take up to 5–15 days, depending on
the time to steady state and number of variables of the
unit. Two requirements are imposed during the test: (i)
no PID configuration or tuning changes are allowed;
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and (ii) operators may intervene during the test to avoid
critical situations, but no synchronizing or correlated
moves are allowed. One may merge data from multiple
test periods, which allows the user to cut out a period of
data which may be corrupted with disturbances.
If the lower level PID control tuning changes

significantly then it may be necessary to construct a
new process model. A model is identified between the
input and output, and this is combined by discrete
convolution with the new input setpoint to input model.
It appears that PRBS or PRBS-like stepping signals

are the primary test signals used by the identification
packages. The GLIDE package uses a binary signal in
which the step lengths are optimized in a dedicated way.
Others use a step test with random magnitude or more
random signals like the PRBS (e.g., DMC-plus-Model,
Connoisseur, and RMPCT).

3.3.2. Linear model identification

The model parameter estimation approaches in the
MPC products are mainly based on minimizing the
following least-squares criterion,

J ¼
XL

k¼1

jjyk � ym
k jj

2; ð24Þ

using either an equation error approach or an output
error approach (Ljung, 1987). The major difference
between the equation error approach and the output
error approach appears in identifying ARX or transfer
function models. In the equation error approach,
past output measurements are fed back to the model in
Eqn. (12a),

yk ¼ Uyðq�1Þym
k þ Uuðq�1Þuk þ Uvðq�1Þvk; ð25Þ

while in the output error approach, the past model
output estimates are fed back to the model,

yk ¼ Uyðq�1Þyk þ Uuðq�1Þuk þ Uvðq�1Þvk: ð26Þ

The equation error approach produces a linear least-
squares problem, but the estimates are biased even
though the measurement noise n in Eqn. (11) is white.
The output error approach is unbiased given white
measurement noise. However, the ARX model para-
meters appear nonlinearly in the model, which requires
nonlinear parameter estimation. One may also see that
the equation error approach is a one-step ahead
prediction approach with reference to ym

k ; while the
output error approach is a long range prediction
approach since it does not use ym

k :
Using FIR models results in a linear-in-parameter

model and an output error approach, but the estimation
variance may be inflated due to possible overparame-
trization. In DMC-plus-Model, a least-squares method
is used to estimate FIR model parameters in velocity
form (Eqn. (15)). The advantage of using the velocity
form is to reduce the effect of a step-like unmeasured

disturbance (Cutler & Yocum, 1991). However, the
velocity form is sensitive to high frequency noise.
Therefore, DMC-plus-Model allows the data to be
smoothed prior to fitting a model. The FIR coefficients
are then converted into FSR coefficients for control.
Connoisseur uses recursive least squares in a prediction
error formulation to implement adaptive features.
It is worth noting that subspace model identification

(SMI) (Larimore, 1990; Ljung, 1999) algorithms are
now implemented in several MPC modeling algorithms.
SMOC uses canonical variate analysis (CVA) to identify
a state-space model which is also the model form used in
the SMOC controller. Several other vendors are
developing and testing their own versions of SMI
algorithms.
RMPCT adopts a three-step approach: (i) identify

either a Box–Jenkins model using PEM or an FIR
model using Cholesky decomposition; (ii) fit the
identified model to a low-order ARX model to smooth
out large variance due to possible overparametrization
in the FIR model. The output error approach is used to
fit the ARX model via a Gauss–Newton method; and
(iii) convert the ARX models into Laplace transfer
functions. As an alternative to (ii) and (iii), RMPCT has
the option to fit the identified model directly to a fixed
structure Laplace transfer function. When the model is
used in control, the transfer function models are
discretized into FSR models based on a given sampling
interval. The advantage of this approach is that one has
the flexibility to choose different sampling intervals than
that used in data collection.
Model uncertainty bounds are provided in several

products such as RMPCT. In GLIDE, continuous
transfer function models are identified directly by using
gradient descent or Gauss–Newton approaches. Then
model uncertainty is identified by a global method,
which finds a region in the parameter space where the
fitting criterion is less than a given value. This given
value must be larger than the minimum of the criterion
in order to find a feasible region.
Most linear MPC products allow the user to apply

nonlinear transformations to variables that exhibit
significant nonlinearity. For example, a logarithm
transformation is often performed on composition
variables for distillation column control.

3.3.3. Nonlinear model identification

The most difficult issue in nonlinear empirical
modeling is not the selection of a nonlinear form, be it
polynomial or neural network, but rather the selection
of a robust and reliable identification algorithm. For
example, the Aspen Target identification algorithm
discussed in Zhao et al. (1998) builds one model for
each output separately. For a process having my output
variables, overall my MISO sub-models are built. The
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following procedure is employed to identify each sub-
model from process data.

1. Specify a rough time constant for each input–
output pair, then a series of first order filters
or a Laguerre model is constructed for each
input (Zhao et al., 1998; Sentoni et al., 1998).
The filter states for all inputs comprise the state
vector x:

2. A static linear model is built for each output fyj ; j ¼
1; 2;y;myg using the state vector x as inputs using
partial least squares (PLS).

3. Model reduction is then performed on the input-
state–output model identified in Steps 1 and 2 using
principal component analysis and internal balancing
to eliminate highly collinear state variables.

4. The reduced model is rearranged in a state-space
model ðA;BÞ; which is used to generate the state
sequence fxk; k ¼ 1; 2;y;Kg: If the model con-
verges, i.e., no further reduction in model order, go
to the next step; otherwise, return to step 2.

5. A PLS model is built between the state vector x and
the output yj : The PLS model coefficients form the C
matrix.

6. A neural network model is built between the PLS
latent factors in the previous step and the PLS
residual of the output yj : This step generates the
nonlinear static map gjðxÞ: The use of the PLS latent
factors instead of the state vectors is to improve the
robustness of the neural network training and reduce
the size of the neural network.

A novel feature of the identification algorithm
is that the dynamic model is built with filters
and the filter states are used to predict the output
variables. Due to the simplistic filter structure, each
input variable has its own set of state variables, making
the A matrix block-diagonal. This treatment assumes
that each state variable is only affected by one input
variable, i.e., the inputs are decoupled. For the typical
case where input variables are coupled, the algorithm
could generate state variables that are linearly
dependent or collinear. In other words, the resulting
state vector would not be a minimal realization.
Nevertheless, the use of a PLS algorithm makes the
estimation of the C matrix well-conditioned. The
iteration between the estimation of A;B and C matrices
will likely eliminate the initial error in estimating the
process time constants.
Process nonlinearity is added to the model

with concern for model validity using the model
confidence index. When the model is used for extra-
polation, only the linear portion of the model is used.
The use of EKF for output error feedback in Aspen
Target is interesting; the benefit of this treatment is yet
to be demonstrated.

3.4. MPC control technology

MPC controllers are designed to drive the
process from one constrained steady state to another.
They may receive optimal steady-state targets
from an overlying optimizer, as shown in Fig. 2, or they
may compute an economically optimal operating point
using an internal steady-state optimizer. The general
objectives of an MPC controller, in order of importance,
are:

1. prevent violation of input and output constraints;
2. drive the CVs to their steady-state optimal values

(dynamic output optimization);
3. drive the MVs to their steady-state optimal values

using remaining degrees of freedom (dynamic input
optimization);

4. prevent excessive movement of MVs;
5. when signals and actuators fail, control as much of

the plant as possible.

The translation of these objectives into a
mathematical problem statement involves a number
of approximations and trade-offs that define the
basic character of the controller. Like any design
problem there are many possible solutions; it is no
surprise that there are a number of different MPC
control formulations. Tables 4 and 5 summarize how
each of the MPC vendors has accomplished this
translation.
Fig. 5 illustrates the flow of a representative MPC

calculation at each control execution. The first step is to
read the current values of process inputs (DVs and
MVs) and process outputs (CVs). In addition to their
numerical values, each measurement carries with it a
sensor status to indicate whether the sensor is function-
ing properly or not. Each MV will also carry informa-
tion on the status of the associated lower level control
function or valve; if saturated then the MV will
be permitted to move in one direction only. If the
MV controller is disabled then the MV cannot be used
for control but can be considered a measured
disturbance (DV).
The remaining steps of the calculation essentially

answer three questions:

* where is the process now, and where is it heading?
(output feedback);

* where should the process go to at steady state? (local
steady-state optimization);

* what is the best way to drive the process to where it
needs to go? (dynamic optimization).

The following sections describe these and
other aspects of the MPC calculation in greater
detail.
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3.4.1. Output feedback (state estimation)

In the output feedback step, the controller makes use
of available measurements in order to estimate the
dynamic state of the system. It is at this point in the
calculation where the failure to embrace LQG concepts
has had the most detrimental impact on industrial MPC
technology. Instead of separating the overall problem
into its two natural components, state estimation and
state control, most industrial MPC products do not
incorporate the concept of a process state at all, and rely
instead upon ad-hoc biasing schemes to incorporate
feedback. This has several implications:

* Additional process output measurements (non-CVs)
that could improve the accuracy of state estimation
are not easily incorporated into the control structure;

* Additional effort is required to control linear
combinations of process states (average bed tempera-
ture, for example), or to control unmeasured outputs;

* Unmeasured disturbance model options are severely
limited;

* Ad hoc fixes must be introduced to remove steady-
state offset for integrating and unstable systems;

* Measurement noise must be addressed in a sub-
optimal manner.

Currently, there are only two MPC products that
exploit Kalman filter technology for output feedback.
As discussed earlier, the limitations listed above
motivated the original development of the SMOC
algorithm (Marquis & Broustail, 1998). The currently
sold SMOC product still retains a Kalman filter. The
Aspen Target product includes an EKF for feedback,
based on a straightforward extension for nonlinear
systems (Kailath, Sayed, & Hassibi, 2000).
For stable processes, the remaining MPC algorithms

included in our survey use the same form of feedback,
based on comparing the current measured process
output ym

k to the current predicted output yk:

bk ¼ ym
k � yk: ð27Þ

The bias bk term is added to the model for use in
subsequent predictions:

ykþj ¼ gðxkþj ; ukþjÞ þ bk: ð28Þ

This form of feedback is equivalent to assuming that a
step disturbance enters at the output and remains
constant for all future time (Morari & Lee, 1991; Lee,
Morari, & Garc!ıa, 1994). Muske and Rawlings (1993)
analyzed this assumption in the context of the Kalman
filter 4; the corresponding filter gain is

Kf ¼ ½0 I	T

which means no feedback for the process state estimates
and identity feedback for the output disturbance.
Muske and Rawlings (1993) show that a wide variety

of other disturbance models is possible. In particular
they show that the constant output disturbance model
leads to sluggish rejection of disturbances entering at the
process input, a point also made by Shinskey in his
criticism of MPC (Shinskey, 1994). This problem can be
addressed directly by building an input disturbance
model, similar to the internal model principle.
In the context of the discrete-time linear model 10, a

general disturbance model can be written as:

xkþ1 ¼ Axk þ Buuk þ Bvvk þ Bwwk þ Bssk; ð29aÞ

skþ1 ¼ sk; ð29bÞ

pkþ1 ¼ pk; ð29cÞ

yk ¼ Cxk þDuk þ nk þ Cppk; ð29dÞ

Here skARms represents a constant state disturbance,
and pkARmp represents a constant output disturbance.
The control designer does not have complete freedom in
specifying the number and location of disturbances,
however, because the disturbance states must be
observable. In practice this means that the total number
of disturbances cannot exceed the number of measured
outputs ðms þ mppmyÞ; and that for a given process
model the disturbance is not allowed to enter in certain
state, or output directions (Muske, 1995). Design of

Read MV, DV, CV values from process

Output feedback (state estimation)

Determine controlled process subset

Remove ill-conditioning

Dynamic Optimization

Local Steady-State Optimization

Output MV's to process

Fig. 5. Flow of MPC calculation at each control execution.
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sensible disturbance models for MPC applications is a
ripe area for future academic research, especially for
nonlinear systems.
For stable processes, the constant output disturbance

model provides integral action to the controller,
effectively removing steady-state offset due to distur-
bances and model mismatch (Rawlings et al., 1994). For
integrating and unstable processes, however, the con-
stant output disturbance model fails because the
estimator contains the unstable poles of the process
(Muske & Rawlings, 1993). This can be addressed easily
through the use of input or state disturbance models,
but most industrial MPC are forced to address the issue
using ad hoc fixes, since they do not incorporate a
Kalman filter. The approach used in the DMC-plus
product is typical, where it is assumed that a constant
integrating disturbance has entered the process, and a
rotation factor is used to describe the fraction of
prediction error due to the constant integrating dis-
turbance, relative to the constant output disturbance.
For a specific output variable that is an integrating
mode, the corresponding disturbance model can be
represented as:

xkþ1 ¼ xk þ buuk þ bvvk þ bwwk þ apk; ð30aÞ

pkþ1 ¼ pk; ð30bÞ

yk ¼ cxk þ duk þ xk þ pk; ð30cÞ

where a is the rotation factor. In this case it can be
shown that the disturbance pk is observable only if the
rotation factor a is nonzero. While this scheme provides
offset-free control for integrating systems, choice of an
appropriate rotation factor is difficult in practice, and
control of noisy integrating systems is often poor.
The MPC products include features to address a

variety of feedback scenarios encountered in applica-
tions. In some cases the CV measurement may not be
available at each control execution; this may happen, for
example, when the CV measurement is provided by an
analyzer. In this case a typical solution is to skip the bias
update for the affected CV for a number of control
intervals. A counter is provided to disable control of the
CV if too many executions go by without feedback.

3.4.2. Determining the controlled sub-process

After the process state has been estimated, the
controller must determine which MVs can be manipu-
lated and which CVs should be controlled. In general, if
the measurement status for a CV is good, and the
operator has enabled control of the CV, then it should
be controlled. An MV must meet the same criteria to be
used for control; in addition, however, the lower level
control functions must also be available for manipula-
tion. If the lower level controller is saturated high or
low, one can add a temporary hard MV constraint to the

problem to prevent moving the MV in the wrong
direction. If the lower level control function is disabled,
the MV cannot be used for control. In this case it should
be treated as a DV. From these decisions a controlled
subprocess is defined at each control execution. In
general the shape of the subprocess changes in real-time
as illustrated in Fig. 3.
In applications, it is typical to include the low level

control outputs (e.g., valve positions) in the MPC
control formulation as additional CVs. These CVs are
then forced to stay within high and low saturation limits
by treating them as range or zone control variables. This
serves to keep the lower level controllers away from
valve constraints that would otherwise compromise their
performance.
In most MPC products, sensor faults are limited to

complete failure that goes beyond pre-specified control
limits. Sensor faults such as significant bias and drifting
that are within normal limits are generally not detected
or identified in these products.
The DMC-plus, Connoisseur, and RMPCT algorithms

distinguish between a critical CV failure and a non-

critical CV failure. If a noncritical CV fails, the RMPCT
and DMC-plus algorithms continue control action by
setting the failed CV measurement to the model predicted
value, which means there is no feedback for the failed
CV. If the noncritical CV fails for a specified period of
time, RMPCT drops this CV from the control objective
function. If a critical CV fails, the DMC-plus and
RMPCT controllers turn-off immediately.

3.4.3. Removal of ill-conditioning

At any particular control execution, the process
encountered by the controller may require excessive
input movement in order to control the outputs
independently. This problem may arise, for example, if
two controlled outputs respond in an almost identical
way to the available inputs. Consider how difficult it
would be to independently control adjacent tray
temperatures in a distillation column, or to control
both regenerator and cyclone temperature in an FCCU.
It is important to note that this is a feature of the process

to be controlled; any algorithm which attempts to
control an ill-conditioned process must address this
problem. A high condition number in the process gain
matrix means that small changes in controller error will
lead to large MV moves.
Although the conditioning of the full control problem

will almost certainly be checked at the design phase, it is
nearly impossible to check all possible sub-processes
which may be encountered during future operation. It is
therefore important to examine the condition number of
the controlled sub-process at each control execution and
to remove ill-conditioning in the model if necessary.
Two strategies are currently used by MPC controllers to
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accomplish this task; singular value thresholding, and
input move suppression.
The singular value thresholding (SVT) method used

by the RMPCT controller involves decomposing the
process model based on singular values using URV
decomposition. Singular values below a threshold
magnitude are discarded, and a process model with a
lower condition number is then reassembled and used
for control. The neglected singular values represent
directions along which the process hardly moves even if
a large MV change is applied; the SVT method gives up
these directions to avoid erratic MV changes. This
method solves the ill-conditioning problem at the
expense of neglecting the smallest singular values. If
the magnitude of the neglected singular values is small
compared to the model uncertainty, it may be better to
neglect them anyway. After SVT, the collinear CVs are
approximated with the principal singular direction. In
the case of two collinear CVs, for example, this principal
direction is a weighted average of the two CVs. Note
that the SVT approach is sensitive to output weighting.
If one CV is weighted much more heavily than another,
this CV will represent the principal singular direction.
Controllers that use input move suppression (IMS),

such as the DMC-plus algorithm, provide an alternative
strategy for dealing with ill-conditioning. Input move
suppression factors increase the magnitude of the
diagonal elements of the matrix to be inverted in the
least-squares solution, directly lowering the condition
number. The move suppression values can be adjusted
to the point that erratic input movement is avoided for
the commonly encountered sub-processes. In the case of
two collinear CVs, the move suppression approach gives
up a little bit on moving each CV towards its target. The
move suppression solution is similar to that of the SVT
solution in the sense that it tends to minimize the norm
of the MV moves. In the limit of infinite move
suppression the condition number becomes one for all
sub-processes. It would be useful to find a set of finite
move suppression factors which guarantee that all sub-
processes have a condition number greater than a
desired threshold value; the authors are not aware of
any academic work that addresses this question.

3.4.4. Local steady-state optimization

Almost all of the MPC products we surveyed perform
a separate local steady-state optimization at each
control cycle to compute steady-state input, state, or
output targets. This is necessary because the optimal
targets may change at any time step due to disturbances
entering the loop or operator inputs that redefine the
control problem. The optimization problem is typically
formulated so as to drive steady-state inputs and
outputs as closely as possible to targets determined by
the local economic optimization (just above the MPC
algorithm in Fig. 2), without violating input and output

constraints. Constant disturbances estimated in the
output feedback step appear explicitly in the steady-
state optimization so that they can be removed. Rao and
Rawlings describe a representative formulation of the
problem (Rao & Rawlings, 1999). The local steady-state
optimization uses a steady-state model which may come
from linearizing a comprehensive nonlinear model at
each control execution or may simply be the steady-state
version of the dynamic model used in the dynamic
optimization.
The Connoisseur controller uses a Linear Program

(LP) to do the local steady-state optimization. The
distinguishing feature of an LP solution is that the
optimal steady-state targets will lie at the vertex of
the constraint boundary. If the constraint boundary
changes frequently due to model mismatch or noise, the
optimal steady-state solution may bounce around
unnecessarily, leading to poor overall control perfor-
mance. Typical solutions to this problem include heavily
filtering the output signals and detuning the optimizer
by adding a term that minimizes movement of the
solution. These solutions slow down the movement of
the steady-state target but also hamper rejection of
process disturbances. An alternative solution based on
direct incorporation of model uncertainty has been
proposed, but has not yet been implemented commer-
cially (Kassmann, Badgwell, & Hawkins, 2000).
The RMPCT, PFC, Aspen Target, MVC, and process

perfecter algorithms use Quadratic Programs (QP) for
the steady-state target calculation. The QP solution does
not necessarily lie at the constraint boundary, so the
optimal steady-state targets tend not to bounce around
as much as for an LP solution.
The DMC-plus algorithm solves the local steady-state

optimization problem using a sequence of LPs and/or
QPs. CVs are ranked by priority such that control
performance of a given CV will never be sacrificed in
order to improve performance of a lower priority CV.
The prediction error can be spread across a set of CVs
by grouping them together at the same priority level.
The calculation proceeds by optimizing the highest
priority CVs first, subject to hard and soft output
constraints on the same CVs and all input hard
constraints. Subsequent optimizations preserve the
future trajectory of high priority CVs through the use
of equality constraints. Likewise inputs can be ranked in
priority order so that inputs are moved sequentially
towards their optimal values when extra degrees of
freedom permit.
All of the products we surveyed enforce hard input

constraints in the steady-state optimization. One can
always find steady-state targets that are feasible with
respect to the input constraints, provided they are
defined in a sensible way. The same is not true, however,
for output constraints. This is because if a large
disturbance enters the process, it may not be possible,
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given the available input space, to completely
remove the disturbance at steady-state. For this reason,
the DMC-plus, SMOC, MVC, and Process Perfecter
products provide for soft output constraints in the
steady-state optimization. These allow for some viola-
tion of an output constraint, but the magnitude of the
violation is minimized in the objective function. The
remaining products may be subject to steady-state
infeasibility problems unless other precautions are
taken.
Similar infeasibility problems may arise due to failure

to zero out integrating modes of the process at steady
state. The DMC-plus algorithm, for example, includes
an explicit constraint that forces integrating (ramp) CV
variables to line out at steady state. If this constraint is
violated, due perhaps to a large disturbance entering the
loop, the DMC-plus product will shut off with a
warning message. Other products most likely address
this issue in a similar way. An alternative solution is to
penalize the violation using a soft constraint, so that the
controller will try its best to line out the integrating CVs
at steady state without shutting off. If the disturbance
diminishes, or the operator provides more room with the
input constraints, it is possible that the next steady-state
calculation will be feasible.
The NOVA-NLC controller does not perform a

separate steady-state optimization; the steady-state and
dynamic optimizations are performed simultaneously.
This may improve controller performance as long
as the steady-state and dynamic objectives do not
conflict. For example, with separate objectives
it is possible that a steady-state target may be computed
that cannot be achieved, due to constraints that appear
only in the dynamic optimization. Combining the
objectives leads to a more complex numerical problem,
however.

3.4.5. Dynamic optimization

At the dynamic optimization level, an MPC controller
must compute a set of MV adjustments that will drive
the process to the desired steady-state operating
point without violating constraints. All of the
MPC products we surveyed can be described (approxi-
mately) as minimizing the following dynamic objective
function:

JðuM Þ ¼
XP

j¼1

fjjey
kþj jj

q
Qj

þ jjsj jj
q
Tg

þ
XM�1

j¼0

fjjeu
kþj jj

q
Rj
þ jjDukþj jj

q
Sj
g ð31aÞ

subject to a model constraint:

xkþj ¼ fðxkþj�1; ukþj�1Þ 8j ¼ 1;P;

ykþj ¼ gðxkþj ; ukþjÞ 8j ¼ 1;P
ð31bÞ

and subject to inequality constraints:

%
y� sjpykþjp%yþ sj 8j ¼ 1;P;

sjX0 8j ¼ 1;P;

%
upukþjp%u 8j ¼ 0;M � 1;

D
%
upDukþjpD%u 8j ¼ 0;M � 1:

ð31cÞ

The objective function in Eq. (31a) involves four
conflicting contributions. Future output behavior is
controlled by penalizing deviations from the desired
output trajectory yr

kþj ; defined as e
y
kþj  ykþj � yr

kþj ;
over a prediction horizon of length P: Output constraint
violations are penalized by minimizing the size of output
constraint slack variables sj : Future input deviations
from the desired steady-state input us are controlled
using input penalties defined as eu

kþj  ukþj � us; over a
control horizon of length M: Rapid input changes are
penalized with a separate term involving the moves
Dukþj : The size of the deviations is measured by a vector
norm, usually either an L1 or L2 norm ðq ¼ 1; 2Þ: The
relative importance of the objective function contribu-
tions is controlled by setting the time dependent weight
matrices Qj ; Tj ; Sj ; and Rj ; these are chosen to be
positive semi-definite. The solution is a set of M input
adjustments:

uM ¼ ðuk; ukþ1;y; ukþM�1Þ: ð32Þ

Most of the MPC controllers use a quadratic objective
function similar to 31a ðq ¼ 2Þ for the dynamic
optimization. For this case the dynamic optimization
takes the form of a QP, and can be solved reliably using
standard software. However, for very large problems, or
very fast processes, there may not be sufficient time
available to solve a QP. For these reasons the DMC-plus
and PFC algorithms use fast sub-optimal algorithms to
generate approximate solutions to the dynamic optimi-
zation. In the DMC-plus algorithm, when an input is
predicted to violate a maximum or minimum limit it is
set equal to the limit and the calculation is repeated with
the MV removed. The PFC algorithm performs the
calculation without constraints and then clips the input
values if they exceed hard constraints. Both of these
techniques will prevent violation of hard input con-
straints but will, in general, involve a loss of perfor-
mance that is difficult to predict. Typically the resulting
performance is acceptable, but the solutions do not
satisfy the Karush–Kuhn–Tucker necessary conditions
for optimality.
The DMC-plus and SMOC algorithms penalize only

the last input deviation in order to drive the system
towards the optimal steady state:

Rj ¼ 0 8joM � 1;

RM�1b0: ð33Þ

If the final input weight is large enough and the process
is stable, this is approximately equivalent to having a
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terminal state constraint. If the dynamic solution at the
end of the horizon is significantly different from the
steady-state targets, which means the terminal states are
not effectively constrained, the DMC-plus controller
will automatically turn off. This setting effectively
provides nominal stability for DMC-plus controller.
The final input weights are also applicable to integrating
processes where the derivative of the integrator is driven
to zero.
The RMPCT, HIECON, PFC, and SMOC algo-

rithms do not penalize input moves directly (Sj=0). The
HIECON and PFC algorithms use a predefined output
reference trajectory to avoid aggressive MV moves. The
RMPCT controller defines a funnel, which will be
described later in the paper, and finds the optimal
trajectory and optimal MV moves by minimizing:

ðuM ; yrÞ ¼ arg min
XP

j¼1

jjykþj � yr
kþj jj

2
Q

þ jjukþM�1 � usjj
2
R ð34Þ

subject to the funnel constraints. The relative priority of
the two terms is set by the two weighting matrices. In the
case that the first term is completely satisfied, which is
typical due to the funnel formulation, the CV error will
vanish and the minimization is in fact performed on the
second term only. In this case the results will be similar
to having two separate objectives on CVs and MVs. In
the case of an infinite number of solutions, which is also
typical due to ‘‘relaxing’’ the trajectory, a minimum
norm solution to the MVs is obtained due to the use of
singular value thresholding.
Using a single objective function in the dynamic

optimization means that trade-offs between the four
contributions must be resolved using the relative weight
matrices Qj ; Tj ; Sj ; and Rj : The HIECON algorithm
resolves conflicting dynamic control objectives by
solving separate CV and MV optimization problems.
The decision is made, a priori, that CV errors are more
important than MV errors. A quadratic output optimi-
zation problem is solved first, similar to 31 but including
only the e

y
kþj terms. For the thin and square plant cases

this will provide a unique solution and the calculation
terminates. For the fat plant case there are remaining
degrees of freedom that can be used to optimize the
input settings. For this case the controller solves a
separate quadratic input optimization problem, similar
to 31 but including only the eu

kþj terms. The input
optimization includes a set of equality constraints that
preserve the future output trajectories found in the
output optimization. This eliminates the need to set
weights to determine the trade-off between output and
input errors, at the cost of additional computation.
The PFC controller includes only the process input

and output terms in the dynamic objective, and uses
constant weight matrices ðQj ¼ Q; Tj ¼ 0; Rj ¼ R; Sj ¼

0; q ¼ 2). The Aspen Target and MVC products include
all four terms with constant weights (Qj ¼ Q; Tj ¼ T;
Rj ¼ R; Sj ¼ S; q ¼ 2). The NOVA-NLC product adds
to this the option of one norms (Qj ¼ Q; Tj ¼ T; Rj ¼
R; Sj ¼ S; q ¼ 1; 2).
Instead of using a reference trajectory, the Process

Perfecter product (Tj ¼ T; Rj ¼ 0; Sj ¼ 0; q ¼ 2) uses a
dynamic objective with trajectory weighting that makes
Qj gradually increase over the horizon P: With this type
of weighting, control errors at the beginning of the
horizon are less important than those towards the end of
the horizon, thus allowing a smoother control action.

3.4.6. Constraint formulations

There are three types of constraints commonly used in
industrial MPC technology; hard, soft, and setpoint
approximation. These are illustrated in Fig. 6. Hard
constraints, shown in the top of Fig. 6, are those which
should never be violated. Soft constraints, shown in the
middle of Fig. 6 are those for which some violation may
be allowed; the violation is typically minimized using a
quadratic penalty in the objective function.

past future
Hard Constraint

Setpoint approximation of Soft Constraint

past future
Soft Constraint

quadratic penalty

past future

quadratic penalty

Fig. 6. The three basic types of constraint; hard, soft and setpoint

approximation. Hard constraints (top) should not be violated in the

future. Soft constraints (middle) may be violated in the future, but the

violation is penalized in the objective function. Setpoint approximation

of constraint (bottom) penalizes deviations above and below the

constraint. Shades areas show violations penalized in the dynamic

optimization. Adapted from Froisy (1994).
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Another way to handle soft constraints is to use a
setpoint approximation, as illustrated at the bottom of
Fig. 6. Setpoints are defined for each soft constraint,
resulting in objective function penalties on both sides of
the constraint. The output weight is adjusted dynami-
cally, however, so that the weight becomes significant
only when the CV comes close to the constraint. When a
violation is predicted the weight is increased to a large
value so that the control can bring the CV back to its
constraint limit. As soon as the CV is within the
constraint limit, the steady-state target is used as the
setpoint instead.
All of the MPC algorithms allow hard MV maximum,

minimum, and rate of change constraints to be defined.
These are generally defined so as to keep the lower level
MV controllers in a controllable range, and to prevent
violent movement of the MVs at any single control
execution. The PFC algorithm also accommo-
dates maximum and minimum MV acceleration con-
straints which are useful in mechanical servo control
applications.
With the exception of the DMC-plus algorithm, all of

the MPC products enforce soft output constraints in the
dynamic optimization. Hard output constraints are
provided as options in the PFC, HIECON, and
NOVA-NLC algorithms, but these must be used care-
fully, because enforcement of hard output constraints
can lead to closed-loop instability for nonminimum
phase processes (Zafiriou, 1990; Muske & Rawlings,
1993). Hard output constraints can also cause feasibility
problems, especially if a large disturbance enters the
process. In the PFC and HIECON algorithms, hard
output constraints are ranked in order of priority so that
low priority constraints can be dropped when the
problem becomes infeasible. The Connoisseur algorithm
provides constraint optimization to match the number
of active constraints with the number of degrees of
freedom available to the controller, i.e., the number of
unconstrained MVs.

3.4.7. Output and input trajectories

Industrial MPC controllers use four basic options to
specify future CV behavior; a setpoint, zone, reference
trajectory or funnel. These are illustrated in Fig. 7. The
shaded areas correspond to the e

y
kþj and eu

kþj terms in
31a. All of the controllers provide the option to drive the
CVs to a fixed setpoint, with deviations on both sides
penalized in the objective function. In practice this type
of specification is very aggressive and may lead to very
large input adjustments, unless the controller is detuned
in some fashion. This is particularly important when the
internal model differs significantly from the process.
Several of the MPC algorithms use move suppression
factors for this purpose.
All of the controllers also provide a CV zone control

option, designed to keep the CV within a zone defined

by upper and lower boundaries. One way to implement
zone control is to define upper and lower soft
constraints. Other implementations are possible, how-
ever. The DMC-plus algorithm, for example, uses the
setpoint approximation of soft constraints to implement
the upper and lower zone boundaries.
The HIECON, PFC, SMOC, Aspen Target, MVC,

and NOVA-NLC algorithms provide an option to
specify a desired future path for each CV called a
reference trajectory. A first or second order curve is
drawn from the current CV value to the setpoint, with
the speed of the response determined by one or more
trajectory time constants. Future CV deviations from
the reference trajectory are penalized. In the limit of zero
time constants the reference trajectory reverts back to a
pure setpoint; for this case, however, the controller
would be sensitive to model mismatch unless some other
strategy such as move suppression is also being used. A
drawback of the reference trajectory formulation is that

past future

past future

quadratic penalty

past future

quadratic penalty

past future

quadratic penalty

Setpoint

Zone

Reference Trajectory

Funnel

quadratic penalty

Fig. 7. Four options for specifying future CV behavior; setpoint, zone,

reference trajectory and funnel. Shaded areas show violations

penalized in the dynamic optimization.
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it penalizes the output when it happens to drift too
quickly towards the setpoint, as might happen in
response to an unmeasured disturbance. If the CV
moves too quickly due to model mismatch, however, the
reference trajectory is beneficial in that it will slow down
the CV and minimize overshoot. The reference trajec-
tory can be interpreted mathematically as a filter in the
feedback path, similar to the robustness filter recom-
mended by IMC theory (Morari & Zafiriou, 1989). In
general, as the reference trajectory time constants
increase, the controller is able to tolerate larger model
mismatch.
The NOVA-NLC reference trajectory is slightly more

general in that it allows separate specification of upper
and lower trajectories with different dynamics and
setpoints. In the controller objective, only deviations
above the upper trajectory and deviations below the
lower trajectory are penalized. This provides additional
freedom during the transient that the controller can
utilize for other tasks.
The RMPCT algorithm attempts to keep each CV

within a user defined zone, with setpoints defined by
setting the maximum and minimum zone limits equal to
each other. When the CV goes outside the zone, the
RMPCT algorithm defines a CV funnel, shown at the
bottom of Fig. 7, to bring the CV back within its range.
The slope of the funnel is determined by a user defined
performance ratio, defined as the desired time to return
to the zone divided by the open-loop response time. A
weighted average open-loop response time is used for
multivariable systems.
The SMOC algorithm uses a variation of funnel when

a zone CV falls out of its range. In this case a zone with
reference trajectory bounds is defined to drive the CV
back into the control zone.
The NOVA-NLC upper and lower trajectories,

RMPCT funnel, and SMOC reference trajectory bounds
are advantageous in that if a disturbance causes the
predicted future CV to reach the setpoint more quickly

than a reference trajectory allows, the controller will
take no action. This effectively frees up degrees of
freedom for the controller to achieve other objectives. In
the same situation, other controllers would move the
inputs to bring the CV back onto the defined trajectory.
This is illustrated in Fig. 8 for the case of the RMPCT
funnel.
All of the MPC algorithms surveyed here provide MV

setpoints to drive the inputs towards their optimal
values when there are sufficient degrees of freedom.

3.4.8. Output horizon and input parameterization

Industrial MPC controllers generally evaluate future
CV behavior over a finite set of future time intervals
called the prediction horizon. This is illustrated at the top
of Fig. 9. The finite output horizon formulation is used

CV

SP

A

B

DV

Funnel

(b)
CV

SP

A

B

(a)

DV

Fig. 8. MPC based on a funnel allows a CV to move back to the setpoint faster than a trajectory would require if a pulse disturbance releases. A

trajectory based MPC would try to move away from the setpoint to follow the trajectory.

Coincidence Points

past future

past future

prediction horizon P

Finite Horizon

Fig. 9. Output horizon options. Finite horizon (top) includes P future

points. A subset of the prediction horizon, called the coincidence

points (bottom) may also be used. Shaded areas show violations

penalized in the dynamic optimization.
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by all of the algorithms discussed in this paper. The
length of the horizon P is a basic tuning parameter for
these controllers, and is generally set long enough to
capture the steady-state effects of all computed future
MV moves.
Most of the MPC controllers use a multiple point

output horizon; this means that predicted objective
function contributions are evaluated at each point in the
future. The PFC, Process Perfecter, and Aspen Target
controllers allow the option to simplify the calculation
by considering only a subset of points in the prediction
horizon called coincidence points. This concept is
illustrated at the bottom of Fig. 9. A separate set of
coincidence points can be defined for each output, which
is useful when one output responds quickly relative to
another. The full finite output horizon can be selected as
a special case.
Industrial MPC controllers use three different meth-

ods to parameterize the MV profile; these are illustrated
in Fig. 10. Most of the MPC algorithms compute a
sequence of future moves to be spread over a finite
control horizon, as shown at the top of Fig. 10. The
length of the control horizon M is another basic tuning
parameter for these controllers. The most common

parameterization, referred to as multiple moves, means
that a separate input adjustment is computed for each
time point on the control horizon. Performance
improves as M increases, at the expense of additional
computation. To simplify the calculation, the Aspen
Target, Connoisseur, and RMPCT algorithms provide a
move blocking option, allowing the user to specify
points on the control horizon where moves will not be
computed. This reduces the dimension of the resulting
optimization problem at the possible cost of control
performance.
The HIECON and MVC algorithms compute a single

future input move, as shown in the middle of Fig. 10.
This greatly simplifies the calculation for these algo-
rithms, which is helpful for the HIECON algorithm
where two separate dynamic optimizations are solved at
each control execution. However, using a single move
involves a sacrifice of closed-loop performance that may
be difficult to quantify.
The PFC controller parameterizes the future input

profile using a set of polynomial basis functions. A
possible solution is illustrated at the bottom of Fig. 10.
This allows a relatively complex input profile to be
specified over a large (potentially infinite) control
horizon, using a small number of unknown parameters.
This may provide an advantage when controlling
nonlinear systems. Choosing the family of basis func-
tions establishes many of the features of the computed
input profile; this is one way to ensure a smooth input
signal, for example. If a polynomial basis is chosen then
the order can be selected so as to follow a polynomial
setpoint signal with no lag. This feature is often
important for mechanical servo control applications.

3.4.9. Numerical solution methods

It is interesting to consider the various numerical
solution methods used in the MPC control calculations.
Here we focus on the dynamic optimization step, which
takes the form of the nonlinear program 31. For the
linear MPC technology, this reduces to a QP. The PFC
algorithm with linear models solves this QP in the
simplest possible way, using a least-squares solution
followed by clipping to enforce input constraints. While
this is clearly sub-optimal, only a single linear system
must be solved, so the PFC controller can be applied to
very fast processes. The DMC-plus algorithm is slightly
more complex in that it solves a sequence of least-
squares problems in order to more accurately approx-
imate the QP solution.
The remaining linear products use various active set

QP methods to solve for the input profile. Unfortu-
nately, these algorithms do not exploit the problem
structure efficiently, and the solution time generally
grows in proportion to M3; where M is the control
horizon. More efficient solutions are possible if the
model is retained as an equality constraint, yielding a

past future

u

control horizon M

Multiple Moves

past future

past future

Single Move

Basis Function

u

u

Fig. 10. Input parameterization options. Multiple move option (top),

single move option (middle), basis function parameterization (bottom).
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solution time that grows linearly in proportion to M:
Rao, Wright, and Rawlings describe one such method
based on interior point techniques (Rao, Wright, &
Rawlings, 1998).
The nonlinear MPC products must of course use

more powerful solution techniques; these are usually
based upon a sequence of iterations in which a linearized
version of the problem is solved. The Aspen Target
product uses a multi-step Newton-type algorithm
developed by De Oliveira and Biegler (1995, 1994),
named QPKWIK, which has the advantage that
intermediate solutions, although not optimal, are
guaranteed feasible. This permits early termination of
the optimization algorithm if necessary which guaran-
tees a feasible solution. Aspen Target uses the same
QPKWIK engine for local steady-state optimization and
the dynamic MV calculation.
The MVC and process perfecter products use a

generalized reduced gradient code called GRG2 devel-
oped by Lasdon and Warren (1986). The NOVA-NLC
product uses the NOVA optimization package, a
proprietary mixed complementarity nonlinear program-
ming code developed by DOT Products.
The PFC controller, when used with a nonlinear

model, performs an unconstrained optimization using a
nonlinear least-squares algorithm. The solution can be
computed very rapidly, allowing the controller to be
used for short sample time applications such as missile
tracking. Some performance loss may be expected,
however, since input constraints are enforced by
clipping.

4. Applications summary

Tables 6 and 7 summarize the reported applications of
linear and nonlinear MPC technology through 1999. It
is important to note that the vendors were free to define
what constitutes an application; for this reason one must
be careful when drawing conclusions from these data.

For example, in some cases a single application may be
defined as a large MPC controller that encompasses an
entire chemical plant. In other cases, such as an
automobile engine control, the vendor may report a
single application even when several thousand copies of
the completed controller are sold. Note also that this is a
count of MPC applications performed by the vendors
themselves; this does not include a significant number of
in-house applications performed by licensees of vendor
technology, such as ExxonMobil and DuPont. Nor does
it include any consideration of MPC technology
developed completely in-house by operating companies
such as Eastman Chemical.
More than 4600 total MPC applications are reported

in Tables 6 and 7, over twice the number in our previous
survey from 5 years earlier (Qin & Badgwell, 1997). It is
therefore safe to conclude that overall usage of MPC
technology is still growing rapidly. All of the vendors
report a significant number of applications in progress
so it is likely that this number will continue to increase
in the coming years. It should be noted that the size of
these applications ranges from a single variable to
several hundreds of variables. Therefore, one should not
use the number of applications as an indication of
market share.
Tables 6 and 7 show that MPC technology can now

be found in a wide variety of application areas. The
largest single block of applications is in refining, which
amounts to 67% of all classified applications. This is
also one of the original application areas where MPC
technology has a solid track record of success. A
significant number of applications can also be found in
petrochemicals and chemicals, although it has taken
longer for MPC technology to break into these areas.
Significant growth areas include the chemicals, pulp and
paper, food processing, aerospace and automotive
industries.
Table 6 shows that AspenTech and Honeywell Hi-

Spec are highly focused in refining and petrochemicals,
with a handful of applications in other areas. Adersa

Table 7

Summary of nonlinear MPC applications by areas (estimates based on vendor survey; estimates do not include applications by companies who have

licensed vendor technology)

Area Adersa Aspen Continental DOT Pavilion Total

Technology Controls Products Technologies

Air and Gas 18 18

Chemicals 2 15 5 22

Food Processing 9 9

Polymers 1 5 15 21

Pulp & Paper 1 1

Refining 13 13

Utilities 5 2 7

Unclassified 1 1 2

Total 3 6 36 5 43 93
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and Invensys apparently have a broader range of
experience with applications in the food processing,
mining/metallurgy, aerospace and automotive areas,
among others. The applications reported by Adersa
include a number of embedded PFC applications, so it is
difficult to report their number or distribution. While
only a total number was reported by SGS, this includes
a number of in-house SMOC applications by Shell, so
the distribution is likely to be shifted towards refining
and petrochemical applications.
The bottom of Table 6 lists the largest linear MPC

applications to date by each vendor, in the form of
(outputs)�(inputs). The numbers show a difference in
philosophy that is a matter of some controversy.
AspenTech prefers to solve a large control problem
with a single controller application whenever possible;
they report an olefins application with 603 outputs and
283 inputs. Other vendors prefer to break the problem
up into meaningful sub-processes.
The nonlinear MPC applications reported in Table 7

are spread more evenly among a number of application
areas. Areas with the largest number of reported NMPC
applications include chemicals, polymers, and air and
gas processing. It has been observed that the size and
scope of NMPC applications are typically much smaller
than that of linear MPC applications (Martin &
Johnston, 1998). This is likely due to the computational
complexity of NMPC algorithms.

5. Limitations of existing technology

Many of the currently available industrial MPC
algorithms suffer from limitations inherited from the
original DMC and IDCOM technology. Problems with
the control technology, which have been discussed by
others (Morari & Lee, 1991; Muske & Rawlings, 1993),
include:

* limited model choices;
* sub-optimal feedback;
* lack of nominal stability;
* sub-optimal or inefficient solution of the dynamic

optimization.

Two of the linear MPC algorithms, DMC-plus and
HIECON, rely on convolution models (impulse and step
response). This can be problematic when controlling a
process with widely varying time constants; for this case
it is typical to sacrifice dynamic control of the fast
process modes in order to keep the model length
reasonable. A potentially more significant problem with
the impulse and step response models is that they are
limited to strictly stable processes. While it is certainly
possible to modify the algorithms to accommodate a
pure integrator, these modifications may lead to other
problems, such as adding the derivative of a noisy

output signal into the feedback path. It is not possible,
in general, to represent an unstable process using an
impulse response model. All of these problems can be
overcome by using an auto-regressive parametric model
form such as a state-space or ARX model.
The bias update feedback technique used by industrial

MPC controllers is probably the best assumption that
can be used for stable plants in the total absence of
disturbance and measurement information, but better
feedback is possible if the distribution of disturbances
can be characterized more carefully. The bias update
method implicitly assumes that there are no stochastic
disturbances affecting the system state, and the mea-
surement is perfect. Measurement noise is typically dealt
with separately in applications using ad hoc filtering
techniques. The bias update fails for purely integrating
systems, so a number of ad hoc methods have been
developed by practitioners to handle this case. These
methods tend to work poorly in the presence of
significant measurement noise. Industrial practitioners
need to recognize that the Kalman filter provides a rich
framework to address these problems. Muske and
Rawlings have demonstrated how better performance
can be achieved for MPC applications by using a state-
space model and an optimal state observer (Muske &
Rawlings, 1993). Of course, these problems motivated
the original development of the SMOC algorithm
(Marquis & Broustail, 1998), which uses a Kalman filter
for feedback.
Tuning MPC controllers for stable operation in the

presence of constraints may be difficult, even when the
process model is perfect. Currently much effort is spent
on closed-loop simulation prior to commissioning a
controller. It must be recognized, however, that
simulating all possible combinations of active con-
straints is impossible in practice. It seems far better to
build an algorithm that is inherently stable in all such
cases; in control theory this is known as a nominally

stabilizing algorithm. Scokaert and Rawlings (1998)
show how this can be done for the linear case by using
infinite prediction and control horizons. Chen and
Allg .ower present a quasi-infinite horizon method for
nonlinear systems (Chen & Allgower, 1995). Research
results for the nonlinear case are covered thoroughly by
Mayne et al. (2000). None of the currently available
industrial MPC algorithms makes full use of these ideas.
Sub-optimal solutions to the dynamic optimization 31

are used in several of the packages, presumably in order
to speed up the solution time. This seems difficult to
justify for the case of refining and petrochemical
applications, where the controllers run on the order of
once each minute. Goodwin et al. (2001) give an
example where unconstrained LQR solution with anti-
windup has significant performance deterioration com-
pared to an MPC solution under severe constraints.
However, for high speed applications where the
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controller must execute in a few milliseconds, such as
tracking the position of a missile, it may not be feasible
to solve a QP at every control execution. For this case a
good sub-optimal solution may be the only option.
None of the linear MPC products exploit the

structure of QP in the dynamic optimization. The
singular value technique in RMPCT is one of the few
efforts in using robust numerical techniques. By
properly exploiting the structure of the problem, it
should be possible to handle significantly larger and/or
faster processes (Rao et al., 1998).
Model uncertainty is not addressed adequately by

current MPC technology. While most of the identifica-
tion packages provide estimates of model uncertainty,
only one vendor (Honeywell) provides a way to use this
information in the control design. All of the MPC
algorithms provide a way to detune the control to
improve robustness, but the trade-off between perfor-
mance and robustness is generally not very clear. Until
this connection is made, it will not be possible to
determine when a model is accurate enough for a
particular control application. There are many robust
MPC results available in the academic literature, but
most focus only the dynamic optimization and will not
work for something as simple as a setpoint change.
Promising results that may eventually impact MPC
practice include the robust stability conditions presented
by Vuthandam et al. for a modified QDMC algorithm
(Vuthandam, Genceli, & Nikolaou, 1995); the robust
MPC algorithm presented by Kothare, Balakrishnan,
and Morari (1996) and the robust steady-state target
calculation described by Kassmann, Badgwell, and
Hawkins (2000). More research is needed in this area.
Current model identification technology suffers from

a number of limitations:

* plant test signals are typically step-like and require
close attention of experienced engineers during the
test;

* there is no tool to determine whether the collected
data are adequate to represent the process dynamics
for MPC design; in practice the plant is generally over
tested, increasing the implementation cost during the
test period;

* identification algorithms are mainly of the least-
squares type; there are only a few that use modern
subspace identification and prediction error methods;

* statistical efficiency and consistency of identification
algorithms are not addressed;

* there is a lack of model validation methods to verify
whether the identified model is adequate for control
or whether significant model deterioration
has occurred after the MPC controller has been
commissioned;

* there is little practice except in Connoisseur in
multivariable closed-loop identification which would

be very useful for on-line model updating or adaptive
MPC implementation;

* there is no systematic approach for building non-
linear dynamic models for NMPC. Guidelines for
plant tests are needed to build a reliable nonlinear
model. This is important because even more test data
will be required to develop an empirical nonlinear
model than an empirical linear model.

6. Next-generation MPC technology

MPC vendors were asked to describe their vision of
next-generation MPC technology. Their responses were
combined with our own views and the earlier analysis of
Froisy (1994) to come up with a composite view of
future MPC technology.

6.1. Basic controller formulation

Because it is so difficult to express all of the relevant
control objectives in a single objective function, next-
generation MPC technology will utilize multiple objec-
tive functions. The infinite prediction horizon has
beneficial theoretical properties and will probably
become a standard feature. Output and input trajectory
options will include setpoints, zones, trajectories and
funnels. Input parameterization using basis functions
may become more widespread, and infinite control
horizons with moves computed at each control interval
may also become possible.

6.2. Adaptive MPC

A few adaptive MPC algorithms such as the GPC
algorithm introduced by Clarke et al. have been
proposed (Clarke, Mohtadi, & Tuffs, 1987) but only
two adaptive MPC algorithms have reached the market-
place (Connoisseur from Invensys and STAR from Dot
Products (Dollar, Melton, Morshedi, Glasgow, &
Repsher, 1993)). This is despite the strong market
incentive for a self-tuning MPC controller. This reflects
the difficulty of doing adaptive control in the real world.
Barring a theoretical breakthrough, this situation is not
likely to change in the near future.
On the other hand, adaptive and on-demand tuning

PID controllers have been very successful in the
marketplace. This suggests that adaptive MPC con-
trollers may emerge for SISO loops as adaptive PID
technology is generalized to handle more difficult
dynamics.

6.3. Robust MPC

With one exception (Honeywell), industrial MPC
controllers rely solely on brute-force simulation to
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evaluate the effects of model mismatch. Robust stability
guarantees would significantly reduce the time required
to tune and test industrial MPC algorithms. It is likely
that recent robust research results (Kassmann et al.,
2000; Kothare et al., 1996; Scokaert & Mayne, 1998) will
eventually make their way into MPC products. Robust
stability guarantees will then be combined with un-
certainty estimates from identification software to
greatly simplify design and tuning of MPC controllers.

6.4. Nonlinear MPC

Next-generation MPC technology will allow non-
linear models to be developed by seamlessly combining
process knowledge with operating data. A continuous-
time fundamental model will be defined from a graphical
representation of the plant. Process test signals will be
designed automatically so as to explore important
regions of the operating space where the model is
inadequate for control. Closed-loop process tests will be
conducted using PRBS signals, with minimal on-site
time requirements. Owing to the difficulty in data based
modeling of nonlinear processes, first principles models
and other alternative modeling methods (Foss, Loh-
mann, & Marquardt, 1998) will become necessary in
practice.

7. Discussion and conclusions

MPC technology has progressed steadily since the first
IDCOM and DMC applications over 25 years ago. Our
survey data show that the number of MPC applications
has approximately doubled in 4 years from 1995 to
1999. MPC applications show a solid foundation in
refining and petrochemicals, and significant penetration
into a wide range of application areas from chemicals to
food processing. The MPC technology landscape has
changed dramatically in recent years, making it difficult
for us to keep track of the swift progress in academic
research and industrial applications. Major recent
developments include:

* Technological changes due to the development of
new algorithms by academia and industry, computer
hardware and software advances, and the breadth of
industrial applications.

* Organizational changes due to acquisitions and
mergers, such as the acquisition by Aspen Technol-
ogy of DMCC, Setpoint, Treiber Controls, and
Neuralware.

* Integration of MPC technology into Distributed
Control System (DCS) platforms, illustrated by the
acquisition of Predictive Control Ltd. by Invensys,
the parent company of Foxboro.

* Increased applications by end-users who license MPC
software from vendors.

Current generation linear MPC technology offers
significant new capabilities, but several unnecessary
limitations still remain. Some products do not allow
the use of parametric models. Feedback options are
severely limited, often leading to poor control of
integrating systems and slow rejection of unmeasured
disturbances. The algorithms are not nominally stabiliz-
ing, so that tuning choices must be tested extensively
through closed-loop simulation. None of the linear
MPC algorithms makes use of modern numerical
solution methods, limiting the size and speed of
processes that they can be applied to.
Applications of nonlinear MPC products will con-

tinue to grow in those areas where linear MPC
technology has proven difficult to apply, such as control
of polymerization processes. The nonlinear MPC algo-
rithms reported here differ in the simplifications used to
generate a tractable control calculation. The models are
usually specified as linear dynamic subsystems with
added nonlinearity. The NOVA-NLC controller is the
only current offering that allows the use of a rigorous
nonlinear model derived from first principles.
An important observation is that the majority of

industrial MPC controllers use empirical dynamic
models identified from test data. Improvements in
identification technology that result in shorter overall
process testing times will have a large positive impact on
the bottom line for MPC technology users.
Choosing an MPC technology for a given application

is a complex question involving issues not addressed in
this paper. Here, we have emphasized the technical
capabilities of MPC technology. However, if a vendor is
to be selected to design and implement an advanced
control system, it would be wise to weigh heavily their
experience with the particular process in question.
Research needs as perceived by industry are mostly

control engineering issues, not algorithm issues. Indus-
trial practitioners do not perceive closed-loop stability,
for example, to be a serious problem. Their questions
are more like: Which variables should be used for
control? When is a model good enough to stop the
identification plant test? How do you determine the
source of a problem when a controller is performing
poorly? When can the added expense of a nonlinear
MPC controller be justified? How do you design a
control system for an entire plant? How do you estimate
the benefits of a control system? Answering these
questions will provide control practitioners and theore-
ticians with plenty of work in the foreseeable future.
Just as academicians do not agree on which control

algorithms are best, industrial practitioners also have
very different views on the future trends of MPC. Just as
PID controllers have many different implementations
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(series form, parallel form, etc.), MPC controllers are
not anticipated to converge to a single form in the
foreseeable future. While academic research will con-
tinue to develop new algorithms and prove new facts in
the MPC domain, industrial development will consider
its own priorities with a healthy interaction with
academia. Although there is still plenty of room to
refine or develop new MPC algorithms, pushing the
technology to new application areas could be at least
equally important and challenging. Given the uneven
distribution in the MPC applications today, it is safe to
anticipate that much more development in both theory
and practice is still ahead of us.
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