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1. Introduction

This article consists of six dealing with aspects
of modeling and simulation. They include:

. Systematic modeling methods and tools

. Numerical methods for steady-state
simulation

. Numerical methods for dynamic simulation

. Numerical methods for distributed systems

. Parameter uncertainty estimation

. Simulation tools

Each section provides the reader with an
overview of the specific topic, some examples
of the available methods and tools and a discus-
sion on the challenges and opportunities for the
process systems engineering (PSE) and other
communities. Similar topics may be found else-
where in this encyclopedia ! Mathematical
Modeling, ! Mathematics in Chemical Engi-
neering. While they will contribute to a better
understanding of the specific topic, the

contributions in this section have been written
from a PSE perspective.

Mathematical models play a very important
role in PSE, and the section on modeling
(Chap. 2) highlights the use and development
of systematic approaches for model develop-
ment and use. The next three chapters (Chaps.
3–5) deal with the solution of the mathematical
model equations. As the mathematical models
may be of different types and form, different
numerical analysis and solution strategies are
needed to solve them. Solution of algebraic
systems of equations (steady-state models), or-
dinary differential algebraic systems of equa-
tions (dynamic models) and partial differential
algebraic systems of equations (distributed
models) are covered in these three issue. The
chapters of parametric uncertainty in modeling
(Chap. 6) is an important topic as most consti-
tutive models used in chemical engineering
contain parameters, whose values have been
regressed through collected experimentally
measured data. Therefore, providing an
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estimate of the uncertainty in a predicted value
becomes important in process-product design,
control, and/or analysis. The last chapter of this
article (Chap. 7) provides a review of the simu-
lation tools developed and/or used by the PSE
community.

2. SystematicModelingMethods and
Tools

2.1. Introduction

Modeling in its fundamental form is the repre-
sentation of a real physicochemical, economic,
social, or human situation in an alternate math-
ematical or physical form for an envisaged
purpose. This simple definition has three im-
portant concepts: an identified system (S)
which is the subject of interest, an intended
purpose (P) for the model in terms of decision-
making and a representational form (M) of the
model. The key concepts are associated with a
wide range of issues relating to details of
system, purpose, and form [1–3]! Mathemat-
ical Modeling, ! Mathematics in Chemical
Engineering.

2.2. Model Development

All modeling applications can be cast into a
systems framework, shown in Figure 1. This
allows the modeler to formally describe the
system under study. It is equally applicable to
the modeling of a complex reactor, as to the
interaction model of a human operator with
technology, or to the controlled release of an
active pharmaceutical ingredient from a poly-
meric microcapsule. As such, the formalism has
significant descriptive power. The challenge for
the modeler is in understanding the individual
aspects of the system that require modeling,
including insights into the system under study.
The principal components of amodel, highlight-
ed in Figure 1 are explained in Table 1.

Figure 1. A systems perspective for modeling purposes

Table 1. Principal modeling components and their description

Modeling component Description

Boundary a boundary provides the limits of the model consideration. It is vital to restrict the modeling through a clearly

defined boundary. Modeling the behavior of a single component in a process operation requires a different

boundary from the complete production unit. Boundaries can also be hierarchical in nature, in that boundaries

for lower level detail can be agglomerated into higher levels of view. Likewise, decomposition of higher level

views into finer detail can be achieved as the modeling goal changes.

System a system includes the principal entities within the boundary and their interconnections, including the primary

mechanisms operating in that system. The entities can include such items as processing equipment, phases,

people, and particles which help define the system, thereby helping to match the modeling objectives.

States states are variables (x), which indicate the ‘‘state’’ of the system at a point in time and space. They characterize the

important properties of the systems and are often associated with extensive variables that represent the amount

of mass, energy, or momentum in a system.

Inputs inputs refer to those variables (u) that are associated with properties of the system that can be chosen to affect the

behavior of the system and are usually known. They can be, e.g., flows, temperatures, money, training. That is,

variables defining streams/data entering the system.

Outputs outputs refer to variables (y) that reflect internal properties of the system and are often linked to the states of the

system. They could be production rates, quality measures, target temperatures, efficiencies, or any other

performance measure of interest, related to the variables of streams leaving the system.

Disturbances disturbances refer to variables (d) that reflect those effects on the system that are normally uncontrolled. They can

in some circumstances be measured. Examples are ambient conditions, raw material quality changes, or

performance shaping factors affecting people, that is, variables related to streams/data entering the system.

Parameters parameters refer to variables (p) that are associated with constants, geometric, physical, or chemical properties

within the system. In some cases they can be functions of the states. They usually belong to the constitutive

equations embedded within the process model.

Process Systems Engineering, 2. Modeling and Simulation 3



The ‘‘modeling-activity’’ seeks to replace the
real system S with a model M of sufficient
fidelity that will help answer questions about
the original system. In many PSE related activi-
ty, M is a mathematical model represented by a
set of equations. The required fidelity is often
difficult to specify a priori, thus leading to
iterative modeling-activity in the model-build-
ing life cycle. Note, however, models are de-
veloped for a purpose. Achieving the modeling
goal requires a system description, a clearly
defined application area, and a model that re-
presents the real-world phenomena in sufficient
fidelity to enable useful questions to be an-
swered, provide the needed data/information
and through it, an understanding of the system.
A process modeling example illustrates some of
these ideas.

Figure 2 shows a two-phase system where a
feed stream enters the process which is a flash
tank, and two streams exit the process. The
system here is the process, and connections to
the system are the process input stream, the
process output streams, and a heat input. Within
the system, two phases consisting of vapor and
liquid coexist, with the behavior governed by an
ideal vapor–liquid equilibrium relation.

A suitable mathematical model representing
the process shown in Figure 2 depends on the
model objectives and on the assumptions made
to describe the system. The following assump-
tions should be made:

. the model performs steady-state mass and
energy balances in order to evaluate the
choice of the temperature and pressure of the
flash tank

. the liquid and vapor inside the flash tank are
perfectly mixed, at equilibrium, and the

external heating source is able to keep the
temperature and pressure (1.013 bar) constant
through external heating. That is, it is as-
sumed that the temperature and pressure of
the flash tank are perfectly controlled

The process model for steady-state simula-
tion is given by the following representation,

Mass balance equations for i ¼ 1, NC
(total number of components in the system)
(Eqs. 1, 2)

0 ¼ f1i�f2i�f3i ð1Þ

Energy balance equation

0 ¼ F1H1�F2H2�F3H3þQ ð2Þ

Conditional equations (vapor–liquid equilib-
rium relation) for i ¼ 1, NC (Eq. 3–6)

vi ¼ Ki li ð3Þ

Conditional equations (defined relation) for
i ¼ 1, NC

vi ¼ f2i=ðSf2iÞ ð4Þ

li ¼ f3i=ðS f3iÞ ð5Þ

zi ¼ f1i=ðSf1iÞ ð6Þ

Conditional equations (defined relation) for
j ¼ 1, NS (number of streams) (Eq. 7)

Fj ¼ Sfji ð7Þ

Constitutive equations (property models: va-
por pressure model) for i ¼ 1, NC (Eq. 8)

log10ðPSiÞ ¼ Ai�Bi=ðTþCiÞ ð8Þ

Constitutive equations (property models:
equilibrium constant) for i ¼ 1, NC (Eq. 9)

Ki ¼ PSi=P ð9Þ

Constitutive equations (property models:
stream enthalpies: liquid enthalpies for feed
and stream 3; vapor enthalpy for stream 2),
(Eqs. 10–12)

H1 ¼ S zifiðuLi; T1Þ ð10Þ

H2 ¼ S vi fiðuLi;Hvapi; T2Þ ð11Þ

H3 ¼ S lifiðuLi; T2Þ ð12Þ

In the above equations, fji are the flow rates of
component i in stream j; Fj is the total flow in
stream j; v, l, z are vectors of mole fractions; PS

Figure 2. A two-phase vapor–liquid equilibrium process
(flash tank)
1) Feed stream; 2) Vapor output streams; 3) Liquid output
stream

4 Process Systems Engineering, 2. Modeling and Simulation



is a vector of component vapor pressures; T is a
vector of temperatures; P is a vector of pres-
sures,Q is external heat addition/removal;H is a
vector of stream enthalpies; Hvap is a vector of
pure component heat of vaporizations and A, B,
C and uL are vectors of property (constitutive)
model parameters.

In the above equations set, the inputs (u) are:
f1, F1, H1; the outputs (y) are f2, f3, F2, F3, H2,
H3; the disturbances (d) are: T1, T¼ T2¼ T3, P
¼ P2 ¼ P3; states (x) are: l, v, z, k, PS; and
parameters (p) are:A,B,C,Hvap, uL.Note that k,
PS could also be regarded as constitutive vari-
ables or internal variables rather than states.
They are functions of the state variables.

2.3. Model Types and Forms

Table 2 gives some insights into the types and
characteristics of models that are often encoun-
tered in product and process modeling. The
classification of the models is given together
with the principal classification criterion and
examples of the corresponding model in terms
of generic equations and related variables.How-
ever, these are just one example for each model
type – there can bemanymore examples, within
the generic model type highlighted in Table 2.
Further details of these model types in the form
of a classification scheme can be found in [3].

The model types reflect the understanding of
the underlying attributes of the system being
modeled. In understanding modeling goals, it is
also possible to classify the major types of
generic problems that modeling seeks to answer.
Table 3 lists a number of such generic problems
commonly addressed by modeling practice. The
importance of the systems formalism is seen in
the various problems that can be tackled using
this generic view. By posing a set of known
variables and leaving others to be estimated, a
wide range of important problems are amenable
to the use of modeling. The same model can be
used in different ways for different problems.

Based on the above, the role ofmodels within
the context of product-process design can now
be analyzed. It has to be considered whether
the model should be used to simply replace the
experiment, that is, in a design verification
role or, if the model should play a more active
role, that is, find truly innovative designs.

If the model is used to simply replace the
experiment, then the model tries to match the
experimental scenario under the same input
conditions. It should be verified for given u,
d, p if the optimal x and y obtained through
simulation matched the design target (yss) and if
the value of the corresponding Fobj is really
optimal. Therefore, for the process (design)
verification role, a validated model (in the form
of a process simulator) performs the same func-
tion as experiments and the design is obtained
through a trial and error solution approach.

If the model is used in a more innovative
way, different solutions (designs) are first ob-
tained and evaluated while experiments/simu-
lations are performed only for the final selec-
tion, avoiding the trial and error steps. That is,
given u1, d, p, yss determine the values of u2 and
y that matches x and yss. While experiment/
simulator based trial and error could sometimes
be the only alternative to solve a specific pro-
cess-product design problem, the use of models
in a design role offers significant advantages.
This method is called ‘‘reverse design’’ because
first the optimal solution is located and from it,
the design targets are determined. Then, the set
of values for the design variables (u2) matching
the design targets (the optimal solution) is iden-
tified. In this way, the search for a design is
conducted over a larger space and the time and
resources used to find the optimal design is
significantly reduced see ! Process Systems
Engineering, 4. Process and Product Synthesis,
Design, Analysis.

2.4. Modeling Practice

Modeling practice involves a wide range of
tasks, knowledge and skills to generate an ap-
propriate model ‘‘fit for purpose’’. These tasks
are associated with insights within modeling
methodologies or modeling steps which are
highlighted in Figure 3. This particular model-
ing methodology covers the major tasks that
need to be performed in completing most
modeling projects. It is noteworthy that many
of these tasks can be, and usually are, repetitive
due to various testing or confirmation activities
that occur through the model development cy-
cle. A detailed description of these tasks can be
found in [3].

Process Systems Engineering, 2. Modeling and Simulation 5



Table 2. Model types and characteristics

Type of model Criterion of classification Example

Mechanistic based on mechanisms/underlying phenomena mass and energy balance

0 ¼ f(u, d, x, y)

constitutive equation

0 ¼ g1(x, p)

0 ¼ g2 (x, y)

a typical process model includes balance equations together with

constitutive and/or condition equations

Empirical based on input–output data, trials or,

experiments

constitutive equation

0 ¼ g(x, p)

(an example of this generic model type is Eq. (8)

process models of input–output type may also be of empirical type

Stochastic contains model elements that are

probabilistic in nature

mass and energy balance

0 ¼ f(u, d, p, x, y)

probability function

0 ¼ h(d, x, p)

the disturbance variable is of stochastic type. Parameters p can also be

probabilistic

Deterministic based on cause–effect phenomena input–output

0 ¼ f(u, d, p, y)

this is an example of a process model, often used for control purposes

Lumped

parameter

dependent variables not a function of spatial

position

mass and energy balance

dx/dt ¼ f(u, d, x, y)

constitutive equation

0 ¼ g1(x, p)

0 ¼ g2 (x, y)

these are also processmodelswhere each differential equation represents a

subsystem balance volume; models are written for each subsystem and

aggregated to obtain the finalmodel for the total system. Using different

scales for subsystems generates multiscale models

Distributed

parameter

dependent variables are functions of spatial

position

mass and energy balance

0 ¼ f(u, d, qx/qz, x, y)
constitutive equation

0 ¼ g1(x, p)

0 ¼ g2 (x, y)

these are also processmodels, however, the subsystems are infinitesimally

small and so the balance volumes are represented by partial differential

equations. Using different scales for subsystems (or spatial directions),

generates multiscale models

Linear superposition principle applies y ¼ p0 þ p1x (linear with respect to x)

Nonlinear superposition principle does not apply y ¼ p0 þ p1x þ p2x
2 (nonlinear with respect to x)

Continuous dependent variables defined over continuous

space-time

mass and energy balance

0 ¼ f(u, d, x, y)

|dx/dt| < 8 (for all values of x and t)

representing a process or product behavior with a continuous function

Discrete only defined for discrete values of time

and/or space

mass and energy balance

0 ¼ f(ui, di, xi, yi)

where:

ui¼u(ti), di¼d(ti), xi¼x(ti), yi¼y(ti), i¼1(1)n.

representing a process or product behavior with a discrete function

Hybrid capturing both continuous and discrete

behavior in the one description

mass and energy balance

D ¼ f(u, d, x, y)

D ¼ 0 or ¼ dx/dt (continuous with respect to x and t)

or

dxi/dti ¼ Ai (at time ti), for batch operations

the same set of model equations are used to represent different types of

operation involving the same system

6 Process Systems Engineering, 2. Modeling and Simulation



Table 3. Problem type versus model description and model equations

Problem type Description Example

Steady-state analysis

and simulation

given themodel of the system S, and a fixed operating state xss compute the

outputs y, knowing the inputs u, the disturbances d and the system

parameters p. The system is regarded as being in ‘‘steady-state’’, or at a

particular operating point. Time varying or dynamic behavior is not

being considered. These types of problems could be identified with

standard process flowsheeting applications or for the use of steady-state

models in control applications.

process model

mass and energy balance:

0 ¼ f(u, d, x, y)

constitutive equation:

0 ¼ g1(x, p)

0 ¼ g2(x, y)

known: u, d, p

unknown: x, y

Dynamic analysis and

simulation

given a model structure for S, predict the outputs y knowing the time

varying behavior of the inputs u, disturbances d and the parameters

p. This is similar to the previous problem except that time varying

behavior is assumed. This type of problem is often focused on assessing

the effects of input or disturbance changes on the outputs of the system.

In many cases the combination of steady-state and dynamic models

provides profound insights and even unexpected behaviors in complex

systems.

process model

mass and energy balance:

dx/dt ¼ f(u, d, x, y, t)

constitutive equation:

0 ¼ g1(x, p)

0 ¼ g2(x, y)

known: u, d, p, xt¼to

unknown: x(t), y

Process-product design in its simplest form: estimate the set of parameters p, for a given fixed

structure of S, desired outputs y and specified inputs u. The situation can

be either dynamic or steady-state. This problem seeks to find, e.g., the

size of equipment to give a desired behavior. There are more complex

design problems that require S to be found within synthesis problems.

Usually, in process design, some elements of output (y) are known, while

some elements of input (u) and/or parameters (p) are unknown. In

product design, some of the constitutive variables (x1) and parameters

(p1) are usually known. For model-based design, values of the unknown

variables (u2 and/or p2) may be found iteratively until a match of the

known output. (y) is obtained. Alternatively, values of u2 can be directly

determined by solving the same equation set for given values of y

process model

0 ¼ f(u, d, x, y)

0 ¼ g1(x, p)

0 ¼ g2(x, y)

known: u1, d, p1, y

unknown: x, u2, p2
product model

0 ¼ g1(x, p)

0 ¼ g2(x, y)

known: x1, p1, y

unknown: x2, p2
note: size of vector

y ¼ sizes

of vectors u2 (or x2) plus

p2
Process optimization estimate the optimum values of the state x for a given objective function

Fobj involving states, parameters, and inputs. This is a very common

application where the ‘‘best’’ operating point to maximize or minimize

some objective is sought. Unit optimizers in petroleum refineries are a

well-known example of such modeling practices. Variables have lower

(L) and upper (U) bounds.

Fobj ¼ fobj(u, d, x, y)

(Continued)
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2.4.1. Problem and Model Definition

Modeling clearly arises because of a need.
Those needs can be very diverse, but are essen-

tially associated in the product and process area
with aspects of the product life cycle (PLC).
Figure 4 shows a huge variety of model end-
uses, model types, and application areas that can

Table 3. (Continued)

Problem type Description Example

subject to u, x

process model equations

plus

Ly < y < Uy

Lx < x < Ux

Lu < u < Uu

Regulatory control or

state driving

applications

estimate the input u for a given S, y, d and p. This is a standard control

issue to obtain the values of the inputs needed to maintain the

system at some specified operating point or the required inputs to

drive the system from one operating point to another, such as

done in batch polymerization reactors.

while in process simulation the input variables maybe known, in process

control, some of these variables (u2) may need to be manipulated in

order to match the desired output (yss). The input variables are then

divided into two parts – a part that is known and a part for which the

steady-state values are known but they will be changed for operation

under control. pc refers to the controller parameters.

process model

mass and energy balance:

dx/dt ¼ f(u, d, x, y)

constitutive equation:

0 ¼ g1(x, p)

0 ¼ g2(x, y)

control equation:

u2¼ f(y, yss, pc, u2ss, t)

known: u1, d, p, yss, u2ss,

pc, xt¼to

unknown: u2, x, y

System identification find a structure for the system S with its parameters p using inputs u and

outputs y. This is often done to generate a model to be used for control

applications, where the resultant model is embedded into a control

algorithm such as model predictive control (MPC). Other types of

model identification problems deal with finding model parameters (p)

that make the model match known experimental data (yss)

Fobj ¼ fobj(u, x, y, yss, pc)

subject to p

process model equations

plus

Lp < p < Up

known: u, d, yss
unknown: x, y, pc

State estimation find estimates x̂, of the internal states x of the system S knowing inputs ui
and outputs yi. This problem is often addressed when there is no direct

way to measure the internal state of a system. Through the use of a

model and known input and output values, state estimates can be

obtained using such approaches as Kalman filters.

state-space model:

x_ ¼ Ax þ Bu

y ¼ Cx þ Du

with given input–output

values:

{yi, ui}

estimate of x̂ is given by:

_̂x ¼ Ax̂þLðy�CxÞ
with L as an estimator

gain.
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be found in PLC modeling. However, the initial
considerations around problem definition and
the necessity of model-based approaches to
decision-making have common elements de-
spite the life cycle phase. One issue to consider
is the question of the intended customer. This
can range from internal company scientists,
engineers, managers, and operations staffs who
dominate the customer base, to external person-
nel and agencies.

Further questions need to be asked: What
decisions will be addressed through the use of
this model? Who or what will make those

decisions — will it be a person or will it be
some technology in which the model is embed-
ded such as a control system, plant, or unit
optimizer? What principal states, properties, or
attributes of the application area will be the
focus of decision-making?

2.4.2. Model Conceptualization

Conceiving a model is an extremely important
activity in the modeling methodology. This
conceptualization activity is best carried out

Figure 3. Model development framework

Figure 4. Multifaceted modeling needs
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through brain-storming processes with a wide
range of stakeholders to generate an initial
conceptualization. It is essential that the stake-
holders include people very familiar with the
process or product, the modeling team, an ex-
perienced modeler with skills to decide the
authenticity or applicability of positions taken
by the stakeholders. Some, but not all of the key
issues and questions to be addressed for model
conceptualization include: What are the overall
boundaries of the system under study? Where
are the major mass, energy, momentum, or
population holdups in the system? Are there
clearly identifiable subsystems and what are
their boundaries and interactions with other
sub-systems? Can we identify clear subsystem
demarcations where physical and chemical phe-
nomena could be distinct?

2.4.3. Model Data Requirements

In this stage of model development there are
numerous data issues to be identified, that are of
immediate use inmodel development, as well as
use in the longer term issues of model validation
andmodel deployment/use/reuse. In fact, model
data can be one of the greatest challenges in
producing ‘‘fit-for-purpose’’ models. The types
of data considerations that need to be resolved
for the initial model development can include
thermophysical properties of the substances
within the system, such as fixed and state de-
pendent properties. What are the key properties

in formulating the balance equations and con-
stitutive relations that are a strong function of
temperature, pressure or concentrations? What
are the relevant applications or predictive
ranges? What predictive models for the proper-
ties are relevant to the application? Are these
models readily available or are laboratory or
plant investigations required to elucidate the
properties?

2.4.4. Model Construction

Model construction deals with the expression in
appropriate form of an abstracted description of
the system to generate an analogue or model of
the real behavior. There are a significant number
of model types as could be seen in Tables 1
and 2. The challenge is to take the understanding
from the goal deliberations, combined with the
model conceptualization and generate a model
(represented by equations) that can encompass
both the conceptualization and the end-goal
uses. In translating the verbal description con-
tained in the conceptualization stage, conserva-
tion principles and accompanying constitutive
relations are mainly represented in some math-
ematical form as seen in Figure 5.

Many modeling tools in PSE employ inte-
grated conceptualization, modeling and simula-
tion systems. Examples of these systems are:
integrated computer aided system (ICAS),
gPROMS (process simulator), Daesim Dynam-
ics and Aspen (process simulator) Custom

Figure 5. Framework for computer-aided modeling
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Modeler [4–7], respectively. These systems al-
low the conceptualization of the model through
definition of balance volumes and then the
generation or development of the governing
equations to describe the phenomena occurring
within them. Other approaches to model build-
ing are linked to the use of MS Excel, commer-
cial flowsheeting packages, MATLAB [8],
computational fluid dynamics (CFD) tools !
Computational Fluid Dynamics, and direct cod-
ing. Multiscale modeling poses particular chal-
lenges, with few environments that can handle
the construction of such systems to enable
integration frameworks to be properly en-
abled [9–11]. Clearly, there is diversity in ap-
proaches and tools used formodeling.Whatever
the approach, there is a necessity for well-struc-
tured and well-written models accompanied by
excellent documentation.

2.4.5. Model Solution

Asmost of themodels are represented by a set of
mathematical equations, the majority of model
solutions are via the application of numerical
methods. The selection of a numerical method
depends on various factors, such as, relation to
the equation sets being solved, desired accura-
cy, and computing speed/time.

The solution of the model types (Table 4) is
routinely undertaken by modeling and simula-
tion tools e.g., standard packages such as flow-
sheeting packages, the ICAS system [4],
gPROMS [5], and MATLAB [8]. Other more
complex models involving partial differential

equations (PDEs) can now be handled through
automatic discretization using finite difference,
finite element, or polynomial approximation
techniques [2–4] (see Sections 2.2–2.6).

What is essential prior to solution is the
analysis of the equation set. There are several
issues that need to be resolved to generate
solutions for specific circumstances, e.g.,

. Degrees of freedom: Ensure that the equation
set is well-posed, otherwise, solution difficul-
ties can be encountered. Since the structure of
the equation set is affected by the chosen
degrees of freedom; these analyzes allow to
see the effect of choosing different algebraic
variables to satisfy the degrees of freedom.

. High index issues: Certain choices of the
variables that satisfy the degrees of freedom
might lead to structural issues that make
solution extremely difficult. Here, we encoun-
ter ‘‘high index’’ systems, which might re-
quire reformulation of the model or applica-
tion of advanced numerical methods.

. Consistent initial conditions: The initial
choice of differential variables and the alge-
braic variables should be such that the equa-
tion system is satisfied.Many simulation tools
provide means for generating these ‘‘consis-
tent’’ conditions.

. Dynamic variable bounds: It is often neces-
sary to limit the range of a specific variable or
define bounds on variables that represent
physical or chemical limits.

Many modeling problems can be understood
via these structural and operational concepts. It

Table 4. Different model equation types

Model equations Behavior Equation types

AEs (algebraic equations) steady-state behavior linear or nonlinear; large or small set of equations

ODEs (ordinary differential equations) dynamic behavior (from a known

initial condition)

index 0; large or small set of equations

DAEs (differential algebraic

equations)

dynamic behavior (from a known

initial condition)

index 1; includes constitutive equations; large or

small set of equations

PODAEs (partial-ordinary differential

algebraic equations)

dynamic behavior as a function of one

or more spatial direction

lumped and distributed parameter systems;

discretized solution approach, initial and

boundary values

Integral PODAEs population balances combined with

dynamic behavior

Hybrid start-up and shut-down simulations

(discrete event behavior)

require special numerical treatment; continuous

models used with discrete events occurring under

specific state conditions

Stochastic stochastic behavior model includes probability functions; special

treatment necessary
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often leads to some rethinking of the model
description and reformulation of the model for
effective and efficient solution. The ICAS-
MoT [4] guides the user through the above
mentioned steps during the solution of the mod-
el equations.

2.4.6. Model Verification

The model verification task is essentially a
debug activity [12] and different from model
validation tasks. Model verification refers to the
checking of the model implementation or equa-
tion code against the conceptual description or
original model equations. It should be deter-
mined whether the model is an accurate repre-
sentation of the conceptualization.

Model verification is particularly important
in the case where new models are being written
as opposed to the use of preexisting models in
such tools as flowsheeting packages. There are
concerns on at least two levels:

. Conceptual implementation errors: Identify
the underlying modeling concepts that have
not been correctly represented in the coded
model. To help initially address the concep-
tual implementation issues it is possible to
look at asymptotic behavior of the implemen-
ted model and assess whether the general
behavior is in accordance with accepted
understanding.

. Errors coding: Analyzewhy there are errors in
the description, despite the concept being
correctly incorporated. For coding errors and
testing, there should be an adoption of modu-
lar code and avoidance of monolithic code, so
as to enhance debug capabilities. These can
be, incorrect signs, powers, and wrong vari-
able use.

2.4.7. Model Validation

Model validation is a distinct activity compared
to model verification, yet clearly linked to it
(Fig. 3). A model that does not pass the verifi-
cation test could have serious validation pro-
blems. Validation refers to the following ques-
tion: Is the model a reasonable representation of
the actual system? In answering this question a
number of factors may have an impact. For

example, the underlying assumptions that have
been made in conceptualizing the model: Do
they serve to address the goals of the modeling,
the model inputs, and disturbance ranges or
distributions? What are the expected ranges of
these model inputs under which the model must
perform adequately in relation to the actual
system; the outputs of the model, and their
relationship to the actual system?

Before model validation should be contem-
plated it is important that a set of sensitivity
analyses are performed to investigate the sensi-
tivity of:

. Model outputs to changes in inputs

. Model outputs to disturbances

. Model outputs to model parameters

These sensitivity tests give vital information
on the effect of changes on model predictions
from a variety of sources. Importantly, this
activity also helps to identify the most sensitive
parameters in the system in determining output
changes, which becomes useful information in
model identification [13].

It is important that data from the actual
process should be gathered over the intended
operational range relating to the model use. In
some cases this might incorporate a significant
range for the intended model application. In
other cases itmight be dynamic behavior around
a particular operating point. Steady-state mod-
els can be statistically validated initially through
parameter estimation methods using reconciled
data [14, 15].

In the case of dynamicmodelswith data from
actual systems, approaches initially via statisti-
cal parameter estimation provide a starting point
for validation. Once parameter estimation has
been performed using the parameter sensitivity
studies, further testing using other data sets can
be done to provide model validation. Again
statistical methods can be used to assess the
model performance using some form of least
squares estimator [2].

2.4.8. Model Deployment and
Maintenance

Getting the model for the application is just the
beginning of the model’s life. It is here that
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the original practices to design the model
play an on-going role in its long term use. In
other cases the model will be used for decision-
making in early phases of the lifecycle and then
archived. In order to avoid significant rework
one has to:

. Fully document the individual steps of the
modeling methodology

. Make sure all assumptions and their justifica-
tions are captured

. Ensure any coding is well-documented and
written in modular form

. Indicate where changes were made to the
initial conceptualization and why

. Provide all relevant data, values, and data
treatment processes

. Archive validation runs, validation data, and
model performance

2.5. Computer-Aided Modeling

Computer-aided modeling tools are designed to
guide and help the model developer and/or user
to perform the modeling tasks in a systematic
and efficient manner. In this respect several
scientists [16, 17] proposed a computer-aided
modeling framework (see Fig. 3) where differ-
ent modeling tasks are assigned to the model
developer or to the computer, based on who can
perform them better. For example, tasks such as
modeling problem definition and model data
requirements are assigned to be performed by
the model developer, while model solution,
model verification, and model validation are
assigned to be performed by the computer.
Model conceptualization, model construction,
and model deployment are assigned to be per-
formed by both. Here, the model developer
would decide and select options while the com-
puter will help or guide the model developer or
user in making decisions and then implement
the selected options. These tools perform a
combination of the tasks shown in Figure 3
including:

. Methods and tools for model representation:
These tools help to define the modeling prob-
lem in model conceptualization, model con-
struction, and in model deployment

. Methods and tools for model generation:
These tools help to generate the model

equations representing the system beingmod-
eled. The typical tasks performed by these
tools are model conceptualization, model
construction, and model analysis

. Modeling tool-box: These tools translate the
mathematical model for the computer, per-
formmodel analysis, interface themodel with
an appropriate solver, and report the results

A typical framework for computer-aided
modeling is illustrated in Figure 5, where the
use of a model generation tool is combined with
a modeling tool box for various modeling
objectives.

The application range of the model-based
solution approach depends on the application
range of the available models. Therefore, to
achieve a wide search space during the early
stages of the design process, the corresponding
models need to be predictive by nature. In the
later stages of the design process when quanti-
tative values of the design variables are deter-
mined, the models need to be quantitatively
correct but the application range does not need
to be wide. In this respect, a multiscale model-
ing scheme that can generate the necessary
model(s) would be an interesting option, espe-
cially if the necessary model parameters can be
predicted on-line without the need for addi-
tional experimental data. The main idea is to
use the same set of experimental data to regress
model parameters at different scales. Themod-
els at the lower scales need less parameters to
represent the same dataset and the model de-
scriptors for the lower scales can be used to
estimate themissing parameters in the adjacent
higher scale. In this way, the predictive power
of the model-based framework for product-
process design is extended without the need
for new data.

2.6. Illustrative Example

Using the model equations (Eqs. 1–12) for the
simple two-phase flash tank process, various
issues of modeling are highlighted below. Since
the model has already been developed, the next
steps are to analyze, solve, verify, and validate
the model. Model generation tools such as
ModDev [4] can generate or create this and
similar models.
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2.6.1. Model Analysis

The model contains NC þ 1 balance equations,
4NC þ 3 conditional equations and 2NC þ 3
constitutive equations, giving a total of 7NCþ 7
equations. The model has NCþ3 inputs (u: f1,
F1,T1,H1); 2NCþ 5 outputs (y: f2, f3,F2,F3,H2,
H3,Q); 2 disturbances (d: T, P); 5NC states (x: l,
v, z, k,PS; and 5NC parameters (p:A,B,C,Hvap,
uL), giving a total of 13NCþ 10 variables. This
means 6NC þ 3 variables need to be specified
before the 7NCþ 7 equations can be solved for
their corresponding unknown variables.

A typical variable specification for these
kinds of problem, is the following: specify,
NCþ1 inputs (u: f1, T1); 2 disturbances (d: T,
P); and 5NC parameters (p: A, B, C, Hvap, uL),
giving a total of 6NCþ 3 variables. Note that the
choice of the variables that are specified influ-
ences the structure of the model and therefore
the solution strategy.

2.6.2. Model Structure

One way to represent and analyze the model
structure is to use the concept of an incidence
matrix [18], where the rows represent the equa-
tions and the columns represent the unknown
variables that are found in the corresponding
equations. The incidence matrix for the two-
phase flash process model is given in Table 5.

The objective is to order the equations to obtain
a tridiagonal form, if possible. A redundant
equation is identified when the equation does
not have any unknown variables assigned to it.
An explicit equation is identified when the
equation has only one unknown variable as-
signed to it, while an implicit equation is iden-
tified when the equation has more than one
unknown variable assigned to it. Note that if
temperature and/or pressure are not specified,
then a tridiagonal form of the incidence matrix
is also not obtained. Also, if the constitutive
model (Eq. 3) is replacedwith a nonidealmodel,
then also a tridiagonal formwill not be obtained.

2.6.3. Solution Strategy

If a lower tridiagonal form can be obtained by
ordering the rows and columns of the incidence
matrix, it would indicate a set of explicit equa-
tions and a sequential solution approach could
be used, giving also the order in which the
explicit equations need to be solved. If a tridia-
gonal form cannot be obtained, it would indicate
a combination of explicit and implicit equations
and a simultaneous or iterative solution ap-
proach could be used. The incidence matrix for
the two-phase flash process model as given in
Table 5 does not show a tridiagonal form and so
an algebraic equations solver is necessary (Sec-
tion 2.2). Note, however, that Equations (1, 3–7)

Table 5. Incidence matrix with respect to unknown variables only

Unknown variables

Equations Ps K z F2 F3 v l H1 H2 H3 f2 f3 Q

8 b

9 a b

6 b

7(2) b c

7(3) b c

4 a b

5 a b

10 a b

11 a b

12 a b

1(2) b

1(3) b

2 a a a a a b

aThe variable is found in the corresponding equation.
bAn assigned variable to the corresponding equation.
cVariables outside the lower tridiagonal form – they need to be assumed in an iterative solution scheme; Equations (1), (4), (5), (7), (10)–(12)

could be solved simultaneously for the corresponding variables.
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may be combined to obtain the Rachford–Rice
equation and a tridiagonal form for this reorga-
nized set of equations can be obtained and a
sequential solution approach is then
employed [18].

Setting NC ¼ 2, and selecting benzene and
toluene as the two compounds, the correspond-
ing parameters can be obtained from any che-
micals database. An equimolar feed mixture is
specified for stream 1. The feed temperature
could be set to 300 K and the flash operation
temperature to 368 K and pressure to 1.013 bar.
The result of the solution of themodel equations
will give the following output/state variable
values: l1 ¼ 0.42 (mole fraction of benzene in
liquid phase); v1 ¼ 0.63 (mole fraction of ben-
zene in vapor phase) and F2/F ¼ 0.38 (fraction
vaporized). Bubble point temperature ¼ 365.5
K, dew point temperature¼ 371.9 K at pressure
¼ 1.013 bar.

2.6.4. Incremental Modeling

The development of the steady-state two-phase
flash process model could have been made at
different levels (or stages). First, experimentally
measured data could have been collected to
create the constitutive models (Eqs. 8–12).
Next, solution of the model equations without
the balance equations (corresponding to satura-
tion point calculation) could be developed.
Next, the mass balance equation could be added
to incorporate saturation point calculation as
well as simulation of steady-state operations.
Next, the energy balance equation is added. At
this point, the steady-state model could be con-
verted to a dynamic model by adding accumu-
lation terms to the left-hand sides of the balance
equations (Eqs. 1, 2), resulting in an initial value
integration of aDAE-set (Section 2.3). Next, the
assumption of perfect mixing in axial and radial
directions could be removed (for the steady-
state and/or the dynamic models) to result in a
set of PDAEs (Section 2.4).

2.7. Challenges and Opportunities

The current and future trend of addressing issues
of sustainability, safety and hazards, reliability,
flexibility, and economics in the design of pro-

ducts and the corresponding processes to man-
ufacture them, has made these problems multi-
dimensional, multiscale, and multidisciplinary.
There is an opportunity for the PSE community
to manage this complexity through efficient and
systematic model-basedmethods and tools. The
challenge is not only to develop reliable, effi-
cient, and flexible models but also develop
modeling tools that can help to develop the
necessary models in a systematic and efficient
manner. The idea of a computer-aidedmodeling
framework becomes interesting as it can pro-
vide the human model developer or user with
established work-flows, their corresponding da-
ta-flows, and the set of available modeling tools
that could be used. That is, make the models as
generic as possible to cover a wide range of
modeling challenges. Also, it should be possible
to generate the required mathematical models
with the least effort without sacrificing the
accuracy, reliability, and efficiency of the mod-
els. Some of the issues to consider could be the
following:

. Architecture of a computer-aided modeling
framework (knowledge representation and
management play an important role [19])

. Tool for model generation or creation – it is a
central requirement for any computer-aided
modeling framework. That is, how to convert
a system description in terms of mechanisms
and balance volumes to a representative set of
mathematical equations?

. Analysis tools for model reliability, sensitivi-
ty, uncertainty–application range of the mod-
el is intimately related to the reliability and
application range of constitutive models.
How to discriminate between constitutive
models to find the optimal model-data match?

. Integration issues – the solution of many
process engineering problems require the use
of modeling tools together with design, anal-
ysis, control, and monitoring algorithms/
methods

Finally, several questions arise:With the best
architecture of a modeling framework and the
best suite of integrated modeling tools, what are
the advantages of using a model-based solution
approach as opposed to not doing so? Also,
when should a model-based approach be used
and what should be the role of the models and
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the modeling framework? The most difficult
issue is providing a quantitative indicator as an
argument for using a computer-aided modeling
framework for the model development task. In
economic terms, such data are not routinely
measured or collected to provide any reliable
estimate. However, from the point of view of
time and resources employed, the advantages
become obvious. For example, reduction of
time and therefore human resources could be
orders of magnitude; that is, from double digit
months or more to single digit days or less. Use
of the framework for simulation, optimization,
and identification can provide similar benefits,
provided the appropriate models are used. The
advantage is not only that the model develop-
ment and solution is faster through the appro-
priate use of computer-aided tools but also
duplication of work is avoided via efficient
reuse of models and better dataflow with redun-
dant or unnecessary steps being avoided through
the use of excellent workflows and generic
models.

3. Numerical Methods for Steady-
State Simulation

3.1. Introduction

Basic equation-solvingmethods included in this
section are, e.g., direct substitution, accelerated
direct substitution, general dominant eigenval-
ue methods, secant (or finite difference)
methods, quasi-Newton methods, and hybrid
Newton–quasi-Newton methods. Techniques
for stabilizing these basic methods, such as line
searching and trust regions, are also described.
The convergence, periodic, and chaotic behav-
ior of the many variants of these basic equation
solving methods is presented.

Regardless of process simulation architec-
ture (i.e., whether it is sequential modular,
simultaneous modular, or equation-oriented)
steady-state models of chemical processes gen-
erally consist of mass balance equations, energy
balance equations, equilibrium (or nonequilib-
rium) equations, and other constitutive equa-
tions defining physical properties of the phases
involved in the process and are typically a
mixture of linear and nonlinear equations. These

model equations are generally written compact-
ly in the form

FðxÞ ¼ 0 ð13Þ

where F: D � Rn ! Rn, which means that there
are n equations and n unknown variables. Fur-
thermore, it is generally assumed that F is
continuously differentiable. However, it is im-
portant to understand that F can be defined
either explicitly or implicitly, the domain D is
often difficult to describe geometrically, and
there are often bounds on variables that are not
included in F.

3.2. Numerical Methods and Process
Simulation

Most numerical methods for solving Equa-
tion (13) can be cast in the form of the single
step fixed-point iteration

xkþ1 ¼ GðxkÞ ð14Þ

where G:D� Rn! Rn is a fixed-point function
and k denotes an iteration counter. Any point
that satisfies Equation (14) is called a fixed
point. Basic fixed-point methods that find wide-
spread use in process simulation include New-
ton’s method and its many variants (i.e., quasi-
Newton methods, partial Newton method) and
direct and various accelerated direct substitu-
tion. Techniques for stabilizing these basic
fixed-point methods include line searching
procedures, trust region (or dogleg) strate-
gies [20], and continuation and homotopy-
continuation methods ! Mathematics in
Chemical Engineering.

3.2.1. Newton’s Method and Its Variants

Newton’smethod is the most widely used fixed-
point method in process simulation finding
widespread use in separations, reaction engi-
neering, thermodynamics and other related
areas. Quasi-Newton methods such as
Broyden’s method [21], the Schubert up-
date [22] for handling matrix sparsity, and the
hybrid method with and without thermodynam-
ically consistent quasi-Newton updates [23, 24]
have also been used in process simulation !
Mathematics in Chemical Engineering. Finally,
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methods such as the Curtis, Powell, and Reid
(CPR) method [25] have been developed to
reduce the computational overhead of finite
difference approximations when analytical par-
tial derivative information is unavailable or
difficult to obtain.

3.2.1.1. Newton’s Method
Newton’s method is derived from a truncated
Taylor series expansion ofF(x) and given by the
iteration

xkþ1 ¼ GðxkÞ ¼ xk�JðxkÞ�1FðxkÞ ð15Þ

where Jk¼ J(xk) is the Jacobianmatrix ormatrix
of first partial derivatives of F with respect to x
and the superscript �1 denotes matrix inverse.
Implementation of Newton’s method requires
either the computation of the inverse of Jk or
the solution of a linear system of equations
given by

JðxkÞDxk ¼ �FðxkÞ ð16Þ

where Dxk ¼ xkþ1 � xk. When Jk contains a
relatively large portion of zero elements it is
said to be sparse.

All variants of Newton’s method, finite dif-
ference (secant) methods, quasi-Newton meth-
ods, hybrid Newton-quasi-Newton methods,
and thermodynamically consistent hybridmeth-
ods, build approximations to the Jacobian ma-
trix or its inverse in one way or another.

Applications of Newton’s method to process
simulation abound. Some of the first applica-
tions were applications to separation processes
such as flash and distillation [26–29].

3.2.1.2. Finite Difference Method
The finite difference method! Mathematics in
Chemical Engineering, Section 7.3 approxi-
mates the elements of the Jacobian matrix in
Equation (15) using the simple relationship

½qFi=qxj� ¼ FiðxjþdjÞ�FiðxjÞ=dj ð17Þ

where Fi is the i
th component function of F, xj is

the jth unknown variable, and dj is a perturbation
for the jth unknown variable. The notation Fi(xj
þ dj) means that all other unknown variables are
held constant at their respective values in xk.
One advantage of finite difference is that with a
single perturbation dj, an entire column of the
Jacobian matrix can be approximated. Ways of
economizing the finite difference perturbations

when J is sparse are described in [25]. The
secant method is, in a sense, a one-dimensional
version of the finite difference method where dk
¼ xjþ1 � xk. Difficulties can arise due to the
choice of dk.

While there are examples of applications of
the finite difference Newton method in process
simulation, it is not preferred because of the
relatively large computational expense associ-
ated with calculating finite difference deriva-
tives. In the absence of analytical derivatives,
many researchers choose to use quasi-Newton
methods.

3.2.1.3. Broyden’s Method
Broyden’s method [21] is a quasi-Newton (or
nonsymmetric least change secant update)
method and there are two version of Broyden’s
method – one that approximates Jk by a matrix,
Mk and one that approximates J�1

k directly by a
matrix Hk. In either case, the equation used to
build the new approximation from the current
approximation and changes in the unknown
variables and the vector function F is called an
updating formula or update. To approximate Jk,
the updating formula is given by

Mkþ1 ¼ Mkþðyk�MkskÞsTk =ðsTk skÞ ð18Þ

where sk ¼ Dxk, yk ¼ F(xkþ1) � F(xk). To
approximate J�1

k the inverse Broyden update

Hkþ1 ¼ Hkþðsk�HkykÞyTk =ðyTk skÞ ð19Þ

These updating formula calculate a rank one
correction to Mk or Hk so that the new update,
Mkþ1 or Hkþ1, satisfies the secant conditions
Mkþ1sk ¼ yk or Hkþ1yk ¼ sk. One advantage of
the inverse Broyden update is that it avoids the
need to solve a linear system to calculate a new
estimate of the solution thereby saving compu-
tational effort. The Broyden update given by
Equation (18) can be readily extended to handle
matrix sparsity and is called the Schubert up-
date [22]. MARWILL [30] has proved conver-
gence of Schubert’s method using bounded
deterioration [29, 31].

3.2.1.4. Hybrid Newton-Quasi-Newton
Methods
There are many ways to combine analytical,
finite difference, and quasi-Newton approxima-
tions of first derivative information. Following
the work of [32] in nonlinear least squares, [23]
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suggest a hybrid method in which the approxi-
mation to Jk, B(xk), is split into two parts – a
computed part and an approximated part – given
by

BðxkÞ ¼ CðxkÞþAk ð20Þ

where C(xk) can be computed analytically and
Ak is approximated using either finite difference
or a quasi-Newton update. When Ak ¼ 0 for all
iterations, then Equation (20) is called a partial
Newton method. When Ak is approximated
using the Broyden or Schubert updates, Equa-
tion (20) is called a hybrid method.
For applications of the hybrid method to
process engineering problems involving
flash, distillation, and liquid–liquid extraction
see [33, 34].

3.2.1.5. Thermodynamically Consistent
Hybrid Methods
LUCIA noted that Jk with analytical or finite
difference derivatives always satisfies condi-
tions like the Gibbs–Duhem and Gibbs–Helm-
holtz equations while approximations using
quasi-Newton updates do not. To resolve this
deficiency, the hybrid method was extended so
that Bk satisfies the Gibbs–Duhem and Gibbs–
Helmholtz equations [35, 36, 24], which implies
that the null space condition, Akþ1zk ¼ 0, is
satisfied. VENKATARAMAN and LUCIA [24] gener-
ate thermodynamically consistent matrix ap-
proximations using a two-step projection from
the linear space of symmetric, secantmatrices to
the linear space of symmetric, thermodynami-
cally consistent matrices. This is accomplished
by first updatingAk using the Powell-symmetric
Broyden (PSB) update

A ¼ Akþ½ðyk�AkskÞsTkþskðyk�AkskÞT=ðsTk skÞ��f½ðyk�AkskÞT sk �=
ðsTk skÞ2gsksTk ð21Þ

followed by a null space update of A in Equa-
tion (21) given by

Akþ1 ¼ A�½ðAzkÞsTkþzkðAzkÞT=ðzTk zkÞ��f½ðAzkÞT zk �=ðzTk zkÞ2gzkzTk
ð22Þ

Because the updates given in Equations (21)
and (22) are symmetric updates they make rank
two corrections to the initial matrix approxima-
tion, Ak.

Thermodynamically consistent hybrid meth-
ods that exploit the Gibbs–Duhem and Gibbs–
Helmholtz equations are comparable to

Newton’s method in reliability and efficiency
for solving flash problems and multicomponent
distillations [6, 24].

3.2.1.6. Other Variants of Newton’s Method
Other variants of Newton’s method include
methods that solve the linear system of equa-
tions using an iterative method. For example,
there are indirect Newton methods based on
successive over-relaxation (SOR) and Krylov
(or expanding) subspace methods such as the
generalizedminimal residual (GMRES)method
developed by [37], ! Mathematics in Chemi-
cal Engineering, Section 1.2.

3.2.2. Direct and Accelerated Direct
Substitution

Direct substitution is a basic fixed-point method
that has a natural fit in sequential modular
process simulation. To improve the speed of
convergence of direct substitution, a large class
of methods that can be classified as accelerated
direct substitutionmethods has been developed.
There are many forms of accelerated direct
substitution including, e.g., Wegstein accelera-
tion, Broyden acceleration, Newton accelera-
tion. All acceleration methods represent
approaches to solving the equation

FðxÞ ¼ x�GðxÞ ¼ 0 ð23Þ

where the Jacobian matrix is given by J(x)¼ I –
G0(x) and where G0(x) is the Jacobian matrix of
the functionGwith respect to x. Iterates for any
acceleration method are computed using the
expression

xkþ1 ¼ xk�½I�G
0 ðxÞ��1½xk�GðxkÞ� ð24Þ

3.2.2.1. Direct Substitution
Direct substitution is a natural iterative process
described by Equation (24), where G(x) can
come from explicit algebraic rearrangement of
Equation (23) in the form of Equation (24) or by
the result of the interconnections of process
units in a flowsheet, where the units in the
process are considered black boxes. While di-
rect substitution is a natural form of iteration, it
is not guaranteed to converge. Moreover, when
it converges, it generally converges slowly (i.e.,
linearly).
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3.2.2.2. Newton Acceleration
Newton acceleration uses G0(x) directly to
compute [I � G0(x)], either from analytical or
finite difference partial derivatives. Also, there
are applications in which it is advantageous
to approximate the matrix inverse matrix of
[I � G0(x)]�1. An application of Newton ac-
celerated direct substitution to multicompo-
nent, multistage separation processes can be
found in [38, 39].

3.2.2.3. Wegstein Accelerated Direct
Substitution
Wegstein acceleration approximates the matrix
[I � G0(x)] using a one-dimensional secant
method. Generalized Wegstein or secant accel-
eration approximates [I � G0(x)] using a multi-
dimensional secant method.

3.2.2.4. Broyden Accelerated Direct
Substitution
Broyden acceleration uses the Broyden update
(Eq. 18) to approximate [I � G0(x)]. The in-
verse Broyden update can also be used to
approximate [I � G0(x)]�1. Applications of
Broyden accelerated direct substitution in
process simulation can be found in the work
of [40, 41].

3.2.2.5. General Dominant Eigenvalue
Acceleration
CROWE and coworkers have developed var-
iants of Wegstein acceleration called the dom-
inant eigenvalue method (DEM) and the gen-
eral dominant eigenvalue method (GDEM)
that use the dominant eigenvalues to deter-
mine how to accelerate direct substitution.
This is described in [42, 43]. The work of
CROWE and co-workers also shows that there is
a connection between GDEM and quasi-New-
ton acceleration. An interesting application of
the GDEM in process simulation is given
in [44, 45].

3.2.3. Stabilization Method

Techniques for improving convergence of basic
fixed-pointmethods include line searching, trust
region or dogleg methods, and homotopy-
continuation.

3.2.3.1. Line Searching Procedures
There are many exact and inexact line searching
methods including quadratic and cubic fit and
Armijo’s rule. Themain idea behind line search-
ing is to use the given search direction (e.g.,
Newton direction, quasi-Newton direction) to
reduce the value kF(x)k where k k denotes a
norm (typically the 2-norm). That is, line
searching selects a value like

kFðxkþakdkÞk < kFðxkÞk ð25Þ

where dk denotes the search direction and k is an
iteration number. Exact line search methods
attempt to minimize the value of kF(xk þ
akdk)k. Inexact line search methods, on the
other hand, choose an approximate value of ak

such that Equation (25) is satisfied. For exam-
ple, Armijo’s rule chooses the first value a from
the sequence {1j} for j ¼ 0, 1,. . . for which
Equation (25) is satisfied. To be successful, the
direction used in Equation (25) must be a de-
scent direction.

3.2.3.2. Trust Region Methods
Trust region methods combine the global con-
vergence properties of steepest descent (nega-
tive gradient of FTF) and the fast asymptotic
convergence of Newton-like methods. The first
paper on trust region (or dogleg) methods was
the seminal paper by [20]. Since then many
variations of the basic trust region method have
been proposed. Trust region methods define a
region, Dk, for which the truncated Taylor series
approximation ofF(x) can be trusted and choose
between the steepest descent (or Cauchy) direc-
tion of the least squares function and any direc-
tion defined by Newton’s method or one of its
variants so tomaintain amonotonically decreas-
ing sequence of function values ! Mathemat-
ics in Chemical Engineering, Section 10.2. The
basic trust region step is defined by the rule

dk ¼ ð1�bÞDxkNþbDxkC ð26Þ

where DxkN and DxkC are the Newton and Cauchy
step respectively and b is a dogleg parameter.
Rules for choosing b depend on where the
Newton or Cauchy step land with regard to a
given trust region radius and whether kF(xkþ
dk)k � kF(xk)k. Other rules based on the ex-
pected decrease in F(x) are used to adjust the
trust region radius iteratively. Applications of
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the dogleg strategy in process simulation can be
found in [20, 46].

3.2.3.3. Homotopy-Continuation Methods
Continuation and homotopy-continuation
methods ! Mathematics in Chemical Engi-
neering, Section 1.3 are parameterization meth-
ods that can be viewed as techniques for bending
‘easy’ solutions into ‘hard-to-find’ solutions
using the equation

HðxÞ ¼ aFðxÞþð1�aÞEðxÞ ð27Þ

where a is a parameter such that 0� a� 1, E(x)
is a function that generally has a unique solution
and is easily solved, and H(x) is a homotopy
function. Starting with a ¼ 0, a solution to
Equation (27), x(a), is generated. Using this
solution, x(a), as a starting point, a new solution,
x(a þ Da), is computed and this procedure is
repeated until the parameter a reaches 1. The
resulting family of solutions, {x(a)}, is called a
homotopy solution curve. There are various
ways of adjusting the parameter a (e.g., using
arc length) and several homotopy functions
have been used in practice (e.g., Newton and
fixed-point homotopy functions).

The underlying theory of continuation meth-
ods is degree theory and in particular Sard’s
theorem. Good reference material for continua-
tion and homotopy-continuation methods in-
clude the work of [47–52].

3.2.4. Complex Domain Methods

All numerical methods have natural extensions
to the complex domain because of the isomor-
phism that exists between Cn and R2n. These
methods are easily implemented on compilers
that support complex domain computations.

LUCIA et al. [46] studied the behavior of direct
substitution, Newton’s method, and dogleg
method in the complex domain.

3.2.5. Optimization-Based Methods

There are many other methods, especially glob-
al optimization methods, which can be easily
adapted to solve nonlinear algebraic equation
models of chemical processes. These methods

include the global terrain method [53, 54] and
aBB method of [55].

3.2.6. Interval Methods

There is a class of methods known as interval
methods that bracket solutions and systemati-
cally reduce the region surrounding a potential
solution using interval arithmetic. One of the
most useful is interval Newton’s method with
general bisection. Interval methods have con-
siderable computational overhead and do not
scale well to large dimensional problems. How-
ever, interval methods have been applied to
small dimensional chemical process simulation
problems such as the multiphase flash problem
by [56].

3.3. Numerical Analysis

3.3.1. General Convergence
Considerations

Local convergence of fixed-point methods has
been extensively covered in applied mathemat-
ics and can generally be categorized in twoways
– proofs of convergence (sometimes including
existence and uniqueness) and proofs of rates of
convergence [48].

Convergence of all fixed-point methods typ-
ically rests on being able to construct a Cauchy
sequence, {xk} on a given, usually compact,
subset of the domain D on which the function
G(x) is defined:

A sequence {xk} � D0 is Cauchy if for each
positive scalar, e, there exists a positive integer
N such that kxkþ1� xkk< e for all k>N, where k
k denotes any norm on Rn. Note that this defini-
tion clearly implies that the iterates of any
Cauchy sequence eventually get closer and
closer together and, most importantly, that there
exists a fixed point, x* � D0.

However, proof that a sequence {xk} is a
Cauchy sequence is difficult in practice and
often requires additional assumptions such as

. The existence of a solution in some domainD

. G is a contraction mapping

. G is continuous differentiable, and/or

. The boundedness of the Jacobian matrix
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The most general of these assumptions is the
assumption thatG is a contraction mapping on a
domain D0 [48].

Contraction Mapping Principle. Suppose
G: D0 � Rn ! Rn where D0 � D is a closed set.
Also assume GD0 � D. Then G has a unique
fixed point, x* � D0.

Under these assumptions it is easy to show
that the sequence {xk} generated by Equa-
tion (14) is a Cauchy sequence. However, it is
often difficult to prove that a given mapping,G,
is a contraction mapping in order to use the
contraction mapping principle.

Proving that a given map is contraction
mapping in a theoretical sense is often difficult.
For example, mass balance and phase equilibri-
um equations that model a multistage binary
distillation column with fixed temperature and
pressure profiles constitute a contraction
mapping [39].

Local convergence can be restated in terms
of bounds on the spectral radius of the matrixG0
(x*) which is known as the Ostrowski theo-
rem [48]. That is, if r[G0(x*)] < 1 and if the
initial estimate of the solution, x0, is in D, then
the sequence {xk} will converge to x* � D,
where l is the spectral radius and defined by

r½G0 ðx�Þ� ¼ maxjlG0 ðx�Þ ð28Þ

where l are the eigenvalues of G
0 ðx�Þ. This

result is a general local convergence result that
can be applied to any number of fixed-point
methods (Newton’s method, direct substitution,
and others).

3.3.1.1. Newton’s Method and Its Variant
One of the most straightforward results to show
is that Newton’s method is locally convergent.
Using the derivative of Equation (15) for a
function of a single variable gives

G
0 ðxÞ ¼ 1�½F0 ðxÞF0 ðxÞ�FðxÞF00 ðxÞ�=½F0 ðxÞ�2 ¼ FðxÞF 00 ðxÞ=½FðxÞ0 �2

ð15Þ
where F0(x) and F00(x) denote the first and
second derivative of F with respect to x. How-
ever, when x¼ x*,F(x*)¼ 0 and thus r[G0(x*)]
¼ |G0(x*)| ¼ 0. Using the mean value theorem
and the assumption of continuous differentia-
bility ofG implies that |G0(z)|< 1, where z �D
and thus

kxkþ1�x�k < kGðxkÞ�Gðx�Þk < jG0 ðzÞjkxk�x�k ð16Þ

which clearly shows that Newton’s method is
locally convergent to x* � D. Convergence
results for Newton’s method for multivariable
problems is a bit more complicated because F00
(x) is a tensor function. Generally these results
require the following three assumptions: (1) the
existence of a solution, (2) the Jacobian matrix
is bounded (i.e., kJ(x)� J(x*)k< kkx� x*k for
k < ¥), and (3) the Jacobian matrix is nonsin-
gular at the solution [48].

Local convergence of quasi-Newton meth-
ods can be proved in much the same way as
Newton’s method using a concept known as
bounded deterioration [57]. Because continua-
tion methods solve a sequence of problems and
each problem is solved iteratively, local con-
vergence of continuation methods requires ad-
ditional assumptions on the spectral radius of G
with respect to the continuation parameter as
well as the usual assumptions for the underlying
method used to solve each subproblem.

3.3.1.2. Direct Substitution and Its Variant
The convergence behavior of direct substitution
and its variants can also be analyzed using well
known results (e.g., those related to the contrac-
tion mapping principle or spectral radius of
G

0 ðx�Þ). However, many process examples have
multiple algebraic representations of G(x) for
direct substitution and proof of convergence is
dependent on the algebraic representation [58].

3.3.1.3. Stabilization Methods
Stabilization methods like line searching and
trust region strategies can be applied to many
fixed-point methods to force norm reduction of
kFk but can havemixed impact on convergence.
For example, the basic trust region or dogleg
strategy is globally convergent [20]. The metric
used in most dogleg strategies is the kFk2 or
ðFTFÞ12 and can result in convergence to a local,
nonzero valued minimum of FTF, which is a
singular point of J and not a solution F(x) ¼ 0.
Thus care must be exercised in assuming that
stabilization strategies like trust region or dog-
leg methods actually force converge to a solu-
tion of the process model equations.

3.3.2. Rates of Convergence

Rates of convergence for various fixed-point
methods used in process modeling and
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simulation range from linear for direct substitu-
tion and quadratic or second order for Newton’s
method to superlinear or fast linear for quasi-
Newton methods. However, it is important to
understand that rates are theoretical rates of
asymptotic convergence and may or may not
be observed in practice. The local rate of
convergence observed in practice for any
given fixed-point method can be problem
dependent.

3.3.2.1. Newton’s Method and Its Variants
The asymptotic rate of convergence of New-
ton’s method is quadratic or second order [48].
Thus, in a neighborhood of a fixed-point, as xk
! x*

kxkþ1�x�k < ckxk�x�k2 ð29Þ

where c < 1. This result requires (1) the exis-
tence of a solution, (2) a nonsingular Jacobian
matrix at that solution, and (3) bounds on the
norm of the Jacobian matrix in the neighbor-
hood of the solution. When the Jacobian matrix
is singular, the rate of convergence of Newton’s
method deteriorates to linear [59, 60]. Quasi-
Newton methods, on the other hand, exhibit
superlinear convergence. Superlinear conver-
gence is given by the condition

kxkþ1�x�k < ckxk�x�k ð30Þ

where c! 0 as k!¥. Superlinear convergence
of Broyden’s method is proved [57]. The same
three conditions required for the convergence
rate of Newton’s method are required for quasi-
Newton methods.

Dogleg or trust region methods combine
the best aspects of the method of steepest
descent and Newton’s method and [20] has
provided a proof of global convergence.
However, global convergence does not mean
convergence to a solution but convergence to
a stationary point of FTF. Moreover, since
the gradient of FTF is given by g ¼ JTF, this
implies that g ¼ 0 when F ¼ 0 or when F 6¼ 0
but F is in the null space of JT, where T
denotes matrix transpose. When F 6¼ 0 is in
the null space of J, J is singular and FTF
usually takes on a local nonzero valued min-
imum. Thus the dogleg strategy can converge
quadratically or linearly depending on the
initial estimate of the solution and the pres-
ence of singular points of J.

3.3.2.2. Direct Substitution and Its Variants
Direct substitution is considered to be a robust
but slowly converging fixed-point method. The
asymptotic rate of convergence of direct substi-
tution is linear and also given by Equation (30)
with the provision that the constant, c, cannot be
proved to approach zero in the limit. Rates of
convergence for accelerated direct substitution
vary depending on the type of acceleration. For
example, Newton accelerated direct substitu-
tion converges quadratically while acceleration
by quasi-Newton andGDEM lead to superlinear
convergence.

3.3.2.3. Rates of Convergence in Practice
While theoretical rates of convergence gener-
ally expressed in terms of changes in kxk �
x*k, in a practical setting most researchers use
the reduction in the 2-norm of the function, kF
(xk) � F(x*)k2, as a measure of the rate of
convergence since F(x*) ¼ 0 is known. The
reason for this is because measuring the rate of
convergence using kxk � x*k requires knowl-
edge of the solution, which is not known.
Consequently, since FTF ¼ (kF(xk)k2)2, if
FTF doubles in the limit (i.e., 10�2, 10�4,
10�8,. . .), the observed rate of convergence
is considered quadratic. If the values of FTF
follow 10�2, 10�3, 10�4, 10�5,. . ., the ob-
served rate of convergence is linear. Addition-
ally, observed rates of convergence are often
useful in ensuring that partial derivatives are
programmed correctly.

3.3.3. Nonconvergent Behavior

A fixed-point method exhibits periodic or cha-
otic behavior if a sequence of iterates {xk}
wanders within the feasible without converging
to a solution. If the iterates repeat N times, the
sequence is an N-cycle. If the iterates never
repeat, then the sequence is a chaotic (or aperi-
odic). Periodic or chaotic behavior generally
can stems from (1) extrema in the functionG, (2)
the presence of multiple fixed-points (or solu-
tions), and/or (3) nonexistence of a solution
within a given physically meaningful domain.
It can also be induced by the application of
well intentioned but ill-conceived stabiliza-
tion [61–63].
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The analysis of cycles, whether periodic or
chaotic, rests on the behavior of compositemaps
of G with itself, where G is written in the more
general form

xkþ1 ¼ Gðxk ; pÞ ð31Þ

where p is a parameter. For example, a two-
cycle is given by the map

xkþ2 ¼ GðGðxk ; pÞÞ ð32Þ

A three-cycle is given by

xkþ3 ¼ GðGðGðxk ; pÞÞÞ ð33Þ

and, in general, a 2N-cycle is given by

xNkþ2 ¼ GðGð. . .Gðxk ; pÞÞÞ ð34Þ

There are also odd cycles. Stable fixed-points
of Equation (31) are given by the condition |G0
(x*, p)| < 1 or r[G0(x*, p)] < 1 for one and
multivariable problems, respectively. Similar
conditions apply to cyclic or periodic behavior.
That is, a stable two-cycle consists of two
points, x1* and x2*, each of which satisfies the
condition r[G(G(x*, p))] < 1. Similar results
hold for all cycles.

3.3.3.1. Periodic and Chaotic Behavior
Many physical systems show a period doubling
route to chaos. That is, as the parameter p is
changed, the asymptotic behavior of the fixed-
point map given in Equation (31) changes from
convergent, to a 2-cycle, then to a 4-cycle,
8-cycle, and so on. LUCIA et al. [58] give ex-
amples of period doubling as well as other more
complicated routes to chaos for simple process
simulation examples including finding roots of
equations of state, dew point temperature cal-
culations for heterogeneous mixtures, and a
simple sequential modular flowsheet.

3.3.3.2. Julia Sets
The strange behavior of rational and other types
of functions are described in [64–66]. A Julia set
is simply a closed set of points that gives
periodic and/or chaotic behavior. For simple
one-dimensional problems it can be easily iden-
tified by finding those points, x, that satisfyG0(x,
p) ¼ 0, which is an extremum of G. For
Newton’s method, this implies that one member
of the Julia set must be x that satisfies the
condition F00(x, p) ¼ 0. Similar result holds for
multivariable maps and one can use ‘‘reverse’’

iteration to compute other members of the Julia
set.

3.3.3.3. The Mandelbrot Set
Viewed from the perspective of parameter
space, the periodic/chaotic behavior of a given
mapping can be characterized by the Mandel-
brot set [67]. This has given rise to fractals and
the understanding that many fixed-point meth-
ods exhibit fractal basin boundaries. That is,
when a given initial point, x, lies in the boundary
between two or more basins of attraction, it is
not possible to predict to which solution a small
perturbation of that initial point, x þ d, will
converge [68, 58].

3.3.4. Simple Examples

In this subsection some simple process exam-
ples are presented to illustrate the convergence
and/or nonconvergence of commonly used
fixed-point methods in process simulation as
well as observed rates of convergence.

Roots to Equations of State. This simple
example is a common subproblem in process
simulation problems at high pressure, where
phase behavior must be modeled using an
equation of state. Pure carbon dioxide at
146.65 K and 7.8 bar modeled by the Soave–
Redlich–Kwong (SRK) equation using the
Soave alpha function ! Estimation of Physi-
cal Properties, Section 4.1.1 is used to illustrate
the numerical behavior of various fixed-point
methods. The critical properties and acentric
factor that have been used for this illustration
are Tc ¼ 304.20 K, pc ¼ 73.80 bar and v ¼
0.224. Using these critical properties and acen-
tric factor, the resulting cubic polynomial to be
solved is

FðzÞ ¼ z3�z2þ0:2852783z�0:00578644 ¼ 0 ð35Þ

F(z) given by Equation (35) has a real liquid
compressibility factor root and a pair of com-
plex-valued vapor-like roots at the given con-
ditions. All roots are shown in Table 6.

Numerical behavior on this problem is a
strong function of the initial estimate of the root
as well as the fixed-point algorithm used to
determine a root.
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Newton’s Method. Starting from z ¼ 0.05,
Newton’s method without stabilization con-
verges quadratically in 3 iterations to the liquid
compressibility factor root of the SRK equation
to an accuracy ofFTF� 10�15 (Table 7). From z
¼ 0.9, pure Newton’s method jumps to the
liquid root and converges quadratically in 38
iterations.

To illustrate periodic behavior the theory
of [64, 65] is used. For the SRK equation, F00
(z) ¼ 0 when z ¼ 1/3. Using this initial value,
Newton’smethod converges to a periodic cycle,
specifically a 24-cycle. Figure 6 shows the
periodic behavior of Newton’s method where
G(z) is shown in black and the cycle in red at
T ¼ 146.65 K and p ¼ 7.8 bar.

Table 8 gives the cycle points for the
24-cycle for Newton’s method. Note that the
24-cycle is nearly a 3-cycle and a clear indica-
tion that for some other choice of temperature
and pressure, Newton’s method will behave
chaotically.

Newton’s Method with Stabilization. Start-
ing from z¼ 0.05 and using a trust region radius
of D¼ 0.01, the dogleg strategy finds the liquid
compressibility root in 5 iterations. However,
from z¼ 0.90 and D¼ 0.01, the dogleg strategy
converges to z¼ 0.442515 in 3 iterations, which
is not a solution but a poor approximation of a
singular point of the F0(z). A better estimate of
the singular point is z ¼ 0.519914. Table 9
shows the three dogleg iterations and clearly
shows that convergence, while global, is linear
and that the dogleg method does not always
converge to a solution.

Table 6. Compressibility roots for pure CO2 at 146.65 K and 7.8 bar

Compressibility factor root Phase

0.021932 liquid

0.489033 þ 0.15707511i vapor-like

0.489033 þ 0.15707511i vapor-like

Table 7. Convergence of Newton’s method to liquid root of SRK

equation

Iteration z FTF

0 0.05 3.72402 � 10�5

1 0.0183445 7.80529 � 10�7

2 0.0218841 1.39117 � 10�10

3 0.0219327 4.84944 � 10�18

Table 8. Nonconvergent behavior of Newton’s method

Iteration z FTF

1 0.330602 2.36036 � 10�4

2 0.650457 1.01666 � 10�3

3 0.529289 1.70232 � 10�4

4 0.313854 2.61174 � 10�4

5 0.658313 1.15173 � 10�3

6 0.532050 1.83058 � 10�4

7 0.339892 2.22527 � 10�4

8 0.651150 1.02793 � 10�3

9 0.525403 1.71294 � 10�4

10 0.316388 2.57335 � 10�4

11 0.656300 1.11555 � 10�3

12 0.530199 1.79604 � 10�4

13 0.333734 2.31434 � 10�4

14 0.650311 1.01431 � 10�3

15 0.524613 1.70011 � 10�4

16 0.313317 2.61990 � 10�4

17 0.658782 1.16031 � 10�3

18 0.532479 1.83880 � 10�4

19 0.341281 2.20547 � 10�4

20 0.651542 1.03436 � 10�3

21 0.525771 1.71900 � 10�4

22 0.317799 2.55200 � 10�4

23 0.655315 1.09825 � 10�3

24 0.529289 1.77956 � 10�3

Figure 6. Periodic behavior of Newton’s method on SRK
EOS root finding example
a) G(z) (black); b) Cycles (red)

Table 9. Linear convergence of dogleg strategy to a singular point

Iteration z FTF

0 0.90 2.88878 � 10�2

1 0.714303 2.72673 � 10�3

2 0.579498 3.35612 � 10�4

3 0.442515 1.27398 � 10�4
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Line searching shows essentially the same
behavior and can get trapped at singular points
(local minima of FTF).

Complex Domain Newton’s Method. Pure
Newton’s method in the complex domain con-
verges easily to either root for this example and
avoids many of the pitfalls of other fixed-point
methods. That is, from an initial estimate of z¼
0.05 þ 0.05i, complex domain Newton’s meth-
od converges to the liquid root in 4 iterations.
From z ¼ 0.9 þ 0.05i, complex domain New-
ton’s method converges to the vapor-like root in
9 iterations. Both computations are shown in
Table 10 and show quadratic convergence. Note
that Table 10 also shows that complex domain
Newton’s method does not guarantee iterative
norm reduction. See iterations 3, 4, and 5 for the
vapor-like root computation. However, com-
plex domain Newton’ method can be combined
with a complex domain version of the dogleg
strategy to provide iterative norm reduction
[46].

More detailed and exotic behavior of New-
ton’s method on equations of state, dew point
temperature calculations, and simple process
flowsheet examples can be found in [69, 58].

Direct Substitution. This example can also
be used to illustrate the behavior of direct
substitution. Equation (35) has several different
rearrangements in the form of Equation (14).
The simplest one is given by

z ¼ GðzÞ ¼ ð�z3þz2þ0:00578644Þ=0:2852783 ð36Þ

Moreover, there is only one real root, the
liquid root and G0(z) ¼ �3z2 þ 2z ¼ 0 at z ¼ 0
and z ¼ 2/3. Thus nonconvergent behavior
can be checked by simply initializing direct

substitution at z ¼ 0 and z ¼ 2/3. Using these
two starting points, direct substitution con-
verges linearly to the liquid root; thus periodic
or chaotic behavior of direct substitution cannot
occur on this example for the given conditions
and this is rigorously guaranteed by the theo-
rems in [64, 65].

3.3.5. Two-Dimensional Nonadiabatic
Continuous Stirred Tank Reactor

Mass and energy balance equations comprise
part of most process simulation models. This
example shows that the behavior of various
fixed-point methods on a seemingly simple
continuous stirred tank reactor (CSTR) example
can be quite complicated [19, 70]. The process
model equations for this example are given by

F1ðX;TÞ ¼ Xð1þukÞ�uk ¼ 0 ð37Þ

F2ðX;TÞ ¼ ½rCpðT0�TÞþðUA=FÞðTc�TÞ�=CA0�XDHR ¼ 0

ð38Þ

where X denotes the unknown conversion of
species A, the residence time, u, is given by
u ¼ V/F, V is the reactor volume, and F is the
volumetric flow rate through the reactor. The
rate constant, k, is defined by k¼ k0 exp(�E/RT)
where k0 is the preexponential factor, E is the
activation energy, R is the gas constant, and T is
the unknown temperature of the reactor. Also, r
is the fluid density,Cp is the specific heat,U is an
overall heat transfer coefficient, A is the heat
transfer area, and DHR is the heat of reaction.
CA0 is the feed concentration for component A
and T0 and Tc represent the feed and cooling
water temperatures, respectively. Note that
the second term in the middle portion of

Table 10. Convergence of complex domain Newton’s method

Iteration zliq FTF zvap FTF

0 0.05 þ 0.05i 1.58205 � 10�4 0.9 þ 0.05i 2.95440 � 10�2

1 0.0327 � 0.0092i 1.10212 � 10�5 0.7145 þ 0.0344i 2.77365 � 10�3

2 0.0218 þ 0.0008i 4.0692 � 10�8 0.5804 þ 0.0272i 3.33945 � 10�4

3 0.0219 þ 5.5x10�7i 4.14476 � 10�13 0.4495 þ 0.0395i 1.14028 � 10�4

4 0.0219 � 1.1x10�11i 4.31038 � 10�23 0.6037 þ 0.3586i 7.00872 � 10�3

5 0.5346 þ 0.2426i 4.89116 � 10�4

6 0.5005 þ 0.1801i 1.97195 � 10�5

7 0.4900 þ 0.1593i 1.49785 � 10�7

8 0.4890 þ 0.1570i 1.60275 � 10�11

9 0.4890 þ 1.570i 1.96720 � 10�19
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Equation (38) allows for both adiabatic and
nonadiabatic operation of the reactor and it is
nonadiabatic operation that gives rise to isola.
The bounds on conversion and reactor temper-
ature were 0 � X � 1 and 298 � T � 450. The
data for this problem is given in Table 11.

Parametric behavior of conversion as a func-
tion of Damköhler number, Da¼ uk0, is shown
in Figure 7 and indicates the presence of two
disconnected solution branches – an isola and a
monotonic solution curve. The isola exists for
0.01 � Da � 0.075.

Numerical results are described for various
fixed-point methods for Da ¼ 0.0497, which is
in the regionwhere three disconnected solutions
lie. Table 12 shows the solutions.

Newton’s Method. Because this example
has multiple solutions, multiple starting points

are required for Newton’s method and the solu-
tion found, will depend on the starting point.
Newton’s method has no difficulties on this
example and converges quadratically, as illus-
trated in Table 13 from a starting point of
X ¼ 0.1 and T ¼ 370.0 K. Convergence was
assumed when FTF � 10�12.

Newton’s Method with Stabilization. Sta-
bilization or iterative norm reduction can en-
large the domain of attraction at the expense of
slightly more iterations.

Continuation Methods. One interesting as-
pect of this example is the disconnected nature
of the solutions in Damköhler number, which
can present difficulties for parametric continu-
ation. That is, if the first solution found lies on
the monotonic curve, then simple parametric
continuation will find not find solutions on the
isola. This is illustrated in Table 14 using an
initial Damköhler number of Da ¼ 0.1 and
taking fixed steps of DDa ¼ �0.02 in order to
move from one solution to the next. The starting
point for Da ¼ 0.1 was (X, T) ¼ (0.1, 300 K).

Table 11. Parameters and initial conditions for nonadiabatic CSTR

Quantity Value

r, mol/cm3 1.0 � 106

Cp, J mol�1 K�1 4.18399

CA0, mol/cm3 3.0 � 103

k0, s
�1 4.48 � 106

DH, J/mol �1.7638389 � 105

T0, K 298.0

q, s 1111.11

UA, J s�1 K�1 2.2457979 � 1011

E, J/mol 6.275916 � 104

Tc, K 298.0

R, J mol�1 K�1 8.314

Figure 7. Bifurcation diagram for nonadiabatic CSTR
showing two disconnected solution branches
a) Isola solution curve; b) Monotonic solution curve

Table 12. Solutions to nonadiabatic CSTR

Solution (X, T)

1 (0.075726, 303.999 K)

2 (0.524595, 339.560 K)

3 (0.826585, 363.484 K)

Table 13. Numerical results for Newton’s method for nonadiabatic

CSTR

Iteration (X, T) FTF

0 (0.1, 370.0 K) 2.03534 � 1010

1 (0.923113, 371.131 K) 1.30261 � 10�1

2 (0.861550, 366.254 K) 7.99182 � 10�3

3 (0.832997, 363.992 K) 1.84112 � 10�4

4 (0.826846, 363.505 K) 2.80288 � 10�7

5 (0.826585, 363.484 K) 1.55207 � 10�13

Table 14. Continuation method solutions for nonadiabatic CSTR

Da (X, T) Iterations

0.1 (0.216044, 310.416 K) 6

0.08 (0.152287, 307.824 K) 3

0.06 (0.098890, 305.270 K) 4

0.0497 (0.075726, 303.999 K) 4
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Note that at Da ¼ 0.1, the only solution that
exists lies on the monotonic curve in Figure 7.
Thus parametric continuation would fail to find
all solutions and is not always a good strategy
for resolving issues of solution multiplicity.
However, all solutions are connected along a
simple essentially linear path in variable space
(X and T) and are easily determined using the
terrain method [54].

Direct Substitution. Equations (37) and (38)
are easily rearranged into a natural direct sub-
stitution iteration, as shown below

Xkþ1 ¼ uk=ð1þukÞ ð39Þ

Tkþ1 ¼ f�XCA0DHRþ½rCpT0þðUA=FÞTc�g=½rCpþðUA=FÞ�
¼ GðXk ;TkÞ

ð40Þ

The Jacobian matrix of G(X, T) is

G0ðX; TÞ¼ 0 uðqk=qTÞ=ð1þ ukÞ2
�CA0DHR=½rCp þ ðUA=FÞ� 0

 !

ð41Þ

The spectral radius, r[G0(X, T)] controls the
convergence of direct substitution. However,
the behavior of direct substitution can be either
convergent or periodic depending solely on the
starting point. For example, for Da ¼ 0.0497
and any starting point near the low temperature
(solution 1) or high temperature (solution 3)
solution shown in Table 12, direct substitution
converges easily to the nearby solution. How-
ever, initial estimates in the neighborhood of the
middle solution behave periodically, converg-
ing to a stable 2-cycle. To illustrate this, the

initial estimate (X,T)¼ (0.5, 340.0 K) is chosen.
Table 15 shows the resulting 2-cycle.

Note that direct substitution immediately
exhibits spiraling behavior and eventually con-
verges to a stable 2-cycle with cycle points that
are a cross between the high and low tempera-
ture solution. That is, the cycle points are
(0.075726, 363.484 K) and (0.826585,
303.999 K).

Interval Methods. Interval methods are ca-
pable of finding all solutions to this nonadiabatic
CSTR example since it is straightforward to
divide the two-dimensional space (X, T) into
a tractable number of subdomains and fathom
those subdomains that are guaranteed not to
contain a solution. The remaining subdomains
can be iteratively divided and subdivided do-
mains guaranteed to contain a solution retained
until it is deemed safe to apply Newton’s meth-
od locally in each small subdomain containing a
solution.

4. Numerical Methods for Dynamic
Simulation

4.1. Introduction

The solution of most dynamic models involves
numerical approximations, since these models
are typically nonlinear in nature and difficult or
even impossible to solve by analytic means. A
wide range of numerical methods is available to
solve ordinary differential equations (ODEs) or
differential algebraic equation (DAEs) systems
that result from the modeling of ’’lumped’’
systems, where spatial variation in states is not
important. These systems are very common in
process modeling [71–82].

Typical process systems engineering (PSE)
applications that lead to lumped model systems
are given in Table 16.

Table 15. Stable two-cycle for direct substitution on nonadiabatic

CSTR

Iteration (X, T)

0 (0.5, 340.0)

1 (0.531769, 337.611)

2 (0.492541, 340.128)

3 (0.533849, 337.020)

4 (0.482747, 340.292)

5 (0.536523, 336.244)

6 0.469857, 340.504)

46 (0.075735, 362.812)

47 (0.821008, 303.999)

48 (0.075730, 363.042)

49 (0.822932, 303.999)

50 (0.075728, 363.194)

51 (0.824200, 303.999)

Table 16. PSE application areas and possible model forms

PSE application area Type of equation system

Reaction kinetics ODEs

Dynamics of distillation systems DAEs

Proportional-integral controller

simulations

ODEs

Process flowsheet dynamics DAEs

CSTR systems with complex reactions DAEs
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4.2. Ordinary Differential Equation
Models (ODEs)

The general form of the model is given by a set
of ODEs with initial values at time 0. They are
typically nonlinear in nature,

dy

dt
¼ y

0 ¼ f ðy; tÞ; yð0Þ ¼ y0 ð42Þ

where,

teð0; tf Þ; yeRn:

Here y is a vector of n real valued variables
and dy/dt is a set of n ODEs. The equations are
solved over the time range of 0 to tf.

There are numerous approximation methods
for the solution of these time varying systems,
starting with the simple Euler’s method, and
progressing to high accuracy methods for large
and difficult-to-solve systems. There are three
principal classes of modeling problems that
require the selection of appropriate numerical
methods:

1. Stable systems: where small perturbations in
initial conditions die out with time. Here all
the eigenvalues of the system have negative
real parts.

2. Unstable systems: where perturbations lead
to solutions that can go toþ¥ or�¥ as time
proceeds. These systems have some or all
eigenvalues with positive real parts.

3. Ultrastable (‘‘stiff’’): where the eigenvalues
have a wide range of magnitudes but all have
negative real parts. Many orders of magni-
tude difference in the value of the real parts
are common in natural and process system
models.

The principal methods used to solve ODEs
can be classified on the basis of the step ar-
rangements and the form of the numerical ap-
proximation, as seen in Figure 8.

4.2.1. Basic Ideas for Solving ODE
Systems

Numerical methods for solving ODEs are based
on formulae that are essentially a polynomial
representation of the solution based on current
and/or past solution values and derivatives at
those values! Mathematics in Chemical Engi-
neering, Chap. 6. The general Taylor series ex-
pansionfory

0 ¼ f ðyÞandsteplengthh, isgivenby

yðtnþhÞ ¼ yðtnÞþh
dy

dt
jynþ

h2

2!

d2y

dt2
jynþ . . .

ynþ1 ¼ ynþhy
0
nþ

h2

2!
y
00
nþ . . .

ð43Þ

Numerical approximations are basically
different forms of Taylor series expansions.
The four main types of methods represented in
Figure 8 are:

Figure 8. Classification of solution methods for ODEs
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Single-Step Explicit Methods. These are
the simplest methods to construct and most
widely available. The simplest is Euler’s meth-
od which is given by the first two terms of the
Taylor series expansion,

ynþ1 ¼ ynþhy
0
n ¼ ynþhf ðynÞ ð44Þ

The solution proceeds from the initial con-
dition y0 by evaluating the ODE gradient as
f(y0), applying the formula to get the next value
y1, and so on.

Other more complex methods are repre-
sented by the Runge–Kutta family of techni-
ques. They evaluate solution gradients at other
intermediate points within the step from yn to
ynþ1. These techniques are very useful on a
range of stable models, but can be inefficient
and inappropriate on ultrastable or stiff
models.

Single-Step Implicit Methods. These tech-
niques are particularly useful for ultrastable or
stiff problems. This is because they have large
stability regions capable of handling models
with widely varying time constants and, hence,
large variations in the magnitude of the under-
lying eigenvalues. They include the unknown
solution value ynþ1 implicitly in the method
through its appearance in the derivative term f
(ynþ1). The simplest example is the backward
Euler method given by

ynþ1 ¼ ynþhf ðynþ1Þ ð45Þ

Because the method contains f ðynþ1Þ it is
necessary to iterate to get a converged estimate
for ynþ1. This is typically done using a Newton-
type iteration for the algebraic system. Other
methods such as the trapezoidal rule have a
similar form and are particularly powerful
methods. They require more work per step but
can solve stiff problems efficiently.

Multistep Explicit Methods. These repre-
sent a class of methods that use past solution
points and the gradients at those points to project
forward to the next solution value. The general
form of linear multistep method (LMM) is:

Xk
j¼0

ajynþj ¼ h
Xk
j¼0

bjfnþj n ¼ 0; 1; . . . ð46Þ

If bk ¼ 0, then the method is explicit. For
example if k ¼ 2:

ynþ2 ¼ �ða0ynþa1ynþ1Þþhðb0fnþb1fnþ1Þ ð47Þ

Knowing the past values yn, ynþ1 and gradi-
ents fn, fnþ1 the newvalue ynþ2 can be computed.
The formula is then applied again to advance the
step to ynþ3. TheAdams–Bashforthmethods are
of this form.

Multistep Implicit Methods. If in Equa-
tion (46) bk 6¼ 0 then the formula is implicit
and iteration of the equation is needed for the
solution of ynþk. Variants of Newton’s method
are commonly used for the solution. These ODE
techniques are called Adams–Moulton methods
and they perform better on ultrastable problems
than the Adams–Bashforth methods.

The most widely used implicit LMM is the
backward differentiation formulae (BDF),
which are implemented in variable order
form and have proved extremely popular and
successful for solving large-scale stiff
problems.

4.2.2. Differential Algebraic Equation
Models (DAEs)

When modeling process and natural systems to
capture time varying phenomena, often the
ODEs are accompanied by nonlinear algebraic
equations giving so-called differential algebraic
equations (DAEs)! Mathematics in Chemical
Engineering Section 6.5. The generic form of
these models can be written in semi-explicit
form as,

y0 ¼ fðy; z; tÞ
0 ¼ gðy; z; tÞ ð48Þ

with y(0) ¼ y0; z(0) ¼ z0 and t e (0, tf). This
constitutes a set of coupled equations which
requires special solution methods. Both differ-
ential (y) variables and algebraic (z) variables
can occur in both the differential and algebraic
equations, giving in some cases, a highly cou-
pled set of equations.

There are four potential approaches to tack-
ling these types ofmodels, where the techniques
are dependent on the structure and size of the
DAE set:

1. Substitute for the algebraic variables z in the
differential equations f(y,z,t) to generate a
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standard ODE set f(y,t), which is solved
directly using ODE numerical methods

2. Use explicit ODE solvers and solve the
algebraic system as a dependent subsystem.
This involves solving the algebraic subsys-
tem multiple times to progress across a time
step

3. Use an implicit solver to solve both systems
simultaneously

4. Exploit the algebraic equation structure to
generate a sequential solution method for all
or part of the algebraic system

Methods 1 and 2 have limited use. They can
be helpful for small systems, where it is possible
to express the algebraic variables z (z1, z2, . . .,
zn) in an explicit form as a function of the
differential variables y. Method 2 becomes un-
wieldy and time consuming for large and stiff
systems, due to the amount of work in repeat-
edly solving the algebraic systems.

The most promising techniques involve the
use of modified implicit integration methods
such as BDF, diagonally implicit Runge–Kutta
(DIRK) and backward Euler methods.

4.2.3. Implicit Simultaneous Solution of
DAEs

If an implicit numerical formula such as an
implicit Runge–Kutta method or the BDFmeth-
od is used, it has the generic implicit form per
step of

y ¼ wþhgfðyÞ ð49Þ

wherew is known or past solution information, y
is the next solution point, h is the steplength and
g is a constant.

Using such a generic implicit formula,
solved by a Newton-like method, its application
to the general DAE system gives the following
set of linear equations:

GðkÞ D yðkþ1Þ

Dzðkþ1Þ

� �
¼ �FðfðkÞ; zðkÞ; tÞ ð50Þ

where GðkÞ is a Jacobian matrix of partial deri-
vatives for the whole differential algebraic sys-
tem,

GðkÞ ¼
I�hg

qf
qy

�hg
qf
qz

�hg
qg
qy

�hg
qg
qz

2
664

3
775
ðkÞ

ð51Þ

I is the unit matrix, and the right-hand side
function F is given by

�F ¼ wþhgfðyðkÞ; zðkÞ; tÞ�yðkÞ

hggðyðkÞ; zðkÞ; tÞ
� �

ð52Þ

The solution estimate (y(k), z(k)) is updated at
each iteration within a step via the formula,

yðkþ1Þ ¼ yðkÞþD yðkþ1Þ

zðkþ1Þ ¼ zðkÞþDzðkþ1Þ ð53Þ

Where the values ofDy(kþ1) andDz(kþ1) come
from the converged Newton iteration of the
discretized DAE.

Hence, the solution proceeds in time by
solving a large set of nonlinear equations using
aNewton-like iteration to generate the estimates
of (y1, y2,. . ., ynþ1, z1, z2,. . ., znþ1). Numerous
computer codes exist to solve these systems.

4.2.4. Implicit or Explicit Structured
Solutions of DAEs

In many cases it is possible to take advantage of
the equation-variable structure in the algebraic
system to help reduce the solution complexity,
improve robustness, and reduce solution times.
In particular it is often possible to find a se-
quence of direct substitutions in the algebraic
subsystem that has the following structure,

z1 ¼ g1ðyÞ
z2 ¼ g2ðz1; yÞ

..

.

zn�1 ¼ gn�1ðz1; . . . ; zn�2; yÞ
zn ¼ gnðz1; . . . ; zn�1; yÞ

ð54Þ

In this case, due to the structural nature of the
algebraic system it has been possible to reorder
the equations into a sequential set of calcula-
tions which can then be followed by the ODE
solution

y
0 ¼ fðy; z; tÞ ð55Þ
since all the values of the algebraic variables, z
have been computed. To see if such a rearrange-
ment of the algebraic system can take place in
terms of known values of y and previously
computed values of z, well-known methods
using maximal transversal algorithms can be
used. Output assignments of variable zj to an
individual equation gl followed by partitioning
and precedence ordering can reduce algebraic
systems to structures like those previously
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shown, or at least reduce the maximum size of
the implicit DAE set for simultaneous solution.

4.2.5. High-Index DAE Problems

When it is possible to differentiate once the
algebraic subsystem of a DAE set to generate
a set of ODEs, then the DAE set is known as an
‘‘index 1’’ problem. These are readily solved by
standardDAE solvers such as those inMatlab or
in larger simulation systems.

When the first differentiation does not lead to
a complete set of ODEs, then the original prob-
lem is ’’high-index’’, and these are particularly
difficult to solve. They require either index
reduction methods or in the case of index 2
systems there are specialized codes to treat this
problem.

Another key issue with the solution of
DAE systems is the generation of ’’consistent
initial conditions’’, where the initial values of
(y0, z0) must satisfy the original DAEs and
the time differentials. In the case of index 1
problems, the values of the differential vari-
ables y0, can be set and the values z0 can then
be computed by solving the algebraic equa-
tions, g(y0, z0, 0) ¼ 0.

For high-index systems, we know that the
matrix of partial derivatives qg

qz is singular and
there are other constraints between differential
variables which mean the variables y0 cannot be
arbitrarily specified. Algorithms, such as devel-
oped by [10] can help find those additional
constraints to enable consistent initial condi-
tions to be established.

4.2.6. Challenges and Opportunities in
Dynamic Modeling and Solution

There is now a plethora of modeling, solution,
and simulation environments that are focused
on providing efficient modeling and solution of
large complex ODE and DAE systems. The big
challenge still remains as to how multiscale
models can be easily formulated, integrated,
and solved. The main solvers for routine solu-
tion of ODE and DAE systems have been used
for over 30 years. Some variants have appeared
and some new developments around the use of
wavelets have occurred.

Other work has concentrated on issues of
parallelization of codes to exploit the availabil-
ity of new, cheap hardware and clusters of
machines. Issues around the creation of adaptive
numerical techniques have had some develop-
ments, but new ideas that can help generate
more efficient solutions for large, complex pro-
blems through adaptive methods could be ad-
vantageous. The development of good diagnos-
tic tools to aid the diagnosis of solution failures
is one important area that can aid the novice
user.

Many of these initial value problem numeri-
cal methods are routinely implemented in com-
mercial systems such as Matlab, flowsheet si-
mulators such as Aspen Plus, or modeling and
simulation tools such as gPROMS or ICAS-
MoT.

As well as embedded solvers in simulation
software, there are also standalone solvers such
as DASSL/DASPK which implement forms of
the BDF methods. Codes such as Radau5 or
DIRK codes implement various forms of im-
plicit or semi-implicit Runge–Kutta methods.

5. Numerical Methods for
Distributed Model Simulation

5.1. Introduction

The term ‘‘distributed’’ refers to models that
capture the spatial variation in the states of the
system beingmodeled. The spatial variation can
occur in one, two, or three dimensions. These
models are represented by some form of partial
differential equation system, and as such require
special numerical procedures for their solution.
The numerical methods are often based on
underlying methods that solve ordinary differ-
ential equation models, which in turn use alge-
braic equation solvers [83–97].

These distributed models capture not only
time varying behavior but also the spatial vari-
ation of key system states such as velocities,
pressures, temperatures, and concentrations in
up to three dimensions (3-D). For the simpler
2-D system representing the state f, the generic
partial differential equation (PDE) model !
Mathematics in Chemical Engineering, Chap.
8 is valid
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Lf ¼ A
q2f
qx2

þ2B
q2f
qxqy

þC
q2f
qy2

þD x; y;f;
qf
qx

;
qf
qy

� �
ð56Þ

where, A, B, C are coefficients that can be
functions of x and y. The variable L is an
operator such as q

qt and the model can be linear
or nonlinear depending on the coefficients. The
function D can also be nonlinear. By consider-
ing the form of the operator L, it is clear that the
generic form could be time varying or represent
a steady-state condition.

It is possible to identify threemajor classes of
equation types, namely

1. Elliptic problems: which are associated
with steady-state models. A typical exam-
ple is the well-known Laplace equation
given by:

q2f
qx2

þ q2f
qy2

¼ 0

2. Parabolic problems: which are associated
with time varying models over 1 or more
spatial dimensions. A typical examplewould
be time varying heat transfer in a 1-D solid
body given by:

qT
qt

¼/ q2T
qx2

3. Hyperbolic problems: associated with dis-
continuities and shock wave phenomena. A
typical example is given by the ‘‘wave equa-
tion’’:

q2u
qt2

¼ b
q2T
qx2

PDEs that set the state of the system at time t
¼ 0, require initial and boundary conditions.
These boundary conditions take several forms
including,

1. Dirichlet conditions, where the value of the
state is fixed. That is,

fð0Þ ¼ g1

whichmight represent a fixed temperature or
concentration on a boundary point (x ¼ 0)

2. Neumann conditions, where the normal de-
rivative at the boundary is set. That is,

qf
qn

¼ gðx; yÞ:

this might represent a flux across a boundary
in a heat- or mass-transfer application

3. Robin or 3rd kind condition, where both state
and derivative are included. That is,

aðx; yÞfþbðx; yÞ qf
qn

¼ gðx; yÞ:

this type of condition might represent a convec-
tive flux at a boundary.

Typical process systems engineering (PSE)
application areas that lead to a variety of dis-
tributed model forms are shown in Table 17.

5.2. General Approaches to Solving
Distributed System Models

There are several important and widely used
methods for solving these systems which
include,

1. Finite difference methods (FDM) that re-
place each term (spatial and time) in the
original governing equation with discrete
approximations defined on a grid that covers
the spatial domain. It is a point-wise approx-
imation. FDM can be applied to all types of
PDE problems. Application of FDM to PDEs
produces large sets of algebraic or differen-
tial equations

Table 17. PSE distributed application areas and equation forms

PSE application area Type of equation system

Steady-state heat transfer in process equipment elliptic PDEs in 1-, 2-, or 3-D

Time varying diffusion and reaction in a solid catalyst parabolic PDEs in spherical or cylindrical coordinates

Counter-current heat exchangers parabolic 1-, 2-D PDEs

Granulation modeling parabolic, integral PDEs

Explosion simulation parabolic PDEs in 3-D

Separation and reaction engineering hyperbolic PDEs
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2. Method of lines (MOL) which only replaces
the spatial derivatives and not time deriva-
tives with finite difference approximations,
thus generating sets of ODEs

3. Method of weighted residuals (MOWR) that
replace spatial terms with polynomial ap-
proximations thus generating large sets of
ODEs to be solved

4. Finite element methods (FEM), provides an
element-wise approximation to the govern-
ing equations that handles complex geome-
tries far more easily than FDM. These are
powerful methods that have wide utility in
computational fluid dynamics (CFD) codes.
Various forms of approximation functions in
each element can be defined that typically
include linear, quadratic, and higher order
polynomials. The approximate solution over
the whole domain (x, y, z) is the sum over all
the element approximations making up the
domain. That is fðx; yÞ ¼Pe f

ðeÞðx; yÞ

In what follows the nature of the main nu-
merical methods for distributed system models
is briefly outlined.

Finite Difference Methods (FDM). These
are the oldest and most widely used methods for
the numerical solution of PDEs. A grid is estab-
lished that covers the domain of interest and the
approximation to the solution is defined at the
grid-points. Each derivative term in the original
governing equation is replaced by a finite dif-
ference (FD) approximation of selected accura-
cy! Fluid Mechanics, Section 5.1. For elliptic
or steady-state models the resultant set of alge-
braic equations is then solved using standard
numerical approaches. If the original model is
linear, then so are the FD equations.

Finite difference approximations:
To solve the original distributed parameter

model, the various differential terms in the
model must be replaced by finite difference
approximations. This requires a grid to be es-
tablished over the domain of interest [a, b]. A
simple 1-D uniform grid is shown in Figure 9:

where:

xi ¼ aþiDx 0 � i � N ð57Þ

Dx ¼ ðb�aÞ=N

Using such a grid a range of derivatives in the
original PDE to different accuracies can be
approximated, such as:

1. First derivative, 1st order:
duðxiÞ
dx ffi uiþ1�ui

Dx þOðDxÞ (forward difference)

2. First derivative, 2nd order:
duðxiÞ
dx ffi uiþ1�ui�1

2Dx þOðDx2Þ (central difference)
3. Second derivative, 2nd order:

d2uðxiÞ
dx2 ffi uiþ1�2ui�ui�1

Dx2 þOðDx2Þ (central
difference)

For the simple application, consider the un-
steady diffusion equation in 1-D given by the
model:

qu
qt

¼ k
q2u
qx2

ð58Þ

with initial conditions uðx; 0Þ ¼ u0ðxÞ and
boundary conditions uð0; tÞ ¼ u0ðtÞ; uð1; tÞ ¼
u1ðtÞ.

A simple FDM for this problem gives:

ui; jþ1�ui; j
Dt

¼ k
uiþ1; j�2ui; jþui�1; j

Dx2

� �
ð59Þ

where ui;j is the approximate solution at grid-
point i (x¼ iDx) for time value j (t¼ jDt). This is
an explicit method because ui;jþ1, which is the
solution at the next time interval (jþ1), is only a
function of the previous time values (j).

Similar to the case of explicit solvers applied
to ordinary differential equations, explicit FD
methods have limited stability regions. Implicit
methods that have improved stability properties
can be constructed. These are part of the family
of Crank–Nicholson methods, which can range
from purely explicit methods, through semi-
implicit to fully implicit methods [94].

Method of Lines (MOL). The distinction
with this approach is that only the spatial terms

Figure 9. A uniform finite difference grid
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are discretized, leading to a set of ODEs, rather
than algebraic equations. Hence the unsteady
state diffusion equation becomes:

dui
dt

¼ k
uiþ1�2ui�ui�1

Dx2

� �
i ¼ 1; 2; . . .N ð60Þ

The initial values (ui(0), i ¼ 1(1)N) are
applied and standard ODE solvers are used to
solve the set of equations for ui as a function of
time.

Method of Weighted Residuals (MOWR).
The method of weighted residuals is a general
term describing the use of a ‘trial function’ or
some form of polynomial that is substituted into
the governing model equation to create a set of
‘residuals’ or errors at certain domain points or
across certain regions. Various weighting crite-
ria techniques are then used to fit the polynomial
so that the residuals areminimized. This leads to
such well-known methods as orthogonal collo-
cation, where the trial functions are drawn from
a set of orthogonal polynomials such as
Laguerre or Legendre.

The general procedure is:

1. Choose a trial function and then expand the
function to a certain number of terms

2. Fit the boundary conditions to the trial
function

3. Substitute the trail function into the govern-
ing equation and generate the ’’residuals’’

4. Minimize the residuals by using one of sev-
eral criteria which distribute the the error in
different ways. Approaches include: collo-
cation, Galerkin, least squares, subdomain,
or moments methods

For example a simple heat conduction prob-

lem such as: d
dx

cðTÞdT
dx

� �
¼ ð1þ / TÞ d2T

dx2
þ

/ dT
dx

� �2 ¼ 0 where c(T) ¼ 1 þ / T, and T(0)
¼ 0; T(1)¼ 1 gives the exact solution of T(x)¼
�1þH3xþ 1when/¼ 1. So, at x¼ 0.5,T(0.5)
¼ 0.5811.

The MOWR procedure is then:

1. Choose a simple trial function:
fN ¼Pi¼Nþ1

i¼0 cix
i, (a simple polynomial

expansion)
2. Fit the boundary conditions, meaning:

fN ¼ 0 implying c0 ¼ 0: fN ð0Þ ¼ 0

fN ð1Þ ¼ 1 implying
Xi¼Nþ1

i¼1

ci ¼ 1

3. Substituting this into the original trial func-
tion and rearranging gives a modified trial
function with coefficients Ai that already
incorporates the boundary conditions:

fN ¼ xþ
Xi¼N

i¼1

Ai ðxiþ1�xÞ

4. Using one collocation point (N ¼ 1), the
function and its derivatives can be generated
to give:

f1 ¼ xþA1ðx2�xÞ; f
0
1 ¼ 1þA1ð2x�1Þ; ft

00

1 ¼ 2A1;

which upon substitution into the governing
equation gives:

Rðx;f1Þ ¼ f1þ / ½xþA1ðx2�xÞ�g2A1þ / ½1þA1ð2x�1Þ�2

5. If we now choose x ¼ 0.5 and make the
residual ¼ 0 at that point, we find A1 ¼
�0.3166, giving the approximate solution
from the trial function as: f1 ¼ 0.3166 (x2

� x), which at x¼ 0.5 gives the approximate
solution of f1 ¼ 0.5795, compared with the
true value of 0.5811

This illustrates the general principles of
MOWR. There is a well-developed theory and
application of orthogonal collocation for a wide
range of PDE problems in the PSE literature,
and the reader is referred to [83–97].

Finite Element Methods (FEM). Finite
element methods (FEM) are often preferred
where complex geometries define the domain
of interest ! Mathematics in Chemical Engi-
neering, Section 7.3 and ! Fluid Mechanics,
Section 5.2. The solution is represented on an
‘‘element’’, which can be rectangular, triangu-
lar, or tetrahedral in shape, depending on the
original governing equation. The solution be-
havior on the element is represented by a poly-
nomial function which can be of low to high
order depending on accuracy requirements.
Hence, the FEM produces an ‘‘element-wise’’
solution rather than the ‘‘point-wise’’ solution
from a finite difference method [83, 97].

Figure 10 shows the distinction in theway the
FDM and FEM approaches approximate a so-
lution of a 2-D domain.
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As seen in Figure 10, the FEM establishes a
discretization based on element shapes such as
linear for 1-D and triangular for 2-D domains.
Special elements with curved sides allow easy
treatment of complex geometries. Each element
(e) has an approximation function wðeÞðx; yÞ
which has the property that outside of (e),

wðeÞðx; yÞ ¼ 0; e ¼ 1; . . . ;M ð61Þ

Hence, the approximate solution over the
whole of the domain is:

wðx; yÞ ¼
X
e

wðeÞðx; yÞ ð62Þ

The general steps in the finite element meth-
od are [83, 97]:

1. Discretize the continuum defining the do-
main of interest

2. Select the interpolation function for the
element

3. Formulate the element properties
4. Assemble the element equations to form the

system equations
5. Modify the equation set to account for the

boundary conditions
6. Solve an algebraic equation set for steady-

state problems
7. Solve a differential equation set for dynamic

problems

5.3. Population Balance Models
(PBMs)

The final important process systems applica-
tions that require consideration are population

balance models (PBMs)! Reaction Engineer-
ing inMetallurgical Processing, Section 3.4 and
! Liquid–Liquid Extraction, Section 2.5.2.
The super-structure of the general population
balance equation can be represented as:

q
qt
f ðx; r; tÞ ¼ rr�rr½Drf ðx; r; tÞ��rr�R_ f ðx; r; tÞ�rx� _Xf ðx; r; tÞ

þBcðx; r; tÞ�Dcðx; r; tÞþBbðx; r; tÞ�Dbðx; r; tÞ
ð63Þ

where f is the multivariant number density as a
function of properties and locations, r is the
external coordinate vector (also known as spa-
tial coordinate vector) for the determination of
particle locations, x is the internal coordinate
vector for the identification of particle proper-
ties, such as size, moisture content, and age, Dr

is the dispersion coefficient, R_ is the velocity
vector in the external coordinate systemX_ , is the
rate vector in the internal coordinate system, Bc

andDc are birth and death rates for coalescence,
respectively, Bb andDb are birth and death rates
for breakage, respectively.

Birth and death terms can be complex inte-
gral terms that require special kernels and nu-
meric treatment. There are also continuous and
batch applications within population balance
systems.

There are numerous approaches to the solu-
tion of such systems that include:

. Reduced order models that treat the spatial
variation as a series of lumped regions, thus
reducing the order and simplifying the nu-
merical solution

Figure 10. FDM and FEM characteristics
A) Finite difference grid and solution; B) Finite element discretization and solution
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. Reduced order approaches employing the
method of moments

. Discretization methods such as those pro-
posed by [87]

. Discretization methods that employ coarse
and fine grain discretizations on a flexible
grid, as proposed by [93]

. Wavelet based methods that can deal with
steep moving profiles proposed by [89, 90]

. Monte Carlo methods that are time driven or
event driven and applied to population bal-
ances with multiple internal coordinates

. Finite element discretization using two-tier
hierarchical solution strategies as proposed
by [88]

Whatever the approach, the selection of nu-
merical methods for the solution of such sys-
tems will require an understanding of the model
characteristics and what application areas are
being addressed.

Challenges and Opportunities in Distribut-
ed System Modeling and Solution The

challenges within the area of distributed system
modeling and solution relate to easy formulation
of problems and then the efficient application of
numerical tools to generate predictions. Some
modern environments such as COMSOLMulti-
physics and Matlab have provided powerful
environments to aidmodeling andsolution.Even
so, significantmultiscale system challenges con-
tinue to exist, especially in ease of problem
formulation and then subsequent solution across
multiple scales within the overall model.

Discontinuous behavior in distributed sys-
tems also presents significant challenges for
efficient numerical solution, and clearly oppor-
tunities for improved approaches to efficient
solution methods. The use of parallelized solu-
tion algorithms will continue to grow in order to
exploit the growth in current deployment of
cheap, multicore processors.

6. Parameter Uncertainty
Estimation in Numerical Modeling

6.1. Introduction

Models like empirical (linear regression, partial
least squares, neural-network) or a more

detailed first-principles model are the key ele-
ments of PSE describing systems (product and
process) performances at different temporal and
spatial scales.

Parameter estimation is an integral part of
model building (Fig. 11) [98–100] and can be
defined broadly as follows: ‘‘Given a model
structure and measurements about the system
in question, estimate all or some unknown
parameters of the model using an appropriate
statistical method’’.

Parameter estimation typically follows for-
mal identifiability analysis, which is concerned
with finding which parameters of the model can
uniquely be estimated from the available quality
and quantity of data [101, 102–99].

Parameter estimation methods comes partic-
ularly from two schools of thoughts that are
commonly used for this purpose are the
Frequentist’s and Bayesian approach.

The Frequentist’s approach such as maxi-
mum likelihood method (MLE) has been the
most commonly used technique to solve linear
and nonlinear regression-type parameter esti-
mation problems in research as well as practical
applications [104].

Bayesian analysis (or Bayesian Inference) on
the other hand is increasingly becoming popular
thanks to the advances in computational tech-
nology as well as solution algorithms that make
it feasible to calculate multidimensional inte-
grals of the Bayesian analysis. These solution
algorithms rely on Markov chain Monte Carlo
(MCMC) method, examples of which include
random walk Metropolis–Hasting algo-
rithm [105, 106], Gibbs sampling [107], impor-
tance sampling [108] and some hybrid methods
such as evolutionary programmingwithMCMC
methods such as differential evolution
(DE-MC) [109] and genetic algorithm (GA)
and adaptive algorithms [110]. These techni-
ques have increased the convergence of metrop-
olis algorithm thereby making it even more
feasible to apply Bayesian analysis for parame-
ter estimation.

6.2. Theory of ParameterUncertainty
Estimation

Let y be a vector of outputs resulting from a
dynamic model, f employing a parameter vec-
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tor, u:

yðuÞ ¼ f ðt; uÞ ð64Þ

In case the parameter values are unknown,
they can be estimated using a statistical proce-
dure from measurements that is ym. There are
two procedures that are used to this end namely
Frequentist versus Bayesian analysis.

In Frequentist approach, the model para-
meters are treated as fixed or constant, but their
corresponding estimators, û , are treated as ran-
dom variables. The latter is due to the fact that
the estimators depend on the measurement,
which is assumed a stochastic process. Hence,
measurement errors can be defined by a proba-
bility distribution, e.g., Gaussian white noise
has a normal distribution with zero mean and
unit standard deviation. As a result of stochastic
measurement, the estimators have a degree of
uncertainty typically defined by a confidence
interval (e.g., 95%) [104]. To be precise, the
uncertainty on the estimators can also stem from
poor-information content of the measured data
(i.e. quantity) on top of the quality (the mea-
surement error). This aspect is true for both
Frequentist and Bayesian approaches.

In Bayesian analysis, the model parameters
themselves are treated as random variables.
These random variables are then characterized
by a probability distribution function. The prob-
ability distribution of parameters reflects the
available information in the measurements,
which are updated following the Bayes’rule
(Section 6.2.2) as there are new measurements.
The Bayesian credibility interval is then derived
as quintile from the probability distribution of
the parameters, respectively.

6.2.1. Frequentist Approach

Maximum Likelihood Estimation. Maxi-
mum likelihood is a general method for finding
estimators û, from a given set of measurements,
ym. Assuming the measurements are normally
distributed with standard deviation, s, then the
likelihood function becomes:

Lðym; uÞ ¼
1

s
ffiffiffiffiffiffi
2p

p exp
ðym�yðuÞÞ2

2s2

 !
ð65Þ

The most likely estimate of u is found as
those parameter values that maximizes the

Figure 11. A systematic modeling framework applied in chemical engineering [100]: parameter estimation is part of model
identification which comprises steps 5–8
a) If performance not satisfying; b) Select most promising scenario for modeling goal; c) Nonsensitive parameter
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likelihood function:

û 	 arg max Lðym; uÞ ð66Þ

The solution to this problem setting (1.3) is
often found by discrete optimization techniques
such as, e.g., simplex, GAs, random search,
simulated annealing [102, 104].

Least Squares Method. This is a special
case of maximum likelihood method in which
the measurements are assumed independent
with white measurement errors having a known
standard deviation, sm (Gaussian). The likeli-
hood function becomes equivalent to minimiz-
ing the following loss (or objective) function, J
(u) [104]:

JðuÞ ¼
XN
i¼1

ðym;i�yiðuÞÞ2
s2
m

ð67Þ

Where ym,i stands for the ith measurement,
yi(u) stands for the ith model predictions, si,
stands for the standard deviation of the ith

measurements and N is the total number of
measurements. The solution to this objective
function is found by a minimization algorithm
(e.g., simplex or genetic):

û 	 arg max JðuÞ ð68Þ

Parameter Confidence Interval and Corre-
lation. The covariance matrix of estimators,

COV û, can be estimated using a linear approxi-
mation method where sensitivity functions are
calculated at u ¼ û [104, 108]:

COVðûÞ ¼ JðuÞ
N�M

qyT

qu
1

s

2

m

qy
qu

� ��1

ð69Þ

The 1-a confidence interval of the estimated
parameters is then obtained as follows:

û1�a ¼ û 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðCOV

p
ðûÞÞ�tðN�M;a=2Þ ð70Þ

Where t(N�M,a/2) is the upper a/2 quintile
of the t-distribution with N�M degrees of free-
dom, and diag represents the diagonal elements
of the covariancematrix of the parameters. Last,
the linear correlation between two estimators,
Rij, is given as:

Rij ¼
COVðûi; ûjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sûi
2sûj

2
q ð71Þ

Prediction Uncertainty. The confidence in-
terval of the predictions is calculated using the
covariance matrix of estimators. First, the co-
variance matrix of predictions is approximated
using linear error propagation as follows [108]:

COVðyÞ ¼ qy
qu

� �
�COVðûÞ� qy

qu

� �T

ð72Þ

Then the 1�a confidence interval of the
predictions, y, is given as:

y1�a ¼ y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðCOV

p
ðyÞÞ�tðN�M;a=2Þ ð73Þ

6.2.2. Bayesian Approach

In Bayesian analysis, the outputs of a determin-
istic model, y, from a given parameter values, u
takes the form ofPðymjuÞ. Simply this stands for
probability density of outputs given certain
parameter values. The posterior probability
density of parameters given measurements,
PðujyÞ, is then derived using Bayes theorem
which stipulates that posterior knowledge can
be derived from prior knowledge plus measure-
ments:

PðujyÞ ¼ PðyjuÞPðuÞ
PðyÞ ð74Þ

The term PðyjuÞ is the likelihood function of
u given y as provided above in Equation (73).
The prior knowledge about the parameters is
given by PðuÞ. In case of lack of knowledge
about prior distribution of parameters, nonin-
formative priors (e.g., uniform distribution with
wide upper and lower bounds) are used. The
probability density distribution of measure-
ments,PðyÞ, is equal to the normalizing constant
of the posterior probability density distribution,
PðujyÞ. It is independent of model parameters
and obtained by integrating out u:

PðyÞ ¼
Z

PðyjuÞPðuÞdu ð75Þ

Written in discrete form, Equation (75)
becomes:

PðyÞ ¼
X
i

PðyjuiÞPðuiÞ ð76Þ

ThePðujyÞ is often unknown and is subject to
estimation in the Bayesian analysis from a given
a priori knowledge and measurements. More-
over, depending on the dimension of parameters

38 Process Systems Engineering, 2. Modeling and Simulation



and the outputs of the model, it can easily
become a high-dimensional joint probability
distribution (multivariate distribution) which
makes is difficult to integrate. What is alterna-
tively done and easier to do is to sample from a
target density function, pðuÞ [106]. Hence, the
maximum a posteriori solution to _u is found by
maximizing a target density function:

û ¼ arg max pðuÞ ð77Þ
The solution to this problem is found by

MCMC sampling methods. To increase the
convergence of MCMC methods, optimization
techniques such as evolutionary algorithms
(e.g., GA, DE) has increasing being used.

Markov ChainMonte Carlo (MCMC) Sam-
pling. MCMC works by defining a Markov

chain over the parameter vector, u, which has
pðuÞ as its stationary distribution. A Markov
chain is a discrete-time stochastic process that
has MC elements (a set of states)
MC ¼ fX0;X1;X2; . . .Xt;Xtþ1; . . .XMCg. The
time evolution of a chain is determined by a
transition matrix, T, which has a dimension of
size juj � juj. Simply speaking it specifies the
probability of a variable, Xt, to transit from the
current state defined by ui to a new state defined
by, uj:

Tij ¼ PðXtþ1 ¼ ujjXt ¼ uiÞ ð78Þ
Construction of an appropriate transition

matrix is an important requirement for design-
ing an MCMC sampler. The transition matrix
employed in Metropolis–Hasting (MH) algo-
rithms [105, 106] reads as follows:

Tij 	
1; pðujÞ=pðuiÞ

pðujÞ
pðuiÞ otherwise

)(
ð79Þ

Another requirement of Markov chain is
ergodicity that is there must be a finite and
nonzero probability of transition from one state
to any other state. The target density function is
evaluated then for each hypothesis, in this case
for each ui and uj, and compared to one another.
For such a choice of transition matrix, in
Bayesian inference the normalizing constant,
PðyÞ, needs not to be known [107]. The MCMC
sampling is then done by simulating theMarkov
chain and thereby generating outputs, i.e. states.
Given an appropriate transition matrix (with
properties such as irreducible and aperiodic)

MCMC converges to a unique stationary distri-
bution. Hence, with sufficient simulation time
(e.g., infinite time) the Markov chain converges
to a probability density function, PðujyÞ provid-
ing thereby a solution to parameter estimation
problem within a Bayesian framework.

The rate of convergence,mix ofMCMC is an
important issue and depends on how new pro-
posals (or hypothesis) are generated as well as
the starting point, i.e., a priori knowledge. At
this point, experiences from optimization algo-
rithms are also valid (e.g., presence of local
minima, information content of data, the start-
ing point (i.e., prior knowledge), model
structure. The problem of slow mixing (conver-
gence) of MH algorithm prompted for generat-
ing new algorithms that combine in a useful way
the evolutionary algorithms with MCMC. Such
hybrid algorithms are called population-based
MCMC sampling and evolutionary MCMC
algorithms.

MCMC Algorithms. Proposal mechanism
together with an accept/reject rule forms
the transition matrix of the MCMC methods.
Typical MCMC methods consist of a three-
steps procedure to formulate the proposal
mechanism:

1. Initialize Markov chain(s)
2. Generate proposals for eachMarkov chain(s)
3. Accept/reject proposals

RandomWalkMetropolis (RWM). This is a
genericMCMC algorithmwhich samples target
function with M-dimensional density distribu-
tion (where M is number of parameters). It
generates proposals from noninformative mul-
tivariate normal distributions as follows:

1. Generate a new proposal:
the covariance matrix is given as Ŝ ¼ c2S
with S ¼ covpðXÞ the covariance matrix of
target distribution and c2 is an appropriate
scaling factor such that the acceptance prob-
ability is 0.23 for large M (number of para-
meters) and 0.44 for M ¼ 1.

Xp ¼ Xtþewhere e � Nð0; ŜÞ ð80Þ

2. Calculate Metropolis ratio:
where p(�) is the target density function
which is, e.g., likelihood function (seeEq. 65)
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a ¼ pðXpÞ
pðXtÞ ð81Þ

3. Accept proposal:
where U(0,1) stands for random uniform
distribution which provides an acceptance
probability min(1, a)

Xtþ1 ¼


Xp; if a � Uð0; 1Þ

Xt ; otherwise

Note that this proposal mechanism is used in
every simulation step of the Markov chain. In
case, one is simulating in parallel several chains
(K number), then it would be simply repeated
for each of the chain, i.e. do the steps 1–3 for
chain number 1, 2, 3. . .K.

Differential Evolution Markov Chain (DE-
MC) This particular algorithm combined

DE a variant of GA used in optimization
sciences with a generic MCMC method as ex-
plained above. This particular method aims at
enhancing the convergence rate of the MCMC
to the stationary distribution by making use of
information present in parallel Markov
chains [109]. An important note, however, is
that this algorithm is not an MCMC in itself on
the state level of a chain, but it is an MCMC on
the population level (i.e., considering the K
number of chains). The proposal mechanism of
the DE-MC, works as follows:

1. Generate a new proposals:XR1 and XR2 are
two randomly and exclusively chosen chains
amonga total ofK chains. g is a scaling factor,
which is advised as g�2:38=

ffiffiffiffiffi
M

p
such that

the acceptance probability after simulation
becomes 0.23 for largeM and 0.44 forM¼ 1.
e is a vector of numbers with size M drawn
from a symmetric distribution with low vari-
ance, e � U[�b,b] using b equal to 10�4.

Xp ¼ XtþgðXR1�XR2Þþe ð82Þ

2. Calculate Metropolis ratio:
where p(�) is the target density function
which is, e.g., likelihood function (seeEq. 65)

a ¼ pðXpÞ
pðXtÞ ð83Þ

3. Accept/reject proposal:
where U(0,1) stands for random uniform
distribution which provides an acceptance
probability min(1, a)

Xtþ1 ¼
Xp; if a � Uð0; 1Þ

Xt ; otherwise

(
ð84Þ

The only difference between RWM and
DE-MC is step 1 which is how new proposals
is generated. While MCMC considers only the
knowledge in the current state, the DE-MC
makes use of the knowledge in other parallel
Markov chains. By the simple proposal mecha-
nism, one doesn’t need to be concerned with
orientation and scaling of newproposals, theDE
term takes care of that [109]. Experiences with
DR-MC algorithm show mixed outcomes:
while in some cases in may provide faster
convergence to stationary distribution com-
paredwith RWMalgorithm, in some other cases
it actrally does not converge at all. Hence, it is a
good practice to use more than one sampling
methods when applying Bayesian inference for
parameter estimation.

6.2.3. Example: Estimation of Parame-
ters of Michaelis–Menten Kinetics

To illustrate the parameter estimation uncer-
tainty using Frequentist’s and Bayesian meth-
ods, a simple and known example from the field
of enzyme kinetics (Michaelis–Menten model)
is chosen:

v ¼ Vmax
S

SþKm
ð85Þ

Where, v, is the reaction rate, Vmax is the
maximum reaction rate and Km is Michaelis–
Menten constant (or alternatively enzyme affin-
ity for substrate). For this example, experimen-
tal data is generated by performing a simulation
with Michaelis–Menten model using some re-
alistic values ofVmax andKm (15mM/min and 50
mM, respectively) with a random measurement
error for initial rate measurements (standard
deviation equal to 0.75 mM/min).

For the Frequentist’s approach, the nonlinear
least squares algorithm implemented in Matlab
was used. For Bayesian approach, the adaptive
MH algorithm implementation in OpenBUGS
software [111] was used. The model fits to the
measurements were visually speaking rather
good (see Fig. 12). The estimated 95% confi-
dence intervals of the model predictions (model
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prediction uncertainty) also is found to be nar-
row. The parameter estimation statistics on the
other hand are shown in Table 18.

Both the Frequentist and the Bayesian meth-
ods provide good approximations to the true
mean values of the parameter of the model. The
standard deviations of the estimates are also
rather comparable to one another. When it
comes to computational efforts, as expected,
the Bayesian approaches requires a large num-
ber of samplings (the MCMC parameters were
as follows 10 Markov chains with 5000 Monte
Carlo runs which results in total 50000 model
evaluations). The corresponding CPU time for
this simple exercise were on the other hand
rather similar (5 s versus 20 s). These large
number of samples in Bayesian analysis, how-
ever, provided directly the posterior probability
density distribution for the model parameters
starting from noninformative priors, which are
shown in Figure 13. In the case of Frequentist’s

analysis, one does not know the probability
density distribution of the model parameters
but it is assumed to be normal distribution (more
accurately student-t distribution [104].

6.3. Frequentist Compared to
Bayesian Approach

Frequentist and Bayesian approaches are two
scientific theories underpinning the parameter
estimation in the field of process systems engi-
neering. The advantage of Bayesian approach is
that it provides the full characterization of the
uncertainty of the estimated parameters, while
Frequentist’s approach provide an approxima-
tion of the uncertainty. However, the
Frequentist’s approach such as the maximum
likelihood estimate (MLE) or its special case
nonlinear least squares methods has certainly
been the most commonly used method up to
now. This trend is set to change in favor of
Bayesian methods (such as MH algorithm) as
the limitation on the computationally demand-
ing methods eases with the increasing compu-
tational power. The data quality and quantity are
important aspects of parameter estimation qual-
ity (read as uncertainty), which is addressed by
design of experiments (DoE) methodolo-
gy [101]. The model structure uncertainty on
the other hand remains unaddressed by the
available methods, which requires further
research.

7. Simulation Tools

7.1. Introduction

Process modeling has always been an important
component of process design, from the

Figure 12. Model fit obtained with the parameter values
found in the nonlinear regression. The 95% confidence
intervals were calculated from Equation (73)
Circles: measurement; Solid line: model; Dashed lines: 95%
confidence

Table 18. Comparison of parameter estimation values obtained with Frequentist’s (nonlinear least squares) and Bayesian methods

(MH algorithm)

Parameter Frequentist, mean 
 Std* Bayesian, mean 
 Std* True**

Vmax 13.44 
 1.97 14.18 
 2.07 15

Km 45.89 
 10.01 46.62 
 14.25 50

Number iterations*** 171 50000

*Std ¼ Standard deviation.
**Values used to generate experimental data with a measurement error of 0.75 mM/min on the initial rate, v (see text).
***The number of iterations reported here depends on the initial values used at the start of the parameter estimation.
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conceptual synthesis of the process flowsheet, to
the detailed design of specialized processing
equipment such as advanced reaction and sepa-
ration devices, and the design of their control
systems. Recent years (after 2000) have wit-
nessed the model-based approach being extend-
ed to the design of complex products, such as
batteries, fuel cells, and drug delivery systems,
which can themselves be viewed as miniature
plants produced in very large numbers. Inevita-
bly, the modeling technology needed to fulfill
the demands posed by such a diverse range of
applications is very different from the standard
steady-state flowsheeting packages that served
the process industries so well in the past.

Mathematical process models are currently
employed, directly or indirectly, for almost all
aspects of plant design and operation. Model
usage covers the entire process lifecycle, from
designing the basic process itself to designing
the plant and its control system, training the
personnel who are responsible for operating it,
and detecting and diagnosing faults in its
operation. Most early implementations of mod-
el-based techniques provided their own me-
chanisms for describing the underlying process
models. Indeed, in some cases, the technique
was inextricably intertwined with the model.
For example, steady-state flowsheeting

packages based on the sequential modular ap-
proach, in which a model of each unit operation
was coupled with mathematical solution meth-
ods for calculating the output streams of the unit
given its inputs. Two factors which have in-
creasingly been providing strong incentives for
moving away from this strong coupling between
applications on one hand and process models on
the other are:

. The cost of developing and validating any
nontrivial process model which can be quite
substantial

. The difficulty and cost of developing sophis-
ticated model building tools

Therefore, multipurpose process modeling
environments have to be considered, that is
software tools which support the construction
and maintenance of models irrespective of the
application for which the latter are used. Of
course, models on their own are of limited use,
and practical implementations of modeling en-
vironments also support a number of applica-
tions such as various types of simulation and
optimization.

Traditionally process modeling has concen-
trated on describing the behavior of process
plants in terms of the physical, chemical, and

Figure 13. Posterior probability density distribution of model parameters (C and D) obtained by Bayesian approach starting
from noninformative priors (A and B)
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biological phenomena that take place in them. It
should, however, be recognized that the behav-
ior and the performance of any process under
both normal and abnormal conditions are deter-
mined not only by the physical characteristics of
the plant, but also by the operating procedures
and control mechanisms employed for its oper-
ation. The primary purpose of modeling tools is
to facilitate the construction of mathematical
models of the processes under consideration.
The mathematical description of the physical
behavior of process plant can be quite varied, its
complexity depending on factors such as the
nature of the applications for which the model
will be employed, the degree of simplification
that might be acceptable, and the capabilities of
the available solution techniques and computer
hardware. Thus, the study of the transient be-
havior of most processes requires the introduc-
tion of differential equations describing the
variation of system properties with time (Sec-
tion 2.3). If, in addition to temporal variations,
the spatial variation of properties within the
plant equipment is also considered to be impor-
tant, then the model will have to introduce
partial differential equations used to describe
such distributed systems. On the other hand, if
spatial variations are negligible, then a lumped
system approximation based on ordinary differ-
ential equations (ODEs) ! Mathematics in
Chemical Engineering, Chap. 6 and Section 2.3)
may be sufficient. The need for partial differen-
tial equations also arises in modeling processes
in which some system properties are character-
ized in terms of distributions (e.g., chain length
distributions in polymerization, or crystal size
distributions in crystallization). In all cases, it is
quite likely that the model will also involve a
number of algebraic constraints; these are often
used to describe phenomena that operate on
(relatively) much shorter time scales.

Another important aspect of process design
and operation that has been receiving increasing
attention in recent years is that of the study of the
effects of process uncertainty, and methods for
dealing with it see Section 2.5. It is therefore
highly desirable that process modeling tools be
capable of describing uncertainty both in the
underlying physical plant behavior and in the
operating procedures applied to the plant.

It could well be argued that any software tool
which covers, at least partially, the scope of

problems described is a process modeling tool.
This would allow the term to be applied, for
instance, to conventional steady-state flow-
sheeting packages in which plant models are
built from a library ofmodels of unit operations.
It would also encompass general-purpose alge-
braic modeling languages (e.g., GAMS), con-
tinuous system simulation languages (e.g.,
ACSL), and many rule-based systems – as well
as the derivatives of all of these adapted specifi-
cally for process applications. A formal defini-
tion for a process modeling tool is rather
difficult to produce and one based merely on
strict functional capabilities would probably be
toowide to be useful. Instead, the extent towhich
different software tools support the process
modeling activity have to be considered. This
includes the ease of use of the tools and the
complexity of process that they can handle with
reasonable effort. Therefore, the focuswill be on
software that supports the high level declarative
definition of mathematical models of complex
processes, as well as the construction of models
of novel unit operations from first principles.

7.2. Well-Known General-Purpose
Process Simulation Software
Platforms and Applications

Since the mid-20th century, process simulation
software was developed for research and devel-
opment. In 1958 theM.W. Kellogg Inc. (United
States) launched the world’s first chemical pro-
cess simulation program ‘‘Flexible Flowsheet-
ing’’. After several decades of development
process simulators reached a professional and
commercial level including well-known pro-
ducts such as, e.g., Aspen Plus, HYSYS,
PRO/II, gPROMS, ChemCad, Design II, Pro-
Sim, DynSim, Aspen Dynamics, ECSS.

Aspen Plus. is a large general-purpose
process simulation tool from AspenTech
company’s products (United States) which can
help engineers to easily build large-scale flow-
sheets, implement several operating procedure,
perform detailed design studies, optimize
the operation of industrial plants, and
perform a number of model-based engineering
applications.

Process Systems Engineering, 2. Modeling and Simulation 43



Aspen Dynamics is a product of Aspen-
Tech. It is built on mature technologies, includ-
ing complete set of unit operations and control
model library. Batch process, semi-batch pro-
cess and continuous process can be easily mod-
eled using open and user-oriented modeling
capabilities. The tool is integrated with proper-
ties plus to make accurate and reliable calcula-
tion of thermophysical properties, and steady-
state simulation based on exactly the same basis.
Aspen Dynamics can be easily used in the
engineering design and operation of the entire
process flowsheet, simulation of the dynamic
characteristics of individual equipment thereby
enhancing operating flexibility in the plant,
ensuring production security, and investigate
ways to increase capacity.

HYSYS was originally a product of Hypro-
tech company (Canada) which was acquired in
2002 by AspenTech. HYSYS is well-known for
its capabilities to perform, e.g., safety analysis of
industrial installations, implement control tools,
perform analysis of the operation of equipment
identify production bottlenecks, determine safe
start-upprocedures, implement batch production
safety issues, perform dynamic studies.

PRO/II is originally a product from the
SimSci company (United States) and is current-
ly owned by Invensys SimSci-Esscor Company
(United States). PRO/II is a chemical process
simulation tool, and can be widely used in a
variety of petrochemical processes to perform
rigorous mass and energy balance calculations,
from the oil and gas separation to reactive
distillation. PRO/II provides a comprehensive,
effective, and user-friendly solution to these
problems. It can be also used to perform, e.g.,
steady-state simulation, physical properties cal-
culation, equipment design, cost estimation/
economic evaluation, environmental impact
assessment calculations. The tools can simulate
the entire production plant, including, e.g.,
pipes, valves to almost all the common unit
operations in oil and gas processing, oil refining,
chemical, polymers, fine chemicals, and
pharmaceuticals.

gPROMS. Process Systems Enterprise Ltd
(United Kingdom) has developed a general
process simulation tool, gPROMS (general pro-

cess modeling systems) which is characterized
by the equation-based model building of any
complex process. gPROMS features model
equation editing, allows users to modify and
enhance high-fidelity models. It can be used to
design any new process research and develop-
ment as it illustrates unique capabilities of
experimental design, parameter estimation, sta-
tistical analysis of data, and advanced optimi-
zation techniques. The tool is particularly ap-
plicable to dynamic process modeling as well as
to distributed models. gPROMS can facilitate,
e.g., the establishment of simulation training
systems for production plants based on opera-
tors training, process control, safety analysis. It
has has been widely used in the chemical indus-
try, petrochemical, oil and gas processing, pulp
and paper, food industry, pharmaceutical and
biological processing industries.

ChemCad is a modeling tool of Chemsta-
tions (Germany) originally developed more
than 30 years ago. Chemcad combines a
state-of-the-art graphical user interface (GUI),
an extensive chemical component database, a
large library of thermodynamic data, and a
library of the most common unit operations to
give users the ability to provide significant and
measurable returns on their investment. In ad-
dition, the program is customizable to allow
custom chemicals, thermodynamics, unit opera-
tions, calculations, and reporting all ingredients
for a powerful user experience.

Design II is a product of the WinSim Inc.
(United States). After nearly 30 years of de-
velopment and improvement, Design II pro-
cess simulation has become a pioneer of spe-
cific applications. Many Design II innovations,
such as online Fortran and strict tower calcula-
tions have established a process simulation
standards.

ProSim. ProSim company is headquartered
in France to provide simulation and optimiza-
tion software to enhance industrial productivity
and return on investment for different sectors,
e.g., such as chemical, oil refining, gas proces-
sing and specialty chemical industries, as well
as the pharmaceutical, food, energy.

Among the above commercial general-
purpose process simulation tool the most
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widely used by industrial and academic users
are PRO/II, Aspen Plus, HYSYS, and
gPROMS.

The historical background of these tools, the
unit operations model library, physical property
systems, and other characteristics are summa-
rized in Table 19.

7.3. Main Features of General-
Purpose Process Simulation Software

7.3.1. Aspen Plus

Physical Properties Methods and Data.
Aspen Plus includes a large database of pure

Table 19. Basic capabilities of world-known process simulation tools

Software name gPROMS Aspen Plus HYSYS PRO/II

Historical background developed as a spin-off

product from Imperial

College London

(United Kingdom)

originally developed at

MIT in 1981 (United

States)

developed byHyproTech,

(Canada)

developed by Simulation

Science (United States)

Version of the product (in

2011)

PSE’s V. 3.0 AspenTech Company

V.2004

HONEYWELL/

AspenTech Inc.

V. 3.2

Invensys SimSci-Esscor

V.8.2

Representative unit operations model library

Three-phase flash available available available available

Multi-stage separation

tower model

available available available available

Reactor models available available available available

Solid handling available available available available

User –added modules available available available available

CAPE-OPEN modules available available available available

Physical property

calculations

available gPROMS-

based, gSAFT, OLI,

DIPPR

wide range of property

models

wide range of property

models

wide range of property

models

Databases more than 2300

components

about 5900 components;

equation of state

interaction parameters

more than 2000

components; equation

of state interaction

parameters

more than 2000

components equation

of state interaction

parameters

Capabilities VLE, LLE, SLE,

multiphase systems;

solids handling; user’s

own physical property

data

VLE, LLE, SLE,

multiphase systems;

solids handling; user’s

own physical property

data

VLE, LLE, SLE,

multiphase systems;

solids handling; user’s

own physical property

data

VLE, LLE, SLE,

multiphase systems;

solids handling; user’s

own physical property

data

Electrolyte system available available available available

Model parameter regres-

sion options

no no no no

External property models

(Cape-open, user –added)

yes yes yes yes

Representative specific

process models

gas–liquid contactors,

fixed-bed reactors,

solution

crystallization,

polymerization, fuel

cells, bioprocesses,

flare systems, gas

separation processes

heat-exchanger systems,

adsorption processes,

distillation sequences,

rate-based distillation

models, reactor

systems, batch

distillation,

chromatographic

separation systems,

fired heaters, flare

systems, polymer

processes

refinery-specific modules

including FCC models,

catalytic reforming

reaction model,

isomerization reactors,

alkylation reactors,

hydrocracking reactor,

hydrogenation

refining/reactors

distillation processes;

reactors, pumps,

compressors,

heat exchangers,

heavy-oil processing

units, crude preheating

systems, FCCmain and

coker fractionator

systems, polymerization

processes, electrolytes,

liquid–liquid

extraction processes,

phenol solids handling,

cascade refrigeration,

compressor trains

Optimization

capabilities

available available available available

Economic calculations available available partially available for specific unit operations

(suchasheatexchanger)

Dynamic simulation

capabilities

available Aspen Dynamics

Connection

available using the Dynsim tool
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component and phase equilibrium data for con-
ventional chemicals, electrolytes, solids, and
polymers. Regularly updated data from the Na-
tional Institute of Standards and Technology
(NIST) (United States) ensures easy access to the
best available experimental property data, en-
abling process engineers to savemonths of effort
when developing chemical process models.

Improved Conceptual Design Workflow.
Aspen Plus has been tightly integrated with
AspenTech’s cost analysis software and heat
exchanger design software. Process engineers
can rapidly estimate the relative costs of pro-
posed designs and make decisions based on
capital and operating cost estimates using prov-
en cost modeling technology. Key equipment
such as heat exchangers and distillation col-
umns can be rigorously sized or rated from
within the simulation environment. The tight
integration of design and costing software with
process simulation eliminates costly manual
iterations and promotes more optimal designs
based on rigorous cost estimates.

Scalability for Large and Complex Process-
es. Aspen Plus’s features an equation ori-

ented modeling capability and hierarchical flow
sheeting lets the engineer to simulate even the
most large scale and complex processes; even
highly integrated processes with multiple re-
cycles. Customers can build models spanning
entire sites to find the globally optimal operating
conditions.

Online deployment of models as part of an
open-loop operator advisory system or in
closed-loop, real-time optimization/advanced
process control applications are allowed.

Comprehensive library of unit operation
models exists to address a wide range of

solid, liquid, and gas processing equipment. The
open architecture lets the engineers to build
their own libraries of unit operation models
with, e.g., Aspen Custom Modeler or program-
ming languages. CAPE-OPEN compliant mod-
els can be also be used with Aspen Plus.

Workflow Automation. Aspen Plus models
can be linked to Microsoft Excel using Aspen
simulation workbook or Visual Basic and used

to automate the engineering workflow and de-
ploy the model to a wider range of end users in
the field.

Links to Third-Party Tools. Aspen Plus
includes links to several well-known tools in-
cluding theOLI’s electrolyte package andTech-
nip’s SPYRO ethylene cracker models.

7.3.2. Aspen Plus Dynamics

To enhance the value ofAspen Plus the software
Aspen Plus Dynamics is used for safety and
controllability studies, sizing relief valves, op-
timizing transition, start-up, and shutdown
policies.

Aspen rate-based distillation improves the
rigor and accuracy of the distillation models
using proven rate-based technology.

Aspen batch distillation is a dynamic batch
distillation modeling tool that can be run stand-
alone or inside an Aspen Plus flowsheet.

Aspen polymers extends Aspen Plus with a
complete set of polymer thermodynamicsmeth-
ods and data, rate-based polymerization reac-
tion models, and a library of industrial process
models.

Aspen distillation synthesis is used for the
conceptual design of distillation schemes for
separation of mixtures with nonideal vapor–
liquid equilibrium behavior.

7.3.3. Aspen HYSYS

Efficient workflow for process design,
equipment sizing, and preliminary cost estima-
tionwithin one environment through integration
with otherAspenONEprocess engineering tools
including Aspen process economic analyzer
cost modeling software, Aspen HTFSþ heat-
exchanger design tools, and Aspen basic
engineering.

Online deployment of models as part of an
operator advisory system for better model-
based decision support. The built-in advanced
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sequential quadratic program (SQP) algorithm
for optimization enables offline and online
optimization of designs and operating per-
formance.

Efficient Physical Properties Methods and
Data. Aspen HYSYS offers a comprehen-

sive thermodynamics foundation for accurate
calculation of physical properties, transport
properties, and phase behavior for the oil and
gas and refining industries.

Comprehensive library of unit operation
models including distillation, reactions,

heat-transfer operations, rotating equipment,
controller, and logical operations in both the
steady-state and dynamics environments.
CAPE-OPEN compliant models are also fully
supported.

Workflow Automation. Aspen HYSYS
models can be linked to Microsoft Excel using
Aspen simulationworkbook orVisual Basic and
used to automate the engineering workflow and
deploy the model to a wider range of end-users
in the field.

Links to Third-Party Tools. Aspen HYSYS
includes links to several well-known tools in-
cluding OLI’s electrolyte package, amines
packages, PVT and black oil thermodynamics,
and hydraulics packages from various third
parties including Schlumberger, SPT, Petro-
leum Experts, and Neotec.

ActiveX (OLE automation) compliance
permits the integration of user-created unit op-
erations, proprietary reaction kinetic expres-
sions, and specialized property packages.

A number of additional tools are available to
enhance the value of Aspen HYSYS:

. Aspen HYSYS Dynamics: provides dynamic
simulation capability fully integrated within
Aspen HYSYS and is used for safety and
controllability studies, pressure relief studies,
and optimizing transition, start-up and shut-
down policies.

. Aspen HYSYS Crude: enables the simulation
of crude oil assays and crude columns. It
characterizes the hydrocarbon fluid by deter-
mining the hypothetical components that

make up the oil and predicts their thermo-
physical and transport properties.

. Aspen HYSYS Amines: simulates and opti-
mizes gas and liquid sweetening processes
involving single or blended amines. An ad-
vanced thermodynamic Li-Mather electrolyte
model achieves more reliable results than
empirical models, especially for blended
amines.

. Aspen HYSYS Pipeline Hydraulics—OLGAS
2–Phase: incorporates industry-standard
multiphase pipeline flow correlations within
Aspen HYSYS to calculate pressure gradi-
ents, liquid holdups, and flow regimes.

. Aspen HYSYS Pipeline Hydraulics—PI-
PESYS: enables the accurate modeling of
single- andmultiphase flows to design, debot-
tleneck, and optimize pipeline systems. It can
account for pipeline elevation profiles, inline
equipment, pipe composition and roughness,
and fluid properties.

. Aspen HYSYS Upstream: provides the explo-
ration and production (E&P) industry stan-
dard methods and techniques for handling
petroleum fluids and brings together the dis-
ciplines of petroleum and process engineer-
ing. Production field data can be input in an
user-friendly environment to create an asset-
wide model from the reservoir to the back end
of the facility.

. Aspen HYSYS Petroleum Refining: provides
the refining industry with a multiunit model-
ing tool with an Aspen HYSYS look and feel.
It enables users to integrate crude assay
libraries, conversion reactormodels, and links
to LP planning tools for better crude selection,
planning, and scheduling of operations.

7.3.4. gPROMS

gPROMS’s process modeling, process simula-
tion and optimization capabilities are used to
generate high-accuracy predictive information
for decision support in product and process
innovation, design, and operation. gPROMS is
an equation-oriented modeling system used for
building, validating, and executing first-princi-
ples models within a flowsheeting framework.
Models are constructed in the gPROMS model
builder by writing down the fundamental chem-
istry, physics, chemical engineering, operating
procedures, and other relationships that govern
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the process or product behavior. The resulting
model is then validated against observed data –
laboratory, pilot-plant, or operating data — to
adjust model parameters such as heat-transfer
coefficients to match reality as closely as possi-
ble. gPROMS first-principles models are ex-
pressed in gPROMS language, a text-based
language designed specifically for the modeling
of complex processes.

The user can use one of the many state-of-
the-art gPROMS model libraries, or create his
own library for publishing throughout your
organization.

Once a gPROMS model exists, it can be
solved in many different ways to perform many
different activities – e.g., steady-state simula-
tion, dynamic simulation, parameter estimation,
model-based experiment design, steady-state
and dynamic optimization, including integer
optimization, or generation of linearizedmodels
for use in control and online optimization,
across the process lifecycle.

This means that once one have invested in
creating an accurate gPROMS model of his
process one can use that model wherever it can
generate value, to ensure multiple return on
investment.

Many elements of a gPROMS problem de-
scriptionare representedgraphicallyaswell,e.g.,

. Stream connections can be expressed, in a
flowsheet representation

. Optimization and parameter estimation pro-
blems can be described using forms and
dialogs

. Equations and other textual information are
represented in simple text form

gPROMS – uniquely among modeling tools
– maintains dual language and graphical

representations consistently at all times. This
means that the user can view and understand
flowsheet information easily while maintaining
text records of the same information for future
quality-assurance and maintenance.

Underlying gPROMS is a powerful model-
ing language specifically designed to address
process industry requirements.

This allows model developers to create mod-
els of the most complex processes and their
operating procedures by writing equations
almost as they appear on paper (Fig. 14).

The clear, concise language and the ‘‘intelli-
gent editors’’ of gPROMS model builder mean
thatmodel developers can easily document their
work, capturing the knowledge assets of the
company for future use and enabling complex
models to be quality assured.

Furthermore, context-sensitive assistance
prompts the user with variable names, unit
names, and keywords when requested.

gPROMS language provides many advan-
tages such as:

Powerful, Clear and Concise Language.
gPROMS language reads like ‘‘mathematics
expressed in English’’ rather than FORTRAN.
Because it is not necessary to include any
numerical solution techniques in themodel (that
is taken care of automatically by gPROMS), the
equations describing the actual physics and
chemistry of the process. This clarity means
that models are easily maintainable and
auditable.

Distributed Systems Modeling. gPROMS
was the first advanced process modeling plat-
form with distributed system handling. Vari-
ables can be distributed in a number of dimen-
sions, which may represent spatial dimensions,

Figure 14. Complex equations are written in gPROMS
A) Equations on paper; b) Equations in gPROMS
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e.g., axial or radial concentration distribution
of concentration along a fixed-bed reactor or
particle size or molecular weight distribution.
Distributions can be set up and named arbi-
trarily, e.g., ‘‘AXIAL’’ and ‘‘RADIAL’’ for
space dimensions, ‘‘MWD’’ for molecular
weight distribution of a polymer, or ‘‘PSD’’
for describing a crystal particle size
distribution.

Steady-State and Dynamic Modeling.
gPROMS’s integro-partial differential algebra-
ic equation (IPDAE) formulation provides
complete modeling power for steady-state or
dynamic modeling – gPROMS makes no dis-
tinction. Dynamic models can easily be solved
for steady-state simply by setting the appropri-
ate model specifications – there is no need to
iterate to a steady-state.

Full Array Handling. gPROMS handles
arrays of up to a practically unlimited number
of dimensions, consistently and robustly. The
concept extends all through the gPROMS lan-
guage: it is possible to have an array of units or
ports within a unit. Zero-length arrays are also
possible, to allow the construction of models
where reaction may occur, but is not always
present.

Powerful Discontinuity Handling. Numer-
ous mechanisms for handling process disconti-
nuities, including CASE statements, make it
easy to model conditional behavior. Disconti-
nuities are robustly and efficiently handled by
gPROMS’s numerical solvers.

Ability to Model Complex Operating Pro-
cedures. gPROMS’s hierarchical task lan-

guage means that it is easy to describe operating
procedures, including start-up, shutdown, and
complex batch operating policy. Once proce-
dures are implemented within gPROMS’s task
language, dynamic optimization can be used to
determine the optimal operation, e.g. , the mini-
mum start-up time achievable within equipment
and operating constraints.

Ability to Model Experiments. gPROMS
includes an experiment modeling language.
This allows experimental data to be represented
correctly to gPROMS’s parameter estimation

routines. It also provides information for
gPROMS’s model-based experiment design
facilities which can be used to design experi-
ments that maximize experimental information
content.

Hierarchical (Object-Oriented) Modeling
Structure. Flowsheets can contain flow-

sheets, which can contain flowsheets and so on.
This provides complete flexibility of modeling,
and makes models easy to maintain and reuse.
gPROMS has comprehensive facilities for
propagating parameter and other information
correctly through the hierarchy.

Easy Description of Optimization Pro-
blems. gPROMS’s dynamic optimization

capabilities allow easy description of an arbi-
trary objective function, with interior-point and
end-point constraints and many other features.
As a consequence, it is very easy to add signifi-
cant value by optimizing a design or its opera-
tion once one has been through the effort of
building a robust underlying model.

Enumerated Domains: Ordered Sets The
user can use text descriptors as array indices in
gPROMS, making it easy to refer to, e.g., mass
flow ’’methane’’ or evaporation ‘‘volatiles’’.
This makes models easy to follow, easy to
maintain, and smaller in size, thereby reducing
solution times.

Powerful Initialization Language. A tradi-
tional criticism of equation-oriented models is
that, while they runmuch faster once initialized,
it is difficult to obtain an initial solution.
gPROMS’s state-of-the-art initialization lan-
guage captures modelers’ experience in a struc-
tured way to eliminate this problem.

Easy calls to external software such as
physical properties routines or MS Excel.
External functions are simply called fromwith-
in the equation; the actual resolution of the call
(e.g., a fugacity call to a physical property
package) can be resolved at runtime. This
means that models can be written completely
generically, without having to know which
actual external package will be present at so-
lution time.
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7.3.5. PRO/II

PRO/II process simulation software is a steady-
state simulator enabling improved process de-
sign and operational analysis. It is designed to
perform rigorous mass and energy balance
calculations for a wide range of chemical pro-
cesses. Spanning oil and gas separation to
reactive distillation, PRO/II offers the chemi-
cal, petroleum, natural gas, solids processing,
and polymer industries the most comprehen-
sive process simulation solution available
today.

Key Benefits.

. Rigorously evaluate process improvements
before committing to costly capital projects

. Improve plant yields through the optimization
of existing plant processes

. Cost effectively assess, document, and com-
ply with environmental requirements

. Accelerate process troubleshooting

. Detect and remedy process bottlenecks

Key Capabilities.

. Refining applications: heavy oil processing,
crude preheating, crude distillation, FCC
main and coker fractionator, naphtha splitter
and stripper, sour water stripper, sulfuric and
HF acid alkylation

. Oil and gas processing applications: amine
sweetening, cascade refrigeration, compres-
sor trains, deethanizer, demethanizer, gas de-
hydration, hydrate formation/inhibition

. Chemicals/petrochemical applications: eth-
ylene fractionation, C3 splitting, aromatic
separation, cyclohexanes, MTBE separa-
tion, naphthalene recovery, olefin and
oxygenate production and propylene
chlorination

. Chemical applications: ammonia synthesis,
azeotropic distillation, biofuels, crystalliza-
tion, dehydration, electrolytes, inorganics,
liquid–liquid extraction, phenol distillation,
solids handling

. Polymer applications: free radical poly-
merization, step-growth polymerization,
copolymers

. Pharmaceutical applications: batch distilla-
tion and reaction

7.3.6. DynSim

DynSim is a comprehensive, dynamic process
simulation program from Invensys SimSci-
Esscor that enables users to meet and beat the
dynamic challenges of designing and operating
a modern process plant safely and profitably. It
expedites the comprehensive engineering
workflow: design, operational analysis,
dynamic simulation, operator training, plant
performance improvement to reduce capital
investment costs, improve process yields, and
enhance management decision support while
leveraging your existing technology
investments.

Dynamic simulation studies that are com-
monly performed with DynSim include:

. Distillation column relief load reduction

. Compressor start-up and surge studies

. Depressurizing analysis

. Refinery steam control systems

. Flare system analysis

. Dynamic decision support simulators

Plant models commonly simulated in Dyn-
Sim for rigorous high-fidelity operator training
simulators include:

. All refinery units

. Petrochemical processes and ethylene plants

. LNG liquefaction and regasification

. Gas oil separation units and gas plants

7.3.7. ROMeo

ROMeo is an advanced, unified modeling
environment from Invensys SimSci-Esscor
delivering online optimization applications to
help users obtain peak performance from their
operating units. Working within a Windows-
based environment and enhanced by open ap-
plication architecture, ROMeo offers the ben-
efit of process optimization across a company’s
entire enterprise. Online modeling and equa-
tion-based optimization capabilities provide
more accurate, current operating information
to better manage changing market pressures,
product values, energy costs, and equipment
performance.
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7.3.8. ChemCad

ChemCad is capable of modeling continuous,
batch, and semibatch processes, and it can sim-
ulate both steady-state and dynamic systems.
This tool is used around theworld for the design,
operation, and maintenance of chemical pro-
cesses in a wide variety of industries, including
oil and gas exploration, production, and refin-
ing; gas processing; commodity and specialty
chemicals; pharmaceuticals; biofuels; and pro-
cess equipment manufacturing. Within all of
these industries, engineers can work with
ChemCad to address a variety of challenges:

. Initial design of new processes

. Optimization or debottlenecking of existing
processes

. Performance monitoring of processes

. Design and rating of process equipment such
as vessels, columns, heat exchangers, piping,
valves, and instrumentation

. Evaluation of safety-relief devices

. Heat exchanger sizing

. Pressure and flow balancing of complex pip-
ing networks

. Reconciliation of plant data

. Economic comparisons of process
alternatives

. Advanced process control (APC), including
model predictive control (MPC), real-time
optimization (RTO), and operator training
systems (OTS)

. Scale-up of processes from lab-scale to pilot-
scale, and from pilot-scale to full-scale

. Binary interaction parameter (BIP) regression
from process or lab data

. Batch reaction-rate regression from process
or lab data

7.4. Trends in Process Simulation
Engineering

7.4.1. Trends in Process Simulation

Process simulation has evolved quickly over the
past 20 years. The role of simulation has
changed from simply ‘‘automating design cal-
culations’’ to being the center of ‘‘integrated
engineering workflows.’’ Process simulation
now supports a variety of activities from

conceptual engineering to process design and
engineering support to plant operations. Process
companies are applying a variety of synergistic
engineering technologies (in-house and com-
mercial) in conjunction with steady-state simu-
lation such as process synthesis, economic
evaluation, dynamic modeling, detailed equip-
ment design, and rating.

7.4.2. Trends in Model Deployment

Once the asset is built and is operational, own-
er–operators are increasingly applying models
to support and optimize their operations. For
example, steady-state and dynamic models to
guide operating decisions, performance and
equipment monitoring; offline and real-time
optimization, and to improve linear program-
ming (LP) planning models for better feedstock
selection and asset-wide optimization.

7.4.3. Trends in Information Technology
(IT) Infrastructure

Continuously, IT infrastructure is also rapidly
evolving. Now, process companies are able to
access plant data on every desktop across all
disciplines within the organization. This ability
has improved common understanding of plant
operations, facilitating multiple disciplines to
work together, and make collaborative deci-
sions. Increasingly, operations, engineering,
and planning decisions are made on the basis
of common information obtained through a
common information management system.
Similarly, energy and commerce (E&C) firms
are utilizing their IT infrastructure to support
collaborative engineering environments to
manage and execute engineering projects
around the clock and across the globe. This
global execution capability allows companies
to fully utilize available talent in a cost-effective
manner and to meet aggressive project sche-
dules. Rapid deployment of new engineering
tools across the organization through a ‘‘virtua-
lized’’ environment is an emerging trend that
eliminates the need for installing engineering
tools on all individual end-use PCs. The virtua-
lized systems convert applications into a virtual
service that is managed and hosted centrally.
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But it is accessed and used on demand via the
intranet, internet or wireless networks. This
approach will become a norm in the near term.

7.4.4. Value Creation Opportunities

The three main areas of value creation have
been identified by owner operators and E&C
companies, and include:

. Accelerating the use of process simulation
beyond engineering into operations

. Performing concurrent engineering

. Utilizing collaborative engineering that sup-
ports global project execution.
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