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Abstract— In this work, a model-based fault detection and 
isolation (FDI) is developed for proton exchange membrane 
(PEM) fuel cell (FC) stack that is under feed-forward plus 
feedback control. The fault detection is achieved using an 
independent radial basis function (RBF) network model, whilst 
the fault isolation is based on the RBF classification. The novelty 
is that the RBF model of independent mode is used to predict the 
future outputs of the FC stack and a RBF classifier is used to 
classify five types of fault introduced to the PEMFC systems. To 
validate the method, a benchmark model developed by Michigan 
University is used in the simulation to analyze the effectiveness of 
the method for actuator, component and three sensor faults. The 
FDI results corresponding to those scenarios show that the 
simulated different types of fault are successfully detected and 
isolated.   

Keywords-Proton exchange membrane fuel cell; feed-forward; 
feedback; fault detection; fault isolation; radial basis function; 
independent model 

I.  INTRODUCTION  

Process faults, if undetected, have a serious impact on 
process economy, product quality, safety, pollution level and 
productivity. In order to detect, diagnose and correct these 
abnormal process behaviors, efficient and advanced automated 
diagnostic systems are of great importance to modern industries 
[1]. Once a fault has been detected and its evolution is 
monitored, the severity of that fault can be evaluated and a 
decision can be made on the course of action to take. 
Monitoring creates the opportunity to strategically plan and 
schedule outrages and to manage equipment utilization and 
availability [2]. Fault detection, isolation and reconfiguration 
(FDIR) is an important and challenging task in many 
engineering applications and continues to be an active area of 
research in the control environment [3]. In some cases, if a 
fault can be quickly detected and identified, appropriate 
reconfiguration control actions may be taken. FDIR is a control 
methodology which ensures continual safe and acceptable 
operation of the system when a fault occurs through fault 
detection and isolation (FDI). Many devices depend on 
automatic control for satisfactory operation, and while assuring 
stability and performance with all components functioning 
properly. If the control system’s structure or parameter can be 
altered in response to system failure, it is said to be 
reconfigurable [4].   

There are a large number of publications on the fuel cell 
(FC) studies, but studies on FDI are still a few. Model-based 
FDI methods for PEMFC become more and more important 
because it involved the comparison between the observed 
behavior of the process with a reference model. Model-based 
approach gives the insight analysis of the subsystem 
interactions and also provides guidelines during the conduction 
of the experiment. The system behavior can been analyzed in 
depth understanding and later this information can be used for 
future design and development. For fault detection problem, the 
most effective way is by using the  model-based approach 
based on a residual generation. Here, the difference between 
the actual process and estimated output of the process  is used 
as a residual vector. In [5] presented and tested a model-based 
fault diagnosis methodology based on the relative residual fault 
sensitivity. In this method, it checks the consistency of 
observed behavior and then isolate the component that is in 
fault in different sensitivities. While, a robust fault detection 
based on the use of LPV observer using output zonotopes was 
proposed by [6]. Here, fault isolation is based on set of 
structured residuals that are analyzed using a relative fault 
sensitivity approach.  

Neural networks have been proposed as an alternative 
method for fault diagnosis by many authors especially to tackle 
the nonlinear behavior. Reference [7] used a Bayesian network 
as an early alert to diagnose faults in the air reaction fan, faults 
in the cooling system, growth of the fuel crossover and internal 
loss current and faults in the hydrogen feed line. Alternatively, 
to improve reliability and durability of PEMFC systems, [8] 
presents a flooding diagnosis based on black-box model of 
elman neural network (ENN). Here, ENN is used to do a 
comparison between measured and calculated pressure drops. 
The model-based on ENN is trained with data recorded in 
flooding-free condition and the difference between calculated 
and experimental pressure drop is used as the residual. Also 
concern about this problem in FC, [9] presents an electric 
equivalent model for FC system diagnosis emphasis on FC 
flooding detection induced by temperature. In this paper, to 
tackle the efficiency of the overall PEMFC systems, a model-
based FDI based on residual generation is used to implement 
the fault detection whilst for fault isolation a RBF networks is 
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used as a classifier. Therefore, to make the FDI monitoring 
system more efficient and robust to the faults in the PEMFC 
systems, an independent RBF network is used for fault 
identification, detection and isolation. The aim of this work is 
to develop a FDI scheme under closed-loop system  for 
PEMFC using an independent RBF network model which can 
detect five types of faults in the FC systems accordingly but 
also can also isolate them accurately. 

II. PEMFC DYNAMICS  

The proton exchange membrane fuel cell (PEMFC) systems 
offer high efficiency and low emissions and has been become 
popular as an alternate power source for various application 
such as transportation, telecommunication, portable utilities, 
stationary and power generation. A typical PEMFC system 
normally consist of four subsystems, which include the reactant 
flow subsystem, the heat and temperature subsystem, the water 
management subsystem and the power management subsystem. 
The PEMFC stack is made up of 381 cells with an active area 
of 280cm2 and the stack operating temperature is at 80°C 
developed by University Michigan is used as a test bench.   

A. Compressor Model 

The flow and temperature out of the compressor (Wcp and 
Tcp) depend on the compressor rotational speed ωcp. A lumped 
rotational model is used to represent the dynamic behaviour of 
the compressor [10]: 

cpcm
J

dt

d
cp

cp 


                                (1) 

    where τcm(vcm,ωcp) is the compressor motor (CM) torque and 
τcp is the load torque. The compressor motor torque is 
calculated using a static motor equation: 
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    where kt, Rcm and kv are motor constants and ηcm is the 
motor mechanical efficiency. The torque required to drive the 
compressor is calculated using the thermodynamic equation: 
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     where γ is the ratio of the specific heats of air (=1.4), cp is 
the constant pressure specific heat capacity of air (=1004 J.kg-

1.K-1), ηcp is the motor compressor efficiency, psm is the 
pressure inside the supply manifold and patm and Tatm are the 
atmospheric pressure and temperature, respectively.  

B. Supply Manifold Model 

 

Figure 1. The fuel cell reactant supply system 

     The cathode supply manifold (sm) includes pipe and stack 
manifold volumes between the compressor and the fuel cells 
as shown in Fig. 1. The supply manifold pressure, psm, is 
governed by mass continuity and energy conservation 
equations [11]: 
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     where R is the universal gas constant and atm
a

M is the 

molar mass atmospheric air at Φatm, Vsm is the manifold 

volume and 
sm

atm
asmsm

sm Rm

Mvp
T  is the supply manifold gas 

temperature. 

III. FDI METHOD WITH INDEPENDENT RBF MODEL  

The basic structure of an independent radial basis function 
(RBF) model for PEMFC dynamic systems proposed in this 
work can be referred to Fig. 2. Here, two inputs and three 
outputs of the process with their delayed values form the 8 
inputs of the RBF model, while the three process outputs are 
the model outputs. The chosen input output orders are 
according to the training experience and checking the process 
dynamics. The model prediction errors are generated for 
residual generation. 
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Figure 2. The structure of an independent RBF network 

IV. CONTROLLER DESIGN  

For air supply in the PEMFC systems, the required air flow 
is indicated by the desired oxygen excess ratio, λO2 = 2. 
Generating rapid increase in air flow, however, requires a large 
amount of power drawn by the compressor motor and a 
affecting the system net power [12]. The combination of feed-
forward and feedback control design objective is to manipulate 
the compressor motor input voltage, Vcm, in order to maintain 
λO2 = 2.   

A. Feed-forward Controller 

A feed-forward control is used to control Vcm based on the 
current drawn from the FC stack. In this work, look-up table 
act as feed-forward control as presented in Table I with respect 
to the signal range of stack current ranging from 100 to 300 
amperes. To design the feed-forward controller, the stack 
current signal is adjust at the value illustrated  in Table I and 
fed to the FC stack  while tuning the Vcm until  λO2 = 2.   

TABLE I.  THE DESIGN OF FEED-FORWARD CONTROLLER 

Stack 
Current 

(Ampere) 

Compressor 
Voltage 
(Volt) 

Gain = 
Output 
/ Input 

Stack 
Current 

(Ampere) 

Compressor 
Voltage 
(Volt) 

Gain = 
Output 
/ Input

105 102.33 0.9746 190 163 0.8579
110 105.98 0.9635 195 166.45 0.8536
115 109.98 0.9563 200 169.85 0.8493
120 113.15 0.9429 205 173.25 0.8452
125 116.77 0.9342 210 176.65 0.8412
130 120.43 0.9264 215 179.85 0.8365
135 124.05 0.9189 220 183.25 0.8330

140 127.68 0.9120 225 186.45 0.8287
145 131.29 0.9054 230 189.65 0.8246
150 134.89 0.8993 235 192.75 0.8202
155 138.48 0.8934 240 195.95 0.8165
160 142.05 0.8878 245 199.05 0.8124
165 145.58 0.8823 250 202.05 0.8082
170 149.15 0.8774 255 205 0.8040
175 152.65 0.8723 260 208 0.8000
180 156.10 0.8672 265 211 0.7962
185 159.60 0.8627 270 214.10 0.7930

 

B. Proportional-Integral-Derivative Controller 

A proportional-integral-derivative (PID) controller is used 
to reduce the effects the disturbances that can be measured and 
also to improve the response to reference signals. The PID 
controller equation is given by:  

           





  s

scontroller
PID 05.0

6153.0

1
1200      (6) 

Fig. 3 shows the overall control systems of feed-forward 
and a closed-loop control  implemented in this work. In the 
diagram, the stack current acts as a disturbance to the PEMFC 
systems with a reference input set at 2 (λO2 = 2). The output of  
λO2  need  to maintain  in order to avoid oxygen starvation from 
happening. 

 

Figure 3. The overall system of FDI using feed-forward and feed-back 
controller 

V. SIMULATING FAULTS 

      In this study, five faults are introduced to a known test 
bench PEMFC based on the model developed in Michigan 
University. First one is an actuator fault, which is simulated by 
superimposing a -10% change of the compressor motor 
voltage measurement. The second is the air leak in the supply 
manifold which is a typical component fault. The third to fifth 
are three sensor faults for the three outputs, which are 
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simulated by 10% deviation superimposed to the net power, 
λO2 and stack voltage output measurements. The PEMFC 
simulator was modified to include five possible fault scenarios 
which may occur during the normal operation of PEMFC 
systems. Fig. 4 shows the five faults introduced to the overall 
PEMFC systems. 

 

Figure 4. The schematic of PEMFC systems with five types of faults 

1) Actuator fault: Mostly centrifugal compressor is used 
in FCs are susceptible to surge and choke that limit the 
efficiency and performance of the compressor. The 
compressor voltage will be changed if the compressor 
experience surge and choke and affected the air flow in the 
supply manifold. The compressor motor performance is 
reduced by -10% of the total compressor motor voltage from 
the sample intervals, k=2500-2550 to reflect the scenario of 
the fault which happens at the actuator part.      

2) Component fault: Air leakage in the supply manifold 
makes the pressure in the cathode decrease. Therefore to 
collect the FC stack data subjected to the air leak fault, 
equation (5) is modified to: 

 lTWTW
V

R

dt smoutsmcpcp
sm

asm
dp

 ,

   (7) 

     where ∆l is used to simulate the leakage from the air 
manifold, which is subtracted to increase the air outflow from 
the supply manifold. ∆l=0 represents that there is no air 
leakage in the supply manifold.  The air leakage is simulated 
by -10% change of the pressure inside the supply manifold. 
The fault occurs at the sample intervals, k = 2000-2050. 

3) Sensor faults: Net power, λO2 and stack voltage 
sensors are considered experiencing over-reading faults. The 
faulty sensor data used was the data from the collected data set, 
superimposed with a 10% change of the measured net power 
over the sample interval, k = 500-550, a 10% change of the 
measured λO2 over the sample intervals, k = 1000-1050 and a 

10% change of the measured stack voltage over the sample 
intervals, k = 1500-1550.  

VI. FAULT DETECTION AND ISOLATION 

A. Fault Detection 

 Though the filtered squared model prediction error for each 
output could be used as fault detection signal, a residual signal 
is generated by combine these prediction errors, so that the 
sensitivity of the residual to each fault can be significantly 
enhanced, and consequently the false alarm rate would be 
reduced. The residual in this work is defined as in (8).  

22
2

2
SV

e
O

e
NP

ere  
                      

(8) 

    where eNP is the filtered modeling error of net power, eλO2 is 
the filtered modeling error of λO2 and eSV is the filtered 
modeling error of stack voltage. The signal with faults is 
clearly been identified and less influences by a noise signal. 

B. Fault Isolation 

  RBF classifier is a nonlinear static network. The network 
is trained with a set of data collected under each of the five 
faults and no-fault condition. The five outputs are arranged in 
this way: The target for any one output is arranged to be “1” 
when the corresponding single fault occurs, and to be “0” 
when this single fault does not occur. In this study, 3000 
samples of data were collected with the first fault occurring 
during k = 500~550, the second fault occurring during k = 
1000-1050, and etc. Then, the generated filtered and squared 
model prediction error vector from the fault detection part was 
used as the input data of the RBF classifier. Correspondingly, 
the target matrix X0 has 3000 rows and 5 columns. The entries 
from the 500th row to the 550th row in the first column are “1”, 
while the other entries are “0”. The arrangement for the 
column 2 to 5 is done in the same way. This is shown as in 
Table II. 

TABLE II.  THE TARGET  MATRIX IN TRAINING THE RBF CLASSIFIER 

Rows  X0   
500~550 [1 0 0 0 0] 

1000~1050 [0 1 0 0 0] 
1500~1050 [0 0 1 0 0] 
2000~2050 [0 0 0 1 0] 
2500~2550 [0 0 0 0 1] 

 

VII. SIMULATION RESULTS 

A random amplitude signals (RAS) of stack current used as 
disturbances to the PEMFC systems has been injected to the 
FC stack. At the same time, the constructed table described in 
the previous section act as a feed-forward control is the input to 
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compressor motor. The RAS excitation signals of stack current 
are generated randomly to cover the whole range of frequencies 
and entire operating space of amplitude in the PEMFC systems.  

   Later, a data set with 3000 samples is acquired from the 
plant when the five faults are simulated to the plant as 
described in previous section. The simulation result of three 
PEMFC outputs and the corresponding five faults is shown in 
Fig. 5. It shows the squared filtered model prediction error for 
the three output variables. As can be seen, there are more than 
one faults occurred in these three outputs.  
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Figure 5. Filtered model predicted errors 
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Figure 6. The fault classification of residual generator 

In order to do fault classification, the residual generation as 
stated in equation (8) was applied. Here, the fault occurrence 
can clearly identified and detected with their respective 
threshold after the implementation. It is observed in Fig. 6 that 
all five faults of +10% for three sensors and -10% for 
component and actuator faults are clearly detected. 

   The target matrix in Table  II was used in training of the 
RBF classifier. The centres and widths of the network were 
chosen using the K-means clustering algorithm and the p-
nearest centre algorithm. The weights were trained with using 
the RLS algorithm with the following data, µ= 0.99999, w(0) 
=1.0×10-6×U (nh×3), P(0)=1.0×108×I (nh); where I is an identity 
matrix and U is an ones matrix. The RBF networks model only 
used the three rows of the PEMFC outputs matrix which 
contain the values of net power, λO2 and stack voltage. After 
training, a similar data set with also 3000 samples, with the 
same five faults simulated, was collected. These data was 
applied to the fault detection part and then to the isolation part 
with the trained RBF classifier. The five outputs of the 
classifier are displayed in Fig. 7. 
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Figure 7. The fault isolation for five faults during training 

      From the fault isolation signals in Fig. 7 it is clearly 
observed that all considered five faults have been isolated. The 
RBF classifier successfully suppressed the corresponding 
output value for the no-fault-occurring period, while promoted 
the corresponding output value for the fault-occurring period.     
It is noticed in Fig. 7 that the fault isolation signals are very 
noisy and that would cause false alarm. Then, the RBF 
classifier outputs are filtered and the filtered signals are 
displayed in Fig. 8. It is obvious that the filtered fault isolation 
signals are much smoother and the robustness of the signal to 
modeling errors, interactions between variables and noise is 
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greatly enhanced. It is important to isolate the malfunction 
devices in the systems for easy troubleshooting and 
maintenance purposes. By doing this step, the device can 
easily be replaced and any appropriate action can be taken 
quickly and therefore it can save time and increase 
productivity.  
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Figure 8. The location of five faults in the PEMFC systems 

VIII. CONCLUSIONS 

 A combination of feed-forward and feedback controller is 
designed to regulate the λO2 during the changes of stack 
current in the FC stack. FDI has been developed for the 
PEMFC under the closed-loop control. Five faults are 
simulated and diagnosed. The simulation results show that the 
new approach using the residual generation to do fault 
detection  and the RBF classifier to apply fault isolation is 
successfully implemented. The 10% faults in the actuator, 
component and three sensors can be clearly detected and 
isolated. Here, the fault condition is considered occurred as a 

single fault at a time. But this result can be extended to the 
fault condition of multi-faults occurring simultaneously. The 
extension for fault detection part is straightforward, while for 
fault isolation needs more complex training of the fault 
classifier. The developed method has a big potential to be 
applied to real world dynamic systems. Also, the method is not 
limited to FC systems, and can be applied to other 
multivariable nonlinear dynamic systems with some 
modifications. 
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