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Abstract—This paper presents a method to stabilize uncertain 
dead time system based on new robust state predictor. The 
proposed predictor consists of a state delayed observer. 
Controller gain and predictor parameters are calculated by 
solving a nonlinear matrix inequality.  More importantly, this 
method is extended to dead time system with a long time delay or 
significant uncertainty using sequential sub-predictors (SSP). 
This predictor composed of collection of sub predictors that each 
of them predicts the state for a small part of a long time delay. 
The number of predictors can increase attending the unstability, 
delay value or uncertainty where the stability condition is 
satisfied. Examples illustrate the capability of this method.   

Keywords- Dead time systems, Robust Sequential sub-predictor, 
Robust control. 

 

I.  INTRODUCTION  

Prediction of states or output plays a fundamental role in the 
control of dead time systems. This is because of delay in input 
impedes of stabilizing closed loop system via classical 
controller. To overcome this challenge, many efforts are 
devoted on presenting a dead time compensator (DTC) or 
predictor. 

 The famous model based predictor was presented by Smith 
[1] in 1957 for stable systems. Smith predictor is then modified 
for unstable system by Watanabe [2] (MSP) and for mixed 
unstable and stable systems (USP) in [3]. Moreover, [4] and [5] 
are applied it for stable systems with an integrator and long 
time delay. However, MSP may lead to unstable pole-zero 
cancelation for unstable systems. Therefore good approximate 
of distributed delay term in MSP is unavoidable to achieve the 
stability [6]. In addition, MSP is very sensitive to parameters 
and delay uncertainty. In recent years, some researchers try to 
improve the robustness of this method [6-12]. Also there exist 
a few examples that used this predictor for H∞ control of dead 
time systems [13-15]. 

Another family of predictor is classified as Finite-Spectrum 
Assignment [16] (FSA). The main idea of some state predictor 
like as Artstein reduction model [17] is much closed to FSA. 
[18] has been proposed a different version of FSA attending the  
pole-assignment methods of delay free systems. Moreover, the 
FSA and MSP scheme can lead to equivalent stabilize method 
for single input delay systems [19]. So, FSA is also sensitive to 
the method of distributed delay approximation [6]. This 

challenge will be deeper for unstable system with long time 
delay and uncertainty.      

The main problem in these method roots in inflexibility of 
FSA and MSP due to uncertainty of model. This is because of 
the delay term of dead time systems is eliminated directly by 
them and they have significant challenge when face to 
uncertainty in system model.  

To address this challenge, this paper presents a new robust 
state predictor that is based on state delayed observer. This 
predictor forecasts the state of system asymptotically. The 
parameters of proposed predictor can be set attending the 
weight of uncertainty and time delay. The state feedback is 
then designed applying the prediction state and the robust 
stability of closed loop system is proven. More importantly, 
proposed state predictor is extended to sequential sub-
predictors (SSP) for unstable systems with a long time delay. 
SSP is founded on a collection of sub-predictors. The state of 
system is successively forecasted by each sub-predictor for a 
small part of delay, such that totally, SSP predicts the state for 
whole time delay. Consequently, the state feedback is 
calculated using SSP. Examples illustrate the ability of this 
method to stabilize dead time systems with long time delay and 
uncertainty.      

 

II. PROBLEM STATEMENT AND PRELIMINARIES 

Consider linear input-delay uncertain system described by 
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where nx  , mu  and 0d . The matrices A and B are 
known and time-varying bonded matrices A and B  are 
described the uncertainty of this system where 
 

][)(][ bEEtJDBA                                                     (2) 

ItJtJ T )()(                                                                     (3) 
 

The delay in the input prevents achieving stability for 
unstable systems with long time delay or significant 
uncertainty. Therefore, it is suggested to predict the state of this 

1082

UKACC International Conference on Control 2012 
Cardiff, UK, 3-5 September 2012 

978-1-4673-1558-6/12/$31.00 ©2012 IEEE



system to eliminate the delay in state feedback. In the other 
words, if )()( txdtx p , then the delay in the controllable 

input can be compensated by using the predicted state instead 
of real state, i.e. )()()( tKxdtKxdtu p  .   

The target goal in this paper is to suggest a robust control 
method to stabilize dead time system based on new robust 
predictor. Section 3 presents the simple form of this predictor 
and also investigates the calculation of the predictor parameters 
and controller gain. This method is extended to sequential sub-
predictor for unstable systems with long time delay in Section 
4. The predictor parameters and controller gain are also 
designed in this section. Examples show the capability of this 
method to stabilize dead time systems in Section 5. First, 
necessary lemma is presented as follows. 

Lemma 1: [20] Given matrices ,  and  of appropriate 
dimensions and with   symmetrical, then 

0)()(  TTT JJ                                       (4) 

For all )(F satisfying IJJ T )()(  , if and only if there 
exists a scalar 0  such that 

01   TT                                                     (5) 
 

III. STATE PREDICTOR 

In this section, the initial format of robust state predictor is 
presented as 

))()(()()()( txdtxLtButxAtx                            (6) 

where nx  is the predicted state that will forecast x for 
d seconds. Error is described by 

)()()( txdtxte                                                             (7) 

The state of predictor forecasts the state of system if error 
converges to zero, i.e.  

)()( dtxtx                                                                   (8)  

Now, the error dynamic equation can be calculated as 

)()()()()( dtBudtLetAxtAete                 (9) 

The predictor matrix L  must be chosen such that the error 
converges to zero asymptotically. Following Theorem 
investigates the design of prediction parameter L  such that 
error equation converges to zero and calculation of the 
controller gain, K , to achieve robust closed loop stability.  

 

Theorem 1: Consider system (1) with following control law. 


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txKtu

txdtxLtButxAtx                       (10)  

Assume that ),( BA  is controllable. The closed-loop system is 
robust asymptotically stable and x  predicts x  for d  second if 

there exist symmetric matrices ,00 P ,01 P ,0Q  0S , 

matrices ,Y ,U ,1M 0F of appropriate dimensions, and scalar   

such that the following inequality holds.  
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where 
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TUYM 12  
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And 
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Moreover, L and K  are given as: 

1
1

1
1

0 , MPLFPK                                                   (13)  

 

Proof: By considering (7), the closed-loop system (1) and (10) 
can be rewritten as: 
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and A
~

 and B
~

appear in (12). The stability of (14) is equivalent 
to closed loop system (1) and (10) and x approaches )( dtx   

if )(~
2 tex  converge to zero asymptotically. A Lyapunov 

function is candidate to investigate the stability of (14) as 
follows. 

)~()~()~()~( 321 xVxVxVxV                                              (16)
 

where
 

)(~)(~)~(1 txPtxxV T  
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                                        (17)                                                                                          

 

By using Newton-Leibniz formula and free-weighting matrix 
(FWM), similar to the proof of Theorem 1 in [21], the 
derivative of )(tV  can be written as 
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Using Schur complement and Lemma 1, it is possible to show 
that )

~
(d is negative definite (i.e. 0)( tV ) if following 

inequality holds. 
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where 

PDDPQYYAPPA TTT ~~~~
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TUUQ 22  

Taking },,{ 10
1 PPdiagPP   ,1 SS ,11  QPPQ

,11  YPPY ,11  UPPU pre- and post multiplying both 

sides of LMI (20) by },,,,{ IPSPPdiag  and considering (13), 
it is possible to rewrite (20) as (11).                                           
 

Note that (11) is not linear due to PSP 1  term. The best 
idea to solve it without any limitation of degree of freedoms is 
reducing the original non-convex problem to an LMI-based 
nonlinear minimization problem. Then a modified cone 
complementarity linearization (CCL) algorithm [22] can be 

used to obtain a solution. This method is described in next 
section.  

        Theorem 1 may not be useful for unstable dead systems 
with a long time delay and weighty uncertainty (see examples 
in Section 5). To overcome this challenge, next section 
presents an extended form of this predictor called sequential 
sun-predictors. In this method, a series of sub-predictor is 
employed to each of them forecasts the state of system for 
small part of time delay.      
 

IV. SEQUENTIAL SUB -PREDICTORS 

Long time delay may impede stabilizing of unstable systems 
with uncertainty using proposed predictor in Section 3 and it 
may exist no L such that (11) is feasible. For this case, 
sequential sub-predictor (SSP) is suggested in this section. In 
SSP, time delay is divided to R  small part, and then a 
collection of successive sub-predictors are used to forecast the 

state for each small part of delay, d , where 

 ZR
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d
d ,                                                          (21) 

The SSP is described by 
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where Rix n
i ,,1,  , Defining the prediction error as 
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Note that )(1 tx predicts the )( dtx  , if all error equation 

converge to zero i.e. 
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The error dynamics are 
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Following theorem investigates stability of closed loop 

system based on SSP. In this theorem, predictor parameters, iL , 

and controller gain, K , will be calculated.   
  
Theorem 2: Consider system (1) with following control law. 
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Assume that ),( BA  is controllable. The closed-loop system is 

robust asymptotically stable and 
1x  predicts x  for dRd   

second if there exist symmetric matrices ,0iP ,,,1,0 Ri   

,0Q  0S , matrices ,Y ,U ,jM ,,,1 Rj  0F  of 

appropriate dimensions, and scalar   such that (11) holds, 
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Proof: By considering (23), the closed-loop system (1) and (26) 
can be rewritten as: 

)
~

(~~
)(~)

~~~~~~
()(~ dtxAtxKBKBAAtx h            (29) 

where 
 

,

~

~

~

~ 12

11


























RR

R

ex

ex

eexx

x




 

,
0

0

~























B

B
  

,

000

00

00

000

~
2

22

2




























R

R

h

L

L

L

LL

L

A











 .00
~

KK  (30) 

A
~

 and B
~

appear in (27). The stability of (29) is equivalent to 
closed loop system (1) and (26) and 1x approaches )( dtx   if 

Rixi ,,2,~  converge to zero asymptotically, because 

Rt xxte ~~)( 2   . Based the same form of (29) and (14), 

proof can be followed same as proof of Theorem 1.                 

To solve (11), using the modified CCL, from Schur 
complement, it is followed that (11) holds if 
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where 

TPSP  1                                                                  (32) 

Taking ,1TT  ,1 SS  and ,1 PP from Schur 
complement (32) becomes 
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The existence of a solution for (31) and (33) is a 
sufficiently condition for the feasibility of (11), imposing some 
degree of conservativeness. However, using this technique, the 
original of non-convex problem has been casted into the 
following LMI based non-linear minimization problem: 

Minimize )( SSPPTTTr  , subject to (33) and 

0
*









S

PT , 0
*









T

IT , 0
*









S

IS , 0
*









P

IP       (34)        

Then, the modified CCL algorithm is used to solve it and find 
the maximum possible d  as following procedure. 

 

Step 1: Solve (31) and (34) for sufficiently small initial value of 

0

~
d and find a feasible set  ,,,,,,,,, 000000000 QUYTTSSPP  

satisfying them. Set ,0j  0i . 

Step 2: Solve the LMI (31) and (34) for all variables: 

Minimize )( iiiiii SSSSPPPPTTTTTr   subject to (31) 

and (34). Set TTi 1 , TTi 1
, PPi 1
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and SS i 1
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Step 3: If (11) is satisfied and 
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 for Theorem 2), 

end. If (11) is not satisfied within a specified number of 

iterations ( j ), then exit with no solution. If (11) is satisfied 

but 
idd

~
 (
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 for Theorem 2), set ,1 ii  0j , 
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increment 
id

~  and go to Step 2. Otherwise, set ,1 ii  

1 jj and go to Step 2.           

Note that the number of sub-predictors, R , can be set 
sufficiently big to (11) becomes feasible. In the other words, if 
(11) is not satisfied for d  in a usual number of CCL iterations, 

then R should be increased while it becomes feasible. 
Therefore this method can stabilize all unstable systems with 
long time delay and significant uncertainty.  Next section 
presents a few examples to illustrate the capability of this 
method to stabilize unstable dead time systems with time 
varying uncertainty.     

 

V. SIMULATION RESULTS 

In this section a few examples are presented to shows the 
ability SSP to closed loop stability of dead time systems due to 
unstability of system, time delay value and weight of 
uncertainty. 
   
Example 1: Consider system )( dtbuaxx  , where ba,  

is scalar. SSP can forecast the states of systems for maximum 
delay 

mRdd   that is shown in Table 1 (for iteration number 

40 and increment and increment delay step 0.01). 
 

Table 1: Maximum possible delay to prediction of state 

mRdd   1R  2R  3R  4R  5R

1a  ∞ ∞ ∞ ∞ ∞ 

2.0a  4.93 9.77 14.55 19.33 23.05

5.0a  1.96 3.85 5.72 7.56 9.13 

1a  0.97 1.90 2.8 3.69 4.51 

2a  0.48 0.93 1.36 1.78 2.15 

 
Table 1 shows that maximum possible delay to stabilize of 
closed loop system is directly proportional to R  and inversely 
proportional to a . Although the increasing the a , limits the 

bound of delay, but it is possible to compensate it by 
increasing the number of sub-predictor.  
 
Example 2: Consider an unstable uncertain system with 
integrator term and non-minimum phase zero, defined as 

   
































Txtxty

tutx
t

t
tx

01)0(),(11)(

)3(
2

2
)(

)sin(02.5.00
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Using Theorem 2, the controller gain and SSP matrices are 
calculated as: 
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Figure.1 Pulse response of closed loop system 
 

Note that the initial conditions of system are unknown in 
prediction and the initial conditions of SSP are set to zero. 
Figure 1 illustrates the pulse response of the closed loop 
system. This example shows the capability of this method to 
stabilize uncertain and unstable dead time systems with a long 
time delay.  

 

VI. CONCLUSION   

This paper suggests a method to stabilize uncertain dead time 
systems based on a new robust predictor. Moreover, this 
method is applied for unstable dead time systems with a long 
time delay by sequential sub-predictors. The main idea in this 
predictor is composed of a series of sub-predictor; each of them 
is for a partition of long time delay. This method can improve 
the flexibility of predictor to overcome any weight uncertainty. 
This method also can apply for nonlinear systems and output 
feedback that will be presented in future works. 
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