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Abstract— A classical method of dealing with the non-linear 

elements in a transfer function is to assume that they can be 

separated from the linear section and can then be represented 

by describing functions. The standard method of calculating 

these describing functions has been to use a graphical method 

which breaks the non-linear characteristic into a series of 

linear sections and super-imposes their effects onto a 

sinusoidal input. The output is assumed to be a Fourier series 

and the Fourier transform for the first coefficient of this series 

is calculated in a piecemeal fashion. The process is not 

difficult but there is a considerable amount of calculation 

involved. In this paper an algorithm is presented which 

enables the describing functions of real non-linearities, with 

any number of linearized sections, to be simply written down 

without the usual onerous calculations.  Additionally, a 

method of quickly sketching the general shape of describing 

functions is outlined.  
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I.  INTRODUCTION 

 

This paper begins by outlining the standard graphical 

method for obtaining describing functions and then proceeds 

to use the technique to develop a general solution for obtaining 

the family of real describing functions.  These are the 

describing functions whose non-linear characteristics are the 

same irrespective of whether the magnitude of the input signal 

is increasing or decreasing.  Obtaining a general solution also 

permits the creation of algorithms for its implementation and 

one such algorithm is presented.  Although the general 

methods of deriving complex describing functions are well 

known, the real describing functions have usually been 

overlooked in the literature or else have been considered as 

trivial.  This has meant that some simplifying approaches, and 

their associated algorithms, have been overlooked. 

The purpose of developing a general method is to enable 

the easy and rapid delineation of the describing functions for 

real non-linearities – these are non-linearities which do not 

possess memory.  To demonstrate the effectiveness of the 

general method, and the associated algorithm that has also 

been developed, the describing functions for two common 

linearities have been calculated: one which caused a single 

limit-cycle to be produced and one which caused two limit-

cycles.   The predicted limit-cycle results obtained by applying 

the algorithm were compared with simulations using 

SIMULINK. 

II. THE GRAPHICAL METHOD 

 

The early development of the graphical describing 

function technique can be traced to several groups working 

independently [1], [2], [3], [4].  However these wartime 

developments did not come into general use until the mid -

1950s [4], [5], [8].  It is basically an harmonic balance 

approach modified for feedback control.  This meant that only 

the principal harmonic was used and higher-order oscillations 

were considered to be negligible due to the filtering influence 

of the inertia inherent in the overall process which was being 

controlled.  The basic graphical approach is shown in Figure 1.  

It is assumed that the input is sinusoidal (bottom left-hand 

corner of the diagram) and this is mapped via the non-linearity 

(represented at the top left-hand corner of the diagram) to an 

output.  The input has an input magnitude x plotted against 

time t.  The non-linear transformation translates this input 

magnitude x, on the horizontal axis, to the output magnitude y 

on the vertical axis.  The output is a plot of output y against 

time t.  This is the same time period as for the input signal and 

hence the output signal y, due to the non-linear transformation 

is correlated with the input. 

Assuming a sinusoidal input, the input equation will be given 

by: 

)sin(. tXx                                     (1) 

Since the non-linearity is symmetric about the origin, and 

since most systems behave like low-pass filters because of 

inertia, the output equation will be given by: 

)sin(1 tAy                                                  (2) 

Hence the describing function is  

X

A
XN 1),(                                                 (3) 

and there is only a need to calculate A1. 

Also, because of the quarter–wave symmetry: 
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The method is a quasi-linearization process in which a section 

of a static non-linearity is represented by a gain which depends 

on the magnitude of the input signal [6], [7], [9]. For this 

reason it is assumed that the non-linearity consists of lines of 

constant slope to each side of the break-points.  The 

integrations can be calculated in a piecewise fashion to give: 
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where the individual values of y in each of the separate linear 

sections have the form 

cKxy                                                                (6) 

in which K is the slope of the relevant section.  The positions 

at which the slopes K abruptly change value have been 

termed break-points in this investigation. 

 

A. A General Solution 

Gibson and subsequent authors [7], [8], [9] showed how 

to obtain a general approach to the calculation of describing 

function by using this piecewise linear approach but aimed for 

an overall solution involving both real and imaginary parts.  

Also, although the early authors developed a general approach 

they only applied it case-by-case and did not present a general  

 
 

 

 
algorithm   It is our opinion that a useful general algorithm can 

be obtained by considering single-valued non-linearities 

separately from double, or multi-valued, non-linearities and 

then specifically formulating a general solution.  Single-valued 

non-linearities will produce real, as opposed to complex, 

describing functions and they can often be described by 

polynomial functions. By using this approach a general 

method for generating the describing functions of real non-

linearities has been obtained.  This work has resulted in a 

straightforward and relatively simple method of generating 

describing functions.  An added advantage is that since there 

will be no phase-shifts, the superposition of the inverse 

Nyquist locus onto the describing function diagram is 

simplified since only one value of the inverse Nyquist locus, 

that at which it crosses the real axis, will need to be 

considered. 

 

 

By taking Gibson’s initial construction, in Fig. 1, with 

two breakpoints and extending it to n breakpoints the graph 

will have (n - 1) linear sections with slopes  nKKK 10 , 

and breakpoints occurring at horizontal positions nPPP 21  

(with 0P at the origin if necessary), jumps in the vertical plane 

(y-direction) at 21QQ  and angles on the sinusoidal input of 

2
,21


 ni  .  The non-linearity will have the form 

shown in Fig. 2 (replacing the on-linear characteristic, top left-
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Fig. 1: The basic describing function graphical approach 
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hand corner of Fig. 1 which maps the input signal to the output 

signal).  The cut-off points on the sine curve will occur  

 
 

as in Fig. 3 (replacing the sinusoidal-type of output in the top 

right-hand corner of Fig. 1.)  The calculation of 1A will be 

given: 
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which produces a general solution for the describing function: 
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(7)  
 

If Coulomb friction or relay action is present at initial 

amplitudes then equation (7) has to be adjusted. 

 

Consider the case where only Coulomb friction is present:  

as 0P  Qy   , Fig. 4, 010  KandK . 

In this case, as 
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Also from Figure (4),  
K

Q
P   

Hence equation (7) reduces to   
X

Q
N



4
                            (8). 

 

B. An Algorithm 

An algorithm for using the general solution given in 

equation (7) and the special case of equation (8) to generate 

particular real describing functions is now presented.  

Although it specifically deals with discrete cases it can easily 

be extended to deal with continuous functions. 

 

If Coulomb friction or relay action is present, start at stage 

one, otherwise start at stage two. 

 

Stage One:  
(a) If Coulomb friction or relay action is present then make 

X

Q



4
 the first term of the describing function, where Q is 

the value of the Coulomb friction term. 

(b) If dead-zone is also present multiply the above result by 
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 where P is the dead-zone break-point. 

 

Stage Two:  

(a) If saturation is not present make nK  the first term of the 

describing function. ( nK is the gain of  the last stage of 

the non-linearity) or add it to the result of stage one. 

(b) If saturation is present then omit this term. 

 

Stage Three:  

(a) If there are n  breakpoints then add n  terms of the form 
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 Go to end. 

(b) If saturation is present then change the last of the terms in 

stage 3(a) to 
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Go to end. 

 

End. 

 

III. DERIVATION OF TWO DESCRIBING FUNCTIONS USING 

THE ALGORITHM 

 

Two examples are presented (i) dead-zone plus saturation 

which can cause a single limit-cycle to be produced and (ii) a 

non-linearity which has three break-points (four pseudo-linear 

regions) and so can cause two nested limit-cycles to be 

produced.  The effects of these non-linearities were then 

simulated by placing them in series with a transfer function for 

a third-order linear system and applying unity feedback.  The 

simulations were created using the SIMULINK package. 

 

Fig. 4:  Relationship between P and Q 

P 

Q 
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A. Dead-zone plus saturation 

The parameters are  0,,0,2 210  KKKKn  so 

equation (7) gives: 
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Using the algorithm, stages two (b), three (a) and three (b) 
apply and give the same result as above.  This result is shown 
graphically in Fig. 5. 

B. A non-linearity with three break-points (four slopes) 

In this case only one combination of slopes of the  

pseudo-linear sections has been considered: 

.&& 322110 KKKKKK    

In particular, .2.0&5.1,2.0,7.0 3210  KKKK  

Again, the results were obtained by using equation (7), and by 

the algorithm, to give 
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Using the algorithm, stages two (a) and three (a) apply.  The 

graphical results are shown in Fig. 6(a) and Fig. 6(b).  

 

IV. USE OF REAL DESCRIBING FUNCTIONS TO PREDICT 

LIMIT-CYCLES 

 

If the describing function is represented by N(X,ω) and 

the open-loop transfer function of a system is represented by 

G(jω) the Kochenburger’s Stability Criterion [4] states that, in 

order for a system to remain stable, the locus )( jG  must 

keep the entire locus 
),(

1
XN

  on the right; or the 

inverse locus 
)(

1
jG

must keep the locus ),( XN  

on the left (or must completely enclose the whole of the 

locus).  For this work the authors found that the inverse 

Nyquist approach was more convenient.  Furthermore, since 

only systems with real, as opposed to complex, describing 

functions were being investigated, plots with real and 

imaginary axes were of little use.  It was better to plot the 

magnitude of the describing functions against the magnitude 

of the input signal and to superimpose on this the magnitude 

of the inverse Nyquist value at which it crossed the real axis.  

The position at which the descending describing function 

locus crossed the inverse Nyquist value then enabled the 

magnitude of the limit-cycle to be determined – as shown in 

Fig. 7.  

 

Fig. 7: A real describing function locus with an inverse 

Nyquist     magnitude superimposed on it. 
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A similar approach was tried [10] using the direct Nyquist 

instead of the inverse function but it didn’t lend itself to the 

same predictive opportunities. 
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Fig. 8: Limit-cycle oscillation with saturation and dead-zone 

 

A. Dead-zone plus saturation 

According to the basic describing function locus shown in 

Fig. 5 this has the potential to exhibit the limit-cycle effect.  

The system was simulated in series with a third-order transfer 

function and the oscillatory response shown in Fig. 8 was 

obtained.  This oscillatory response was produced with the 

limits of the saturation non-linearity set to ±1 and dead-zone 

set to ±0.5. 

 

The calculated magnitude of the limit-cycle, from Fig. 10, is 

1.79 ± 0.02.  The actual magnitude of the limit-cycle, from 

Fig. 9, is 1.78 ± 0.03.  The calculated frequency of oscillation 

is 2.45±0.001 rad/s and, from Figure 9 the measured frequency 

of oscillation is 2.44 ± 0.03 rad/s 
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Fig. 9: Plot of describing function of dead-zone plus saturation 

 

 

 

B. The non-linearity with three break-points (four slopes) 

 

This time there were two positions where limit-cycles 

might occur depending on the signal input magnitude. 

 

From Fig. 10, the measured frequency of the limit-cycle 

oscillation was 2.41 ± 0.07 rad/s which compared with the 

calculated limit-cycle frequency of 2.45 ± 0.001 rad/s.  From 

Figure 11 the calculated magnitude of the lower limit-cycle 

was 1.60 ± 0.05 and of the higher limit-cycle it was 9.2 ± 0.08.  

From Fig. 10 the actual magnitude of the lower limit-cycle 

was 1.52 ± 0.7 and of the higher limit-cycle it was 10.1 ± 1.2. 

 

It was found, by successively increasing the values of the 

second impulse magnitude, that the second limit-cycle was 

reached once the impulse had been raised above about 5.6, 

although it took several oscillation to reach this new stable 

position.  Again, this could be predicted from Figure 11 where 

the rising value of the describing function crossed the Inverse 

Nyquist. 

 

0 20 40 60 80 100
-15

-10

-5

0

5

10

15

20

25

time (seconds)

S
ig

n
a

l 
a

m
p
li
tu

d
e

s

K0=0.7, K1=0.2, K2=1.5, K3=0.2, P1=1, P2=4, P3=6

 

 

step input

signal output
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V. A QUICK METHOD OF SKETCHING DESCRIBING 

FUNCTIONS 

 

In every case investigated, both in those shown in Figures 5 

and 6(b) and in more complicated real non-linearities, the 

slope of the ‘linear’ section became the asymptotic value to 

which that section of the describing function tended.  Also, 

there was an abrupt change in the describing function at the  

same value of x as that at which the break-value of the non-

linearity occurred.  When 1 nn KK  the locus increased in 

value approximately to the formula: 

)1)(( 11

x

nnn eKKKy 

  and when 1 nn KK  

the locus decreased in value approximately to the formula: 
x

nnn eKKKy 

  )( 1 .  A more precise mathematical 

description of each type of locus was not considered necessary 

since the observed behaviour has only been used in subsequent 

work to afford a rough sketch of the shape of the describing 

function.  A sketch can be performed more rapidly than using 

the algorithm  to give a general outline of the shape before the  

algorithm itself is used to give more precise results. 

 

VI. CONCLUDING REMARKS 

 

This work has used the classical method for deriving 

describing functions.  However, by restricting the formulation 

to deal only with those non-linearities which produce real, not 

complex, describing functions it has been possible to devise an 

algorithm which enabled such functions to be simply written 

down without the usual onerous calculations.  Furthermore, 

the method could be rapidly applied to non-linearities of 

considerable complexity.  Also, because only real describing 

functions were being considered, it was possible to use a 

simplified graphical form of Kochenburger’s criteria to derive 

the positions of limit-cycles and also the range of inputs 

needed to induce them.  After the derivation of the algorithm 

two examples of non-linearities have been presented, one 

which produces a single limit-cycle and one which produces 

two nested limit-cycles.  The expected parameters which 

produced these effects have been calculated and compared 

with the actual results obtained by simulation.  Finally a quick 

method of producing a rough sketch of the general shape of a 

describing function has been included.  This paper presents the 

first stages of a series of investigations into non-linear effects 

and their control. 
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