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Abstract—The robust model-based predictive control (RMPC)
formulation originally proposed in [1] ensures convergence of
the state trajectory to the origin and satisfaction of operational
constraints, provided that a given system of LMIs is feasible at the
beginning of the control task. The largest domain of attraction
of the origin under the resulting closed-loop control law can
be defined as the set of all state values for which the LMIs are
feasible. The present paper demonstrates that such a set is convex
and symmetric about the origin, which allows the determination
of extreme points through the solution of a modified version of the
original RMPC optimization problem. An inner approximation
of the largest domain of attraction can then be generated as the
convex hull of these extreme points. The convexity and symmetry
properties are also demonstrated for regions of guaranteed cost,
defined as the set of initial states for which the resulting cost is
upper-bounded by a given value. Inner approximations of such
regions can also be obtained by solving a modified version of
the RMPC optimization problem. For illustration, a numerical
simulation model of an angular positioning system is employed,
as in [1]. In this example, the proposed approximations were
found to be in agreement with the feasibility and cost results
obtained in a pointwise manner for a grid of initial conditions.

Index Terms—Robust model predictive control, linear matrix
inequalities, domain of attraction, convex optimization.

I. INTRODUCTION

The term Model-based Predictive Control (MPC) refers to

a body of techniques that involve the solution of an optimal

control problem within a receding horizon [2]. MPC has

become widespread in several application areas, mainly due

to the possibility of addressing operational constraints in an

explicit manner [3]. Constraint satisfaction and closed-loop

stability can be guaranteed by a proper formulation of the

receding-horizon optimization problem. Usually, the adoption

of target sets that are invariant under locally stabilizing control

laws is employed for this purpose [4]. However, the design

guarantees may be lost if the prediction model does not match

the actual plant dynamics. Such a mismatch may arise due to

modelling approximations (linearization and order reduction,

for example), parameter uncertainties or variations in the plant

behaviour due to faults or natural aging. This problem has mo-

tivated the development of robust MPC (RMPC) techniques.

Early formulations of RMPC involved the online solution of

a min-max optimization problem, where the worst case value

of the cost function was evaluated over a set of uncertain plants

[5], [6], [7]. However, the computational cost of the resulting

problem could become prohibitive for actual implementation.

In this context, Kothare and collaborators [1] proposed an

RMPC approach based on linear matrix inequalities (LMIs).

By using the proposed approach, the optimization problem

was cast into a semi-definite programming (SDP) form [8],

which allowed the use of efficient numerical solvers to obtain

the optimal control in polynomial time. Moreover, operational

constraints could be easily introduced by augmenting the

problem formulation with additional LMIs. This seminal work

was later extended to encompass the use of output feedback

[9], [10], [11], as well as the control of nonlinear systems [12]

systems with uncertain time delay [13], [14], [15], and systems

with asymmetric output constraints [16]. Modifications to the

LMI formulation aimed at reducing conservatism have also

been proposed [17], [18], [19], [20].

Within the framework developed in [1], the state trajectory

is guaranteed to converge to the origin with satisfaction of

the operational constraints, provided that the system of LMIs

is feasible at the beginning of the control task. Therefore, the

largest domain of attraction of the origin under the closed-loop

control law can be defined as the set of all state values (i.e. ini-

tial conditions for the state trajectory) for which the LMIs are

feasible. However, the analytical or numerical characterization

of such a domain of attraction was not discussed in [1]. In fact,

although the solution of the SDP problem for a given initial

condition can be used to establish an asymptotically stable

invariant ellipsoid [1], [21], such an ellipsoid is not necessarily

the largest domain of attraction for the origin. It is possible

to maximize the size of this invariant ellipsoid by using a

determinant maximization procedure, as proposed in [12]. Yet,

one may still argue that the largest domain of attraction is not

necessarily of ellipsoidal shape.

The present paper establishes some properties of the largest

domain of attraction D for the RMPC approach developed

in [1]. More specifically, it is demonstrated that D is convex

and symmetric about the origin. In view of such properties,

extreme points of D can be found by solving a modified

version of the original RMPC optimization problem. An inner

approximation of D can then be generated as the convex hull
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of the extreme points thus obtained. The resulting approxi-

mation can be useful, for instance, to design schemes for the

commutation between different RMPC controllers, as well as

to choose an appropriate initial condition during the planning

stage of a control manoeuvre.

It is worth noting that the initial feasibility of the RMPC

optimization problem guarantees that the state trajectory will

converge to the origin, but does not ensure that the perfor-

mance will be acceptable. Therefore, it would also be of value

to characterize a set Dγ̄ of initial conditions for which the

resulting cost function value is smaller or equal to a given

scalar γ̄ > 0. In this work, such a set will be termed “region of

guaranteed cost”. As an additional contribution of the present

paper, the symmetry and convexity properties of D are also

demonstrated for Dγ̄ . Thus, an inner approximation of Dγ̄ can

also be obtained by solving a modified version of the original

RMPC optimization problem.

For illustration, a numerical simulation model of an angular

positioning system is employed, as in [1]. The remaining

of this paper is organized as follows. Section II describes

the LMI-based RMPC formulation adopted in the present

work. Section III demonstrates the symmetry and convexity

properties of the largest domain of attraction D and proposes

a procedure for obtaining extreme points of D through the

solution of an SDP problem. The corresponding developments

for regions of guaranteed cost Dγ̄ are derived in Section IV.

The numerical example is discussed in Section V. Finally,

concluding remarks are presented in Section VI.

II. ROBUST MODEL PREDICTIVE CONTROL EMPLOYING

LINEAR MATRIX INEQUALITIES

The RMPC approach under consideration is concerned with

uncertain state-space models of the form:

x(k + 1) = A(k)x(k) +B(k)u(k), [A(k), B(k)] ∈ Ω (1)

where x(k) ∈ R
nx , u(k) ∈ R

nu are the state and input

variables, respectively, and Ω is an uncertainty polytope with

known vertices Ai ∈ R
nx×nx , Bi ∈ R

nx×nu , i = 1, 2, . . . , L.

It is assumed that component-wise amplitude constraints are

to be imposed on the inputs u(k), as well as on ny output

variables defined as yl(k) = Clx(k) (l = 1, 2, . . . , ny),
where Cl ∈ R

1×n are known matrices.

Let J∞(k) denote the following infinite-horizon cost func-

tion:

J∞(k) =
∞∑
j=0

[||x(k + j|k)||2S + ||u(k + j|k)||2R
]

(2)

where S ∈ R
nx×nx and R ∈ R

nu×nu are positive-definite

weight matrices and (•|k) denotes a predicted value, which

is computed on the basis of the information available at time

k. It is assumed that the system state is directly measured, so

that x(k|k) = x(k).
The optimization problem to be solved at time k can be

formulated as

min
u(k+j|k), i≥0

max
[A(k), B(k)]∈Ω

J∞(k) (3)

subject to

|ur(k + j|k)| ≤ ur,max, r = 1, 2, . . . , nu, j ≥ 0 (4)

|yl(k + j|k)| ≤ yl,max, l = 1, 2, . . . , ny, j ≥ 1 (5)

where ur,max, yl,max denote the bounds on the magnitude of

the rth input and lth output variables, respectively.

As demonstrated in [1], an upper bound γ on the cost

J∞(k) is minimized by solving the following semidefinite

programming (SDP) problem:

min
γ,Q>0,Y,X,Z

γ (6)

subject to1 [
Q x(k)
∗ 1

]
≥ 0 (7)

⎡
⎢⎢⎣

Q 0 0 AiQ+BiY
∗ γI 0 S1/2Q
∗ ∗ γI R1/2Y
∗ ∗ ∗ Q

⎤
⎥⎥⎦ ≥ 0, i = 1, 2, . . . , L (8)

[
X Y
∗ Q

]
≥ 0 (9)

Xrr ≤ u2
r,max, r = 1, 2, . . . , nu (10)

[
Z Cl(AiQ+BiY )
∗ Q

]
≥ 0, l = 1, 2, . . . , ny,

i = 1, 2, . . . , L
(11)

Zll ≤ y2l,max, l = 1, 2, . . . , ny, i = 1, 2, . . . , L (12)

and then using a state feedback control law u(k + j|k) =
Fx(k+ j|k) over the prediction horizon, with F = Y Q−1. It

is worth noting that the solution of this optimization problem

depends on the present state x(k), which appears in the first

LMI (7). Therefore, in what follows the SDP given by (6) -

(12) will be termed P(x(k)).
By applying the control law in a receding horizon manner,

i.e. by solving P(x(k)) in order to obtain a new gain matrix F
at each sampling time k, the closed-loop system can be shown

to be robustly asymptotically stable, provided that P(x(k)) is

feasible at the initial time k = 0 [1]. Henceforth, with a slight

abuse of language, an initial condition x(0) = ξ ∈ R
nx will be

termed “feasible” if the optimization problem P(ξ) is feasible,

i.e. if there exists a feasible solution (γ,Q > 0, Y,X, Z) to

the system of LMIs (7) - (12) with x(k) replaced with ξ.

III. DOMAIN OF ATTRACTION

The RMPC controller described in the previous section is a

regulator that steers the system state x(k) to the origin, start-

ing from a given initial condition x(0). Asymptotic stability

and constraint satisfaction are guaranteed, provided that the

optimization problem is feasible at the initial time k = 0 [1].

Therefore, the largest domain of attraction D of the origin for

the closed-loop system can be defined as the set of all feasible

initial conditions x(0) ∈ R
nx . Henceforth, the term “largest”

1Symbol ∗ is used to represent the elements below the main diagonal of a
symmetric matrix.
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will be omitted for brevity. In what follows, some properties

of D will be established.

Proposition 1 (Symmetry of D). The domain of attraction D
is symmetric about the origin, i.e. if ξ ∈ D, then −ξ ∈ D.

Proof: Initially, it should be noted that x(k) only appears in

the first LMI (7) in the definition of P(x(k)). By using the

Schur complement [8], [2], the LMI (7) with Q > 0 is seen

to be equivalent to 1− xT (k)Q−1x(k) ≥ 0. If this inequality

is satisfied with x(k) = ξ, it is also satisfied with x(k) =
−ξ. Now, assume that ξ is an element of D. By definition,

there exists a feasible solution (γξ, Qξ, Yξ, Xξ, Zξ) to P(ξ). It

can then be seen that (γξ, Qξ, Yξ, Xξ, Zξ) is also a feasible

solution to P(−ξ), which shows that −ξ is an element of D.

�
Proposition 2 (Convexity of D). The domain of attraction D
is a convex set, i.e. if ξ1, ξ2 ∈ D, then λξ1 + (1− λ)ξ2 ∈ D
for any λ ∈ [0, 1].

Proof: Let ξ1, ξ2 be two elements of D. Then, by definition,

there exist feasible solutions (γ1, Q1 > 0, Y1, X1, Z1) and

(γ2, Q2 > 0, Y2, X2, Z2) to the system of LMIs (7) - (12) with

x(k) replaced with ξ1 and ξ2, respectively. Now, let ξ3 = λξ1+
(1−λ)ξ2 and (γ3, Q3, Y3, X3, Z3) = λ(γ1, Q1, Y1, X1, Z1)+
(1 − λ)(γ2, Q2, Y2, X2, Z2), with λ ∈ [0, 1]. It follows that

Q3 = λQ1 + (1− λ)Q2 > 0. Moreover:

[
Q3 ξ3
∗ 1

]
=

[
λQ1 + (1− λ)Q2 λξ1 + (1− λ)ξ2

∗ 1

]
=

λ

[
Q1 ξ1
∗ 1

]
︸ ︷︷ ︸

≥0

+(1− λ)

[
Q2 ξ2
∗ 1

]
︸ ︷︷ ︸

≥0

≥ 0 (13)

⎡
⎢⎢⎣

Q3 0 0 AiQ3 +BiY3

∗ γI 0 S1/2Q3

∗ ∗ γI R1/2Y3

∗ ∗ ∗ Q3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

λQ1 + (1− λ)Q2

∗
∗
∗

0 0 Ai[λQ1 + (1− λ)Q2] +Bi[λY1 + (1− λ)Y2]
γI 0 S1/2[λQ1 + (1− λ)Q2]
∗ γI R1/2[λY1 + (1− λ)Y2]
∗ ∗ λQ1 + (1− λ)Q2

⎤
⎥⎥⎦

= λ

⎡
⎢⎢⎣

Q1 0 0 AiQ1 +BiY1

∗ γI 0 S1/2Q1

∗ ∗ γI R1/2Y1

∗ ∗ ∗ Q1

⎤
⎥⎥⎦

︸ ︷︷ ︸
≥0

+(1− λ)

⎡
⎢⎢⎣

Q2 0 0 AiQ2 +BiY2

∗ γI 0 S1/2Q2

∗ ∗ γI R1/2Y2

∗ ∗ ∗ Q2

⎤
⎥⎥⎦

︸ ︷︷ ︸
≥0

≥ 0,

i = 1, 2, . . . , L (14)

[
X3 Y3

∗ Q3

]
=

[
λX1 + (1− λ)X2 λY1 + (1− λ)Y2

∗ λQ1 + (1− λ)Q2

]

= λ

[
X1 Y1

∗ Q1

]
︸ ︷︷ ︸

≥0

+(1− λ)

[
X1 Y1

∗ Q1

]
︸ ︷︷ ︸

≥0

≥ 0 (15)

X3,rr = λ X1,rr︸ ︷︷ ︸
≤u2

r,max

+(1− λ) X2,rr︸ ︷︷ ︸
≤u2

r,max

≤ u2
r,max,

r = 1, 2, . . . , nu (16)

[
Z3 Cl(AiQ3 +BiY3)
∗ Q3

]
=λ

[
Z1 Cl(AiQ1 +BiY1)
∗ Q1

]
︸ ︷︷ ︸

≥0

+(1− λ)

[
Z2 Cl(AiQ2 +BiY2)
∗ Q2

]
︸ ︷︷ ︸

≥0

≥ 0 (17)

Z3,ll = λ Z1,ll︸︷︷︸
≤y2

l,max

+(1− λ) Z2,ll︸︷︷︸
≤y2

l,max

≤ y2l,max,

l = 1, 2, . . . , ny, i = 1, 2, . . . , L (18)

Therefore, (γ3, Q3 > 0, Y3, X3, Z3) is a feasible solution

to the system of LMIs (7) - (12) with x(k) replaced with ξ3,

which shows that ξ3 ∈ D. �

Given the properties of convexity and symmetry about the

origin, extreme points of D can be obtained by solving an

SDP problem of the form

min
β,γ,Q>0,Y,X,Z

β (19)

subject to [
Q β ξ
∗ 1

]
≥ 0 (20)

and the remaining LMIs (8) – (12) of the original RMPC

optimization problem. In (20), ξ ∈ R
nx is a constant vector

that defines the direction along which the extreme point is

to be found. The extreme point will be given by β∗ξ, where

β∗ is the minimal value of β resulting from the optimization

process, provided that D is bounded along the direction of ξ.

It is worth noting that −β∗ξ will also be an extreme point,

due to the symmetry property. Fig. 1a illustrates the process

of obtaining an extreme point of D in a two-dimensional case

(nx = 2).

By solving this SDP problem with different ξ vectors, a

number of extreme points of D can be obtained. An inner

approximation of D can then be generated as the convex hull

of those points, as illustrated in Fig. 1b.
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x1

x2

Extreme
point

Domain of
attraction D

(a)

x1

x2 (b)

4-point inner
approximation

of D

Fig. 1. (a) Determination of an extreme point of D through the minimization
of β. (b) Inner approximation of D obtained as the convex hull of four extreme
points.

IV. REGIONS OF GUARANTEED COST

The domain of attraction D involves only the feasibility

of the RMPC optimization problem (6) – (12), regardless of

the achievable value for the cost function γ. By including a

constraint on γ, it is possible to characterize a region of initial

conditions for which the cost is guaranteed to be smaller than

a certain bound, as defined below.

Definition 1 (Region of guaranteed cost). Given a value of

γ̄ > 0, the region Dγ̄ is defined as the set of initial conditions

x(0) ∈ D for which the optimal solution γ∗ obtained by

solving P(x(0)) is smaller or equal to γ̄.

The symmetry and convexity of Dγ̄ are established in the

two propositions below.

Proposition 3 (Symmetry of Dγ̄). The region of guaranteed

cost Dγ̄ is symmetric about the origin, for any given γ̄ > 0.

Proof: Symmetry can be demonstrated by applying the Schur

complement to LMI (7), as in the proof of Proposition 1. �

Proposition 4 (Convexity of Dγ̄). The region of guaranteed

cost Dγ̄ is a convex set, for any given γ̄ > 0.

Proof: Let ξ1 ∈ R
nx and ξ2 ∈ R

nx be two elements of

Dγ̄ for a given γ̄ > 0, and let (γ∗
1 , Q

∗
1, Y

∗
1 , X

∗
1 , Z

∗
1 ) and

(γ∗
2 , Q

∗
2, Y

∗
2 , X

∗
2 , Z

∗
2 ) be the optimal solutions of P(ξ1) and

P(ξ2). From the definition of Dγ̄ , it follows that

γ∗
1 ≤ γ̄, γ∗

2 ≤ γ̄. (21)

Now, let ξ3 = λξ1 + (1− λ)ξ2 and (γ3, Q3, Y3, X3, Z3) =
λ(γ∗

1 , Q
∗
1, Y

∗
1 , X

∗
1 , Z

∗
1 ) + (1 − λ)(γ∗

2 , Q
∗
2, Y

∗
2 , X

∗
2 , Z

∗
2 ), with

λ ∈ [0, 1]. In view of (21), one has γ3 = λγ∗
1+(1−λ)γ∗

2 ≤ γ̄.

Moreover, a demonstration similar to that of Proposition 2 can

be used to prove that (γ3, Q3, Y3, X3, Z3) is a feasible solution

to P(ξ3). Finally, let γ∗
3 be the optimal value of the cost γ

for P(ξ3). Given that the minimal value of the cost must be

smaller or equal to the cost of any feasible solution, it follows

that γ∗
3 ≤ γ3 ≤ γ̄. Therefore, ξ3 ∈ Dγ̄ , which shows that Dγ̄

is a convex set. �
Extreme points of Dγ̄ can be obtained by solving an SDP

problem of the form

min
β,γ,Q>0,Y,X,Z

β (22)

subject to

γ ≤ γ̄ (23)[
Q β ξ
∗ 1

]
≥ 0 (24)

and the remaining LMIs (8) – (12) of the original RMPC

optimization problem. As in the previous section, the extreme

point will be given by β∗ξ, where ξ ∈ R
nx is a constant vector

that defines the direction along which the extreme point is to

be found. An inner approximation of Dγ̄ can be generated as

the convex hull of extreme points obtained with different ξ
vectors.

V. NUMERICAL EXAMPLE

The angular positioning system described in [1] will be

adopted to illustrate the proposed method. The problem under

consideration involves the control of a rotating antenna driven

by an electric motor. The plant dynamics are described by the

following discrete-time state equation:[
x1(k + 1)
x2(k + 1)

]
=[

1.0 0.1
0 1− 0.1α(k)

] [
x1(k)
x2(k)

]
+

[
0

0.0787

]
u(k) (25)

where the state variables x1 and x2 denote the angular position

(rad) and velocity (rad/s) of the antenna, respectively, and the

control variable u corresponds to the input voltage (V ) of the

electric motor. The viscous friction in the moving parts of the

antenna is associated to the uncertain parameter α(k), which

is assumed to be in a given range [αmin, αmax]. Therefore,

the model is of the form (1), with A(k) ∈ Co{A1, A2} where

A1 =

[
1.0 0.1
0 1− 0.1αmin

]
, A2 =

[
1.0 0.1
0 1− 0.1αmax

]
(26)

It is worth noting that the actual dependence of α(k) on

the time k does not affect the RMPC formulation, because

the LMIs only involve the vertices A1, A2 of the uncertainty

polytope. In what follows, the uncertain parameter will be

denoted simply by α for brevity.

The cost function weights S and R were set to I2×2 and 1,

respectively. Moreover, the control variable u was constrained

to the range [−2V,+2V ], as in [1], and the position x1 was
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constrained to the range [−1rad, +1rad]. Such a constraint

can be cast into the form (5) by defining an output variable

y = Cx, with C = [1 0]. All numerical results were obtained

by using the LMI Lab package for Matlab.

A. Results

Figure 2a presents the inner approximations of the attraction

domain D obtained by using 4 and 16 extreme points. In this

case, the bounds on the uncertain parameter α were set to

αmin = 0.1 and αmax = 10. Moreover, Fig. 2a shows a

grid of states that were employed to test the feasibility of the

original SDP problem (6) - (12). As can be seen, all grid

points inside the obtained polygons correspond to feasible

initial conditions. It is worth noting that points [−1 0]T and

[+1 0]T , which correspond to unfeasible initial conditions,

are outside the polygons, as shown in Fig. 2b. The use of

16 extreme points provides a better approximation of the

attraction domain, in that the resulting polygon encompasses

a larger region of feasible initial conditions, as compared to

the 4-point approximation.

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x 2

(a)(a)(a)

16 points

4 points

feasible

infeasible

−1.0004 −1 −0.9996
−0.01

−0.005

0

0.005

0.01

x
1

x 2

(b)
16 points

4 points

feasible

infeasible

Fig. 2. (a) Inner approximations of the attraction domain D. (b) Detail of
the region around point [−1 0]T .

From a physical point of view, unfeasibility arises if the

position x1 is close to the ±1 bounds and the velocity is such

that the position is changing towards the bound. It is interesting

to notice that part of the 16-point polygon is located outside

the [−1, +1] range of admissible values for y = x1. This

result can be explained by noting that the output constraints

in (5) are only enforced after one time step ahead of the present

time. Therefore, if the initial condition is such that the output

y can be steered to the admissible range in a single time step,

the output constraint in (5) will be satisfied.

An interesting investigation that could be performed at this

point concerns the relation between the domain of attraction

D and the range of values for the uncertain model parameter

α. It is expected that D will be larger if the characterization of

α is more precise, i.e., if the range of uncertainty is smaller.

To investigate this issue, the proposed method was employed

to obtain new extreme points of D, with bounds on α set to

αmin = 0.5 and αmax = 2. The results are presented in Fig.

3. As expected, the polygon obtained for 0.5 ≤ α ≤ 2 contains

the polygon obtained for the wider range 0.1 ≤ α ≤ 10.

−1.5 −1 −0.5 0 0.5 1 1.5
−3

−2

−1

0

1

2

3

x1

x 2

0.5 ≤ α ≤ 2

0.1 ≤ α ≤ 10

Fig. 3. Inner approximations of the attraction domain D for two different
uncertainty ranges.

Figure 4 presents the inner approximations of the region

of guaranteed cost Dγ̄ obtained by using 4 and 16 extreme

points with γ̄ = 100. In this case, the bounds on the uncertain

parameter α were again set to αmin = 0.1 and αmax = 10.

The grid of states shown in this figure was employed to solve

the SDP problem (6) - (12) in order to obtain the minimal

value of γ, which is denoted by γ∗. As expected, all grid points

inside the obtained polygons correspond to initial conditions

for which γ∗ ≤ γ̄ = 100. As in Fig. 2a, the use of 16 extreme

points provides a better approximation of the region under

consideration.

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x 2

16 points

4 points

infeasible

feasible (γ∗ > 100)

feasible (γ∗ ≤ 100)

Fig. 4. Inner approximations of the region of guaranteed cost Dγ̄ for γ̄ =
100.

Figure 5 shows the 16-point polygons obtained for different

values of γ̄. As can be seen from these inner approximations,

the region of guaranteed cost Dγ̄ tends to increase with γ̄.

It can also be seen that, as γ̄ is increased, Dγ̄ converges to

the domain of attraction D. Indeed, if γ̄ is made arbitrarily

large, the SDP problem becomes equivalent to that involved

in the determination of extreme points for D (i.e. without the

γ constraint in (23)).

986



−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x 2
No restriction on γ

γ̄ = 1000

γ̄ = 100

γ̄ = 10

Fig. 5. Inner approximations of the region of guaranteed cost Dγ̄ for
different values of γ̄. The region obtained with no restriction on γ is an
inner approximation of D.

Finally, Fig. 6 presents the 16-point polygonal approxima-

tions to the region Dγ̄ for γ̄ = 100 and two different ranges

for the uncertain parameter α, namely 0.1 ≤ α ≤ 10 and

0.5 ≤ α ≤ 2. As in the case of the attraction domain, the

region of guaranteed cost increases as the uncertainty range is

reduced.

−1.5 −1 −0.5 0 0.5 1 1.5

−2

−1

0

1
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x
1
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0.5 ≤ α ≤ 2

0.1 ≤ α ≤ 10

Fig. 6. Inner approximations of the region of guaranteed cost Dγ̄ for γ̄ =
100 and two different uncertainty ranges.

VI. CONCLUDING REMARKS

This paper demonstrated some properties of the domain

of attraction D and regions of guaranteed cost Dγ̄ for the

LMI-based RMPC formulation originally proposed in [1].

More specifically, D and Dγ̄ were shown to be convex and

symmetric about the origin, which allowed the determination

of extreme points through the solution of modified versions of

the original SDP problem involved in the RMPC formulation.

Inner approximations of these sets could then be generated

as the convex hull of the extreme points. In the numerical

example presented for illustration, such approximations were

found to be in agreement with the feasibility and cost results

obtained in a pointwise manner for a grid of initial conditions.

Future investigations could be concerned with the extension

of the present work to other LMI-based RMPC formulations

with less conservatism, such as those proposed in [17], [18],

[19], [20]. It is expected that a reduction in conservatism

should lead to an enlargement in the domain of attraction,

as well as the regions of guaranteed cost, which would be an

additional advantage of those formulations with respect to [1].
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