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Abstract— In this paper, an on-line identification scheme is 

proposed to enhance the residual state error performance in face 

of disturbances. The proposed scheme is based on an e1-

modification adaptive law for the weights to approximate the 

unknown nonlinearities with bounded error. Besides, an 

identification model with feedback is introduced to improve the 

state error performance. The feedback is based on a bounding 

function to estimate an upper bound for the disturbances. Via an 

adaptive bounding technique and Lyapunov methods, it is proved 

that the residual state error performance is practically immune 

to disturbances. To validate the theoretical results, the 

identification of a four-order generalized Lü hyperchaotic system 

is performed. 

Identification; neural networks; uncertain systems; Lyapunov 

methods; chaotic systems. 

I.  INTRODUCTION 

The use of neural networks (NNs) paradigm as a powerful 
tool for identification of uncertain nonlinear systems has 
encouraged, starting from the 90s, several heuristic and 
theoretical studies, see for instance [1]-[8] and the references 
therein. This interest is motivated by the capability of the NNs 
to learn complex input-output mappings, since they are 
universal approximators, and by the inevitable presence of 
uncertainties in modeling problems, due to the simplification 
imposed by the mathematical modeling, unexpected faults, 
changes in operation conditions, aging of equipment, and so 
on. On the other hand, system neuro-identification is important 
not only to predict the behavior of the system, but also for 
providing an appealing system parameterization, which can 
later be used in the synthesis of  control algorithms, since 
mathematical characterization is often a prerequisite to  
controller design. 

Neural identification models usually employed are the 
dynamic ones, being their weights mainly adjusted by using 
gradient and backpropagation algorithms or their robust 
modifications [1], [3]-[8]. Most used robust modifications in 

neuro-identification are the ,σ switching- ,σ ,1ε parameter 

projection, and dead zone [3]-[8] which avoid the parameter 
drift. Nevertheless, to the best of our knowledge, at present 
most of learning algorithms for neuro-identification ensure that 
the residual state error is related directly to upper bounds for 
the approximation error, ideal weight and disturbances.  

For instance in [3], the identification of a general class of 
uncertain continuous-time dynamical systems was proposed, 

and a σ -modification adaptive law for the weights of recurrent 

high-order neural networks (RHONNs) was chosen to ensure 
that the state error converges to the neighborhood of the origin, 
whose radius depends directly of the approximation error and 
disturbances. In [4], dynamic NNs based on two-layer neural 
networks were used to identify a general class of uncertain 
nonlinear systems. It was shown that in the presence of 
disturbances the state error is uniformly ultimately bounded 
where the ultimate bound is directly proportional to an upper 
bound of the disturbance. In [5], the identification of delayed 
nonlinear system was investigated. By using identification 
models based on delayed neural networks with learning laws 
for the weights designed using a Lyapunov-Krasovskii 
approach, it was shown that the state error is upper bounded by 
a constant which depends directly of the disturbance. More 
recently, also others relevant works, such as [6]-[7], shown that 
discrete high-order neural networks and dynamic neural 
networks with two different time scales, respectively, can be 
used to identify nonlinear systems with bounded errors, which 
are straightforwardly related to the disturbances. 

From the discussion above, observe that most of neuro-
identification schemes ensure a state error performance that is 
directly related to the disturbance.  In practice, uncertainties are 
inevitable, hence it is desirable to propose identification 
schemes with improved state error performance in face of 
disturbances. This is the main motivation for this paper. 

 Hence, in this paper we propose a neuro-identification 
algorithm in which the residual state error is inversely 
correlated with the disturbances to make the residual state error 
performance practically immune to disturbances. To this end, 
based on an adaptive bounding technique [9] and Lyapunov 
methods [10], a neural identification model with explicit 
feedback based on a bounding function is proposed.  The aim is 
to approximate an upper bound for the disturbances, which is 
used in the stability proof, to make the Lyapunov derivative 

(V& ) negative semi-definite practically in all error space, since 

bounding functions can be used to dominate positive terms in 

V&  and hence improve the performance. 

 

II. LINEARLY PARAMETERIZED NEURAL NETWORKS 

Linearly parameterized neural networks (LPNNs) can be 

expressed mathematically as  
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( ) ( )ζπζρ WWnn =,                          (1) 

where ρLn
W

×ℜ∈ , ζζ Lℜ∈ , ρζπ LL ℜℜ a:  is the so-called 

basis function vector, which can be considered as a nonlinear 

vector function whose arguments are preprocessed by a scalar 

function ( )⋅s , and ζρ LLn ,,  are integers strictly positive. 

Commonly used scalar functions ( )⋅s  include sigmoid, tanh, 

gaussian, Hardy’s, inverse Hardy’s multiquadratic, etc [8]. 

However, here we are only interested in the class of LPNNs 

for which ( )⋅π  is bounded, since in this case we have,  

( ) 0πζπ ≤                                      (2) 

being 0π  a strictly positive constant. 

The class of LPNNs considered in this work includes 
HONN [3], RBF networks [8], wavelet networks [11], and also 
others linearly parameterized approximators as Takagi-Sugeno 
fuzzy systems [12]. Universal approximation results in [8], 
[11]-[12] indicate that: 

Property 1: Given a constant 00 >ε  and a continuous 

function nf ℜΩ a: , where ζLℜ⊂Ω  is a compact set, there 

exists a weight matrix ∗= WW  such that the output of the 

neural network architecture (where ρL  may depend on 0ε  and 

f ) satisfies 

 ( ) ( ) 0sup εζπζζ ≤− ∗
Ω∈ Wf                  (3) 

where  ⋅  denotes the absolute value if the argument is a scalar. 

If the argument is a vector function in nℜ  then ⋅ denotes any 

norm in nℜ . 

III. PROBLEM FORMULATION 

Consider the following nonlinear differential equation 

( )tvuxFx ,,,=& ,      ( ) 00 xx =                       (4) 

where Xx ∈  is the n-dimensional state vector, Uu ∈  is a m-

dimensional admissible input vector, qVv ℜ⊂∈  is a vector 

of time varying uncertain variables and 

[ ) nVUXF ℜ∞××× a,0:  is a continuous map. In order to 

have a well-posed problem, we assume that VUX ,,  are 

compact sets and F  is locally Lipschitzian with respect to x in 

[ )∞××× ,0VUX , such that (4) has a unique solution.  

We assume that the following can be established  

Assumption 1: On a region [ )∞××× ,0VUX  

( ) 0,,, htvuxh ≤                               (5) 

where  

( ) ( ) ( )uxftvuxFtvuxh ,,,,,,, −=                  (6) 

 f  is an unknown map, h are internal or external disturbances, 

and 0h , such that  000 ≥> hh , is a known constant. 

Hence, except for the Assumption 1, we say that 

( )tvuxF ,,,  is an unknown map and our aim is to design a 

NNs-based identifier for (4) to ensure that the residual state 
error is ultimately bounded with ultimate bound which is, 
practically, not affected by the disturbances. 

IV. IDENTIFICATION MODEL AND STATE ERROR EQUATION 

We start by presenting the identification model and the 

definition of the relevant errors associated with the problem. 

Let f  be the best known approximation of f, nnP ×ℜ∈  

a scaling matrix defined as 0>= TPP ,  gPg 1−= , and 

( ) ( ) ( )uxfuxfuxg ,,, −= . Then, by adding and subtracting 

( )uxf , , (4) can be rewritten as 

 

( ) ( ) ( )tvuxhuxgPuxfx ,,,,, ++=&                (7) 

Remark 1: It should be noted that if the designer has no 

previous knowledge of f, then f  is simply assumed as being 

the zero vector.  

From (7), by using LPNNs, the nonlinear mapping 

( )uxg ,  can be replaced by ( )uxW ,π∗  plus an approximation 

error term ( )ux,ε . More exactly, (7) becomes 

 

( ) ( ) ( ) ( )tvuxhuxPuxPWuxfx ,,,,,, +++= ∗ επ&    (8) 

where nxLW ℜ∈∗  is an “optimal” or ideal matrix, which can 

be defined as 

( ) ( )
















−=
∈
∈Γ∈

∗
uxWuxgW

Uu
XxW

,ˆ,supminarg:
,ˆ

π               (9) 

 

with { }
W

WW ˆ
ˆˆ α≤=Γ , 

Ŵ
α  is a strictly positive constant, 

Ŵ  is an estimate of ∗W , and ( )ux,ε  is an approximation 

error term, corresponding to 
∗

W , which can be defined as  

 

( ) ( ) ( )uxWuxgux ,,:, πε ∗−=                 (10) 
 

The approximation, reconstruction, or modeling error ε  in 

(10) is a quantity that arises due to the incapacity of LPNNs to 

match the unknown map ( )uxg , . Since X, U are compact sets 

and from (2), the following can be established 

 

Assumption 2: The Frobenius matrix norm ,0
F

WW −∗  

where nxL
W ℜ∈0  is upper bounded by a known positive 
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constant ,β such that 

β≤−∗
F

WW 0                               (11) 

 

Assumption 3: On a region UX × , the approximation error 

is upper bounded by 

 

( ) 0, εε ≤ux                              (12) 
 

where 0ε , such that  000 ≥> εε , is an known constant. 

Remark 2: Assumption 1 is usual in identification. 

Assumption 2 is quite natural since g  is continuous and their 

arguments evolve on compact sets. 

Remark 3: Note that any 00 ππ > , 00 hh > , and  00 εε >  

also satisfy (2), (5), and (12). Hence, to avoid confusion, we 

define 0π , 0h , and 0ε  to be the smallest constants such that 

(2), (5), and (12) are satisfied. 

Remark 4: It should be noted that ∗W  and ( )ux,ε  might be 

nonunique. However, the uniqueness of ( )ux,ε   is ensured 

by (9). 

Remark 5: It should be noted that ∗W  was defined as being 

the value of Ŵ  that minimizes the ∞L - norm difference 

between ( )uxg ,  and ( )uxW ,ˆπ . The scaling matrix P from (7) 

is introduced to manipulate the magnitude of uncertainties and 

hence the magnitude of the approximation error. This 

procedure improves the performance of the identification 

process.  

 

Remark 6: Notice that the proposed neuro-identification 

scheme is a black-box methodology, hence the external 

disturbances and approximation error are related. Based on the 

system input and state measurements, the uncertain system 

(including the disturbances) is parameterized by a neural 

network model plus an approximation error term. However, 

the parameterization (8) is motivated by the fact that neural 

networks are not adequate for approximating external 

disturbances, since the basis function depends on the input and 

states, whereas the disturbances depend on the time and 

external variables. The aim for presenting the uncertain system 

in the form (8), where the disturbance h is explicitly 

considered, is also to highlight that the proposed scheme is in 

addition valid in the presence of unexpected changes in the 

systems dynamics that can emerge, for instance, due to 

environment change, aging of equipment or faults. 

 
Based on structure (8) and to ensure improved state error 

performance, the identification model is chosen as  

( ) ( ) ( )( )xxPluxWPuxfx −+−+= ˆ4ˆ,ˆ,ˆ 2
00 ψψπ&         (13) 

 

where x̂  is the estimated state, ψ̂  is a bounding scalar 

function, 0l  and 0ψ  are positive constants. It will be 

demonstrated that the identification model (13) used in 

conjunction with a convenient adjustment laws for Ŵ  and ψ̂ , 

to be proposed in the next section, improve the residual state 

error performance in the presence of disturbances. 

 

Remark 7: It should be noted that in our formulation, the 

LPNN is only required to approximate ( ) ( )[ ]uxfuxfP ,,1 −−  

(whose magnitude is often small) instead of the entire function 

( )[ ]uxfP ,1− . Hence, standard identification methods (to 

obtain some previous f ) can be used together with the 

proposed algorithm to improve performance.  

 

By defining the state estimation error as xxx −= ˆ:~ , from 

(8) and (13), we obtain the state estimation error equation 

( ) ( ) ( ) ( )tvuxhuxPxPluxWPx ,,,,~4ˆ,
~~ 2

00 −−+−= εψψπ&    (14) 

where ∗−= WWW ˆ:
~

. 

 

V. ADAPTIVE LAWS AND STABILITY  

Before presenting the main theorem, we state a fact, which 
will be used in the stability analysis. 

 

Fact 1: Let ρLn
WWWW

×∗ ℜ∈~
,ˆ,, 0 . Then, with the definition 

of ∗−= WWW ˆ~
, the following equalities are true: 

 

( )[ ]
( ) ( ) 2

0

2

0

2

0

ˆ

~ˆ~
2

FF

F

T

WWWW

WWWWtr

−−−+

=−

∗
 (15) 

 
We now state and prove the main theorem of the paper. 

 

Theorem 1: Consider the class of nonlinear systems described 

by (4) and the Assumptions 1-3. Let the identification model 

be given by (13) with 

( )],~2~)ˆ([ˆ
00 uxxxWWW T

W πγγ +−−=&
            (16) 

and  

 [ ] ( ) 00ˆ,~~~ˆˆ
2

0200 >−−−= ψψψψψγψ ψ xlxx&      (17) 

where 

,0>ψγ ( ),2 1
min2

−= Pλψ  (18) 
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2

1

2
0

1
000

2
0

0

2222
1

1




 





 ++−−= −∗ βγεψψ

ψ
ψ

F
Ph

  

Then, the signal errors ψ~,
~

W are uniformly bounded and 

the state error x~  is uniformly ultimately bounded. 

 

Proof: Consider the Lyapunov function candidate 

  

( ) 2~2
~~~~ 2111 ψγγ ψ

−−− ++= WWtrxPxV W
TT           (19) 

 

where ∗−= WWW ˆ~
 and ∗−= ψψψ ˆ~ . 

By evaluating (19) along the trajectories of (14), (16) and 
(17), we obtain 

     

hPxxxPxlWxV TTTT 11
0

~2~2~~ˆ2
~~2 −− −−−= εψπ&  

)~~
(2)]ˆ(

~
[||~|| 00

TTT
xWtrWWWtrx πγ −−−  

2~||~||~||~||~ˆ~||~|| 2
0

2
0200 xxlxx ψψψψψψψψ −++−  

(20) 

 

 
Furthermore, by using the representations 

( ) ππ WxxWtr TTT ~~~~ =  and 
222 ˆ~ˆ~2

∗−+= ψψψψψ , the fact 1 

and the definition (18), (20) can be upper bounded as  

 

||~||)||||22(||~||ˆ 1
00

2
20 xPhxlV F

−++−≤ εψψ&            

           2||~|||||2||
~

||||~|| 2
00

2
0 xWWWx FF −+− ∗γγ      

          ||~||~2)ˆ~(||~|| 0
222

0 xx ψψψψψψ +−+− ∗          

           2||~||||~||~ 22
0

2
02 xxl ψψψ −+  

(21) 

 

By employing the definitions of 2ψ and ∗ψ , see (18), and 

recalling that 
∗−= ψψψ ˆ~ , (21) implies 

 

2~2ˆ~~ˆ~ 22
0

2
00

2

02 xxxxlV ψψψψψψψ −−+−≤ ∗&   (22) 

Since 212ˆˆ 2 +≤ψψ , we arrive at 

    2~~)
2

( 0

2
2
0

02 xxlV ψψψψ ++−≤ ∗&                      (23) 

Hence, 0<V&  as long as 

 

α
ψψψ

ψ =
+

> ∗ :
2

~
2
002

0

l
x

                         (24) 

Thus, since  is constant, by using Lyapunov arguments 

[10], we concluded that x~ are uniformly ultimately bounded, 

with ultimate bound . Based on (16) and (17) ψ~,
~

W  are also 

bounded. Note that if, by any reason, || x~ || escapes of the 

residual set , where  = { x~ | || x~ || ≤  α }, V& becomes 

negative definite again, and force the convergence of the state 
error to the ball of radius α . 

 

Remark 8: The existence of 
∗ψ  is guaranteed as long as 

222 0
1

000 βγεψ ++≥ −
F

Ph . However, it is a mild 

condition, since any increase of 0ψ  has only a positive impact 

on the residual state error, as can be seen in (24).  

 

Remark 9: Since the ultimate bound α  is inversely 

proportional to 
∗ψ , which depends on an upper bound for the 

disturbances, see (18), the performance of the proposed 

method cannot be adversely affected by the increase of 

disturbances.  

Remark 10: It should be noted that 
∗ψ  might be nonunique. 

In fact,  

 
2

1

2
0

1
000

2
0

0

2222
1

1




 





 ++−+= −∗ βγεψψ

ψ
ψ

F
Ph (25)  

also satisfy (22). However, note from (24) that the ultimate 

bound for the residual state error is practically of order 

01 ψ for large 0ψ . Hence, the residual state error is, 

practically, not affected by disturbances, as long as the design 

constants are adequately selected. The above mentioned 

peculiarity, to the best of our knowledge, is the main 

advantage of the proposed scheme in comparison with the 

literature. 

 

IV. SIMULATIONS  

To illustrate the application of the proposed scheme, we 
consider a generalized Lü hyperchaotic system described by 
[13], [14] 

                        ( ) xx duxyax ++−=&  

                        yy duzxkxby +++−= ω&  

                        zz duxlczz +++−= 2
&  

                       ωωω duxd ++−=&  

(26) 

 

where a, b, c, d, l  and k are constant parameters, 

zyx uuu ,, and ωu are control inputs, and zyx ddd ,, and 

ωd  are unknown disturbances. It was considered that a=10, 

b=40, c=2.5, d=10.6, k=1 and l=4. Notice that system (26) 

satisfies Assumptions 1-3, since the state variables evolved on 

compact sets.  
To identify the uncertain system (26) the proposed 

identification model (13) and the adaptive laws (16) and (17) 
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were implemented. The initial conditions for the hyperchaotic 
system and the identification model were  

( ) ( ) ( ) ,60,80,40 −=−=−= zyx  ( ) 120 =ω  and ( ) ,00ˆ =x  in 

order to evaluate the performance of the proposed algorithm 
under adverse initial conditions. 

The others design parameter were chosen as u=0, 

,10,50,5.2,9 100 ==== ψψγγW

( ) ( )[ ]⋅−+=⋅= 5.0exp110,10 slo ,  

[ ] ,)();();();();();();();(
2222 ωωπ szsysxsszsysxs=  

,

100000
010000
00500
000100

















=P  

and 

















=
00001000
00000100
00000010
00000001

P . 

 

By keeping all design parameters as before, we 

introduced disturbances at 1.0=t  in order to check the 

robustness for the proposed method. Two cases are 

considered: 

a) ( ) [ ]Ttt
tetetxh )210log(1.0)cos()5sin(2, 1.01.0

1 ηη +=
 

b)  ( ) [ ] ,)sin(5.1)4cos()2sin(2.1)sin(,2
T

tttttxh η=  

where x5.0=η  and [ ]Tzyxx ω= .   

It should be noted that the last disturbance 1h is 

unbounded as ∞→t . However, it was considered here in 

order to evaluate the residual state error performance in the 

presence of severe disturbances.  

The performances in the estimation of the states zyx ,,  

and � when disturbance h1 is present are shown in Figures 1-

5, and when disturbance h2 is present is shown in Figure 6. We 

can see that the simulations confirm the theoretical results, 

that is, the algorithm is stable and the residual state error was, 

practically, not affected by the disturbance in s1.0=t .  

 

 

 

Figure 1.  Actual and estimated state x .  

 

Figure 2.  Actual and estimated state y. 

 

Figure 3.  Actual and estimated state z. 

( )tx

( )tx̂

( )ty

( )tŷ

( )tz

( )tẑ

1092



 

Figure 4.  Actual and estimated state �. 

 

Figure 5.  State error norm performance for disturbance h1.
 
 

 

Figure 6.  State error norm performance for disturbance h2.
 
 

 

V. CONCLUSIONS  

In this work, by using Lyapunov analysis and an adaptive 
bounding technique, we have proposed an on-line 
identification scheme which presents an improved tolerance in 

face of disturbances. The proposed algorithm is based on a ε1-
modification and uses an explicit feedback on the 

identification model to improve residual state error 
performance. A simulation example showed the effectiveness 
of the proposed method. 
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