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Abstract—the paper is to investigate dynamic responses of 

supercritical power plants (SCPP) and study the potential 

strategies for improvement of their responses for Grid Code 

compliance. An approximate mathematical model that reflects 

the main features of SCPP is developed.  The model unknown 

parameters are identified using Genetic Algorithms (GA) and 

the model is validated over a wide operating range. A model 

based predictive control (MPC) is then proposed to speed up 

the dynamic responses of the power plant by adjusting the 

reference of the plant local controls instead of direct control 

signal applications. Simulation results have shown encouraging 

improvement in performance of the plant with no interference 

with its associated local controllers. 

Keywords - Supercritical Boiler; Mathematical Modeling; 

Parameter identification; Genetic Algorithms; Model based 

predictive control. 

I. INTRODUCTION 

It is well known that the Supercritical (SC) power plant is a 

complex process and has a large thermal inertia. Due to its 

once-through boiler structure, there are concerns for its 

dynamic response speed as there is no drum to buffer energy 

in the system and also there are concerns in Grid Code 

compliance ([1]). The first attempt towards optimal control 

of oil-fired SC power plants was reported in 1978 [2] with a 

state space model for identification and control optimization 

using a dynamic programming technique. Nonlinear model 

based predictive control (NMBPC) was reported in [3] using 

a reduced order physical system model to predict the next 

step control values. Dynamic matrix control (DMC) was 

published in [4] designed for SC power plants using linear 

model identified from step response tests. In [5], a model of 

an existing SC once-through power plant was reported for 

simulation study of plant frequency responses. The recurrent 

neural network modeling and modified predictive optimal 

control approach for coal fired SC and ultra-supercritical 

(USC) power plants were reported in [6] [7][8]. The paper is 

to study the control strategy by taking prompt actions in mill 

control to speed up the whole process dynamic responses.  

 The main contributions of the paper are: 1) a nonlinear 

vertical spindle mill model representing the whole milling 

process is integrated to a SC power plant model, which is 

developed by the research group at Warwick and 

Birmingham Universities in collaboration with the industrial 

partners. This has improved the whole SC power plant 

(SCPP) model as the previous SCPP mathematical models 

generally assume instantaneous response from the fuel 

source. In the paper, the influences of milling process 

capability and mill control to the whole power plant 

dynamic responses are investigated. 2) The paper proposed 

a Model Predictive Control (MPC) method to provide the 

updated optimal demand/set point values for the coal flow, 

feed water flow and the main steam valve position 

reference. Then those values are fed to the mill, boiler and 

turbine local controllers. If the amount of desired coal flow 

is optimally predicted in advance, there will be more stored 

coal in the mills to give quicker responses. The study has 

indicated that the proposed MPC strategy for adjusting the 

reference values of the plant local controls plays an 

important role in improving the whole plant dynamic 

response speeds.  

II. SC POWER PLANT DESCRIPTION AND ITS 

MATHEMATICAL MODEL  

Vertical spindle mills are the dominant types used for SC 

coal fired power plants ([9-10]). The raw coal enters the mill 

inlet tube and carries the coal to the middle of grinding 

rotating table. Hot primary air flows into the mill from the 

bottom to carry the coal output from grinding process to the 

classifier that is a multi-stage separator located at the top of 

the mill. The heavier coal particles fall down for further 

grinding and the pulverized coal is carried pneumatically to 

the furnace. Inside the boiler, the chemical energy released 

from combustion is converted to thermal energy. The heat is 

exchanged between the hot flue gas to the water through 

heat exchangers. The boiler contains thin tubes as heating 

surfaces which form the economizers (ECON), waterwall 

(WW), low temperature superheater (LSH), platen 

superheater (PSH), final stage superheater (FSH), and 

reheaters (RH). The water is forced at high pressure (SC 

pressure) inside the economizer and passes through all those 

heating sections. Since pressure is above the critical point, 
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the sub-cooled water in the economizers converted to the 

supercritical steam in the superheaters without evaporation. 

The SC steam is then expanded through turbines. The high 

pressure (HP) turbine is energized by the steam supplied at 

final stage superheater and the reheaters are used to reheat 

the exhausted low pressure steam from the HP turbine 

before it returns to the IP turbine. The mechanical power is 

converted to electrical power by synchronous generator 

coupled to the turbines. In the work described in the paper, a 

600MW SC power plant is selected with the boiler 

specifications at boiler maximum continuous rating 

(BMCR) shown in Table I 

 

Fig.1 Schematic view of the SCPP under investigation 

TABLE I. BOILER SPECIFICATION 

Flow rate of superheated steam(t/h) 1780 

Steam pressure  (MPa)  

FSH outlet 

ECON inlet 

 

25.4 

27.6 

steam temperature (C°) 

FSH outlet 

ECON inlet 

 

570 

288 

Fuel (t/h) Pulverized 

coal of 276 

 

For the purpose of dynamic simulation studies and control 

system development, a nonlinear mathematical model with 

20 differential equations for supercritical boiler-turbine-

generator systems, rooted from physical principles, has been 

developed and integrated with a vertical spindle mill model 

[9]. Some assumptions are made to simplify the model 

structures which are: 

• Fluid properties are uniform at any cross section, and the 

fluid flow in the boiler tubes is one-phase flow. 

• In the heat exchanger, the pipes for each heat exchanger 

are lumped together to form one pipe. 

• Only one control volume is considered in the waterwall. 

• The dynamic behavior of the air and gas pressure is 

neglected. 

• Only the change in internal energy is considered, the 

deviations or changes of kinetic energy and potential 

energy of fluid are neglected.  

 Due to page limitation, only a brief description of the 

model is given in the paper, the detailed procedures for the 

model derivation and parameter identification are reported 

in our work [10][11]. The boiler model is developed by 

deriving the nonlinear dynamics of pressure and temperature 

in each heat exchanger from mass and energy balance 

equations of a certain control volume. Those equations are 

strongly coupled by the equations of SC steam flow and 

heat flow in the boiler. The heat flow is directly related to 

the fuel through constant gains and fuel calorific value. It 

should be noted that major boiler model parameters are 

either calculated from steam tables or identified using the 

data from certain operating unit responses. The former 

method is more suitable for steady state system model so the 

latter approach has been adopted with the real power plant 

measured data. The turbines HP and IP are modeled by the 

same principles of energy conservation and simply linked to 

the outlet of RH and FSH outlets of the boiler. The 

generator nonlinear model [12] has been coupled to the 

turbine model through torque equilibrium with other 

algebraic equations.  The model has two direct inputs of 

feedwater flow and fuel flow and one indirect input which is 

the valve position reference. The model equations have been 

implemented by MATLAB/SIMULINK so that the output 

scope can be easily accessed at any point in the model. The 

computer graphical implementation includes gains, 

integrators, differentiators, transfer functions in s domain, 

summing points, multiplication points...etc. Furthermore, 

Matlab stiff function (ode15s) solver has been used for 

numerical solution of the model during identification or 

verification simulations. Fig.2 shows the model blocks 

diagram with all combined subsystems and the symbols are 

listed in Table.II.  The procedure of parameter identification 

is summarized in the next section.  
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ePf

ipPhpP

eQ

3w

2w

1w

shQ

wwQ

rcwairw

 
        Fig.2 Mathematical model of supercritical power plan 
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TABLE II. LIST OF SYMBOLS IN FIG.2 

rcw : Raw coal flow rate 

(Kg/s). 

msw : Main steam flow 

rate  (Kg/s) 

airw : Primary air flow(Kg/s) 

 hpw : steam flow rate from 

HP turbine to  after steam 

chest to the reheater (Kg/s) 

 

rhw : Reheated steam 

flow rate (Kg/s) 

Qe , Qsh, Qrh, and Qww: heat 

transferred from tube wall to 

the fluid (MJ/s)
 

mechP : Mechanical power 

(MW) 

fw :Pulverized coal flow rate  

(Kg/s). 

f : frequency (p.u) 

outT :Mill outlet temperature 

(C°). 

eP : Electrical power 

(MW) 

fww : Feedwater flow rate 

(Kg/s). 

1w , 2w , 3w :intermediate 

mass flow rates (Kg/s) 

   

III. PARAMETER IDENTIFICATION 

It is worth noticing that the physical model parameters are 

not known precisely. As described in the previous section, 

the GA optimization technique was adopted to identify the 

model unknown parameters. It should be mentioned that GA 

is robust optimization technique that is suitable for 

nonlinear system identification. Unlike conventional 

mathematical optimization methods, GA technique is able to 

tune all model parameters simultaneously with multi-

objective optimization. Furthermore, GA produces global 

optimal solution for complex systems or functions because 

of parallel distributed search mechanism and mutation. The 

identification scheme is graphically represented in Fig.3. 

The work employed the coal mill model reported in [9] and 

the mill parameters are given in the reference. The rest of 

the plant model parameters are identified according to 

measured data responses of: 1) main steam temperature; 2) 

main steam pressure; 3) reheater pressure; 4) SC steam flow 

rate. The measured variable data for identification of turbine 

/generator parameter optimization are: 1) mechanical power; 

2) electrical power; 3) system frequency. The onsite 

measurement data from a 600MW SC power plant is used 

for identification. Data set.1 has been used for identification 

which represents an increase in the load demand from 35% 

to 100% of load demand. Data sets 2, 3 and 4 are used for 

further model investigations. Fig.4 represents identification 

result while figs 5, 6, 7   show some verification results for 

different sets of data.  It can be seen that the mathematical 

model reflects the main variation trends of the real power 

plant measurements over wide operating range although 

some assumption for simplifications were initially made.   

Fig.3 Identification scheme of the model using GA. 
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Fig.4 Mass flow (Kg/s) Data set.1 (identification) 
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Fig.5 Electrical Power Data set.2 (verification) 
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Fig.6 Main steam temperature Data set.3 (verification) 
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Fig.7 Main Steam pressure Data set.3 (verification) 

 

IV. PREDICTIVE CONTROLLER DEVELOPMENT  

A. Reduced order linear model identification 

The generalized MPC algorithm includes an identified 

linear state space model, used for predicting the plant 

output variables. The plant identified linear model were 

investigated around nominal operating conditions (i.e. 

supercritical conditions). Again GA has been used to 

identify the linear model with portions of data set.1 and 

3 to match the response of the original process model. 

The prediction model has four states three inputs and 

three outputs. the linear model which has the following 

form: 

 

)()()1( kkk BuAxx +=+          (1) 

)()( kk Cxy =            (2) 

 

  The model has four states x
T
=[x1  x2  x3  x4]

T
, three inputs 

or manipulated variables u
T
=[u1 u2 u3]

T
, and three 

outputs.y
T
=[y1 y2  y3]

T 
= [x2  x3  x4]

T
. A, B, and C, are the 

normalized state space model matrices. The parameters 

of the digitized model are:  
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The inputs and the outputs which have been used for 

identification of the controlled plant are chosen as: 
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B. The generalized Predictive control strategy  

A model based predictive control is developed with 
provisions of unmeasured disturbances and measurement 
noises to be used for compensation around the 
investigated operating conditions. Here, the linear time 
invariant model is used for the MPC algorithm while the 
process mathematical model has been used to simulate 
the power plant responses. The controller setup is 
supposed to generate such states naturally by default. In 
this research, the generalized predictive controller 
algorithm described in [13] is adopted which has been 
widely used for chemical or thermodynamic process 
control [13] [14] [15] [16]. The prediction model has 
been upgraded as follows: 

 )()()()()1( kwkvkukk wBvBuBAxx +++=+        (3) 

   
)()()()()(

)()()(

kkwkvkuk

kkk

zwDvDuDCx

zyy

++++=

+=
      (4) 

Where v is the measured disturbance and w is the 
unmeasured disturbance vector, z is the measurement 
noise. The adopted predictive control algorithm is quite 
analogous to LQG procedure, but with implication of the 
operational constraints. The prediction is made over a 
specific prediction horizon. Then the optimization 
program is executed on-line to calculate the optimal 
values of the manipulated variables to minimize the 
objective function below: 

∑∑
−

==

+++−+=
1

0

2

)()()()(
cH

i

pH

Hi

kikkikkikk

w

RQ ∆uryξ (5) 

The weighting coefficients (Q and R), control interval 

(Hw),   prediction horizon (Hp) and control horizon (HC) of 

the performance objective function will affect the 

performance of the controller and computation time 

demands. The terms r represents the demand outputs used as 

a reference for MPC model and ∆u is the change in control 

values for HC number of steps. Zero-order hold method is 

then used to convert the control signals from discrete time to 

continuous time to be fed to the plant. The inputs/outputs 

constraints are determined according to the power plant 
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operation restrictions, which are expressed as the maximum 

and the minimum allowable inputs: 

maxmin uuu ≤≤
   

(6)

 maxmin uuu ∆∆∆ ≤≤
  

(7) 

The optimization problem is to find the control moves for 

each manipulated variable, i.e. the MPC control law: 

 

)1k (
min

cH
k)

++∆∆ uu,...., (ξ subject to (6) and (7) 

 The quadratic programming (QP) solver, with active set 
method or interior point method, is commonly used to solve 
control law problem of the MPC. In the interest of predictive 
controllers for thermal power stations, the generalized MPC 
approaches and DMC algorithms are reported for control of 
power plants once-through and drum type units. 
[3][4][5][7][14][15][16][17]. To show the influences of coal 
mill control on the plant output responses, a controller is 
implemented to regulate the primary air fan and the other is 
implemented to regulate the coal feeder speed. Both receive 
the MPC coal flow signal as adjuster for their reference. 
With the MPC strategy described above, simulations have 
been conducted. The whole package of the proposed strategy 
is shown in fig.8. Simulation results are presented in the next 
section. 

 

       Fig.8 Predictive controller scheme 

V. SIMULATION STUDIES 

MPC tuning is finalized by selection appropriate values 
for the prediction horizon Hp, control horizon HC, and 
weighting matrices Q and R. The control interval, prediction, 
and control horizons are found to be 1, 35, 5seconds 
respectively. Q= [1 1 1] and R=[0.1 0.1 0.1]. Simulating 
different scenarios have lead to this selection. In this 
scenario, a step change of ±20MW in the power is assumed 
as set-point signal, the pressure set-point is rescheduled from 
look-up table which relates the power set-point to the 
pressure, and the temperature set-point is constant of 570Cº.  
In the reported results for Case A represent the improved 
case with using MPC as correction to the mill local control, 
boiler feedwater flow, and turbine valve controller and   
Case B represent existing milling and plant performance. 
From the reported results, the improvements are obvious in 
case of using the MPC without violating the practical 

constrains of the various plant variables. Thus the primary air 
fan and feeder speed can be regarded as other supplementary 
means to improve the power primary response, not only 
acting the turbine expansion valves.  

Furthermore, the boiler steam pressure and temperature 
have less fluctuation around the set-point which helps in 
extending the life of the equipment. The pulverized coal flow 
to the furnace, the feedwater flow, and valve position are 
mentioned in fig.10, more pulverized coal is discharged to 
the furnace from the mills per time unit which means more 
coal is combusted and more energy is delivered from the 
boiler to give quicker responses. Hence, the MPC and its 
associated strategy for reference correction control play an 
important role in improving the plant responses and 
satisfying the regulations of the national grid code. 
Especially when increasing the grinding capability of the 
mills and pulverized coal discharging speed. Fig.11 shows 
major mill variables. High mill differential pressure and 
primary air pressure are created to carry more coal flow to 
the burners. Also higher raw coal is initially dropped in the 
mill because of the improved feeder speed response.  The 
mass of raw coal and pulverized coal in the mill is higher to 
provide the required flow of pulverized coal in a timely 
manner. The only penalty which has been paid is that more 
current, and consequently, power is consumed from the mills 
to increase the grinding capability of the mills.  
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                 Fig.9 Controlled variables of the SCPP 

 

922



0 100 200 300
62

64

66

68

P
u
lv

e
ri
z
e
d
 C

o
a
l

F
lo

w
 (
K
g
/s

)

0 100 200 300
515

520

525

530

F
e
e
d
  
w

a
te

r 
F
lo

w
 (
K
g
/s

)

0 100 200 300

0.85

0.9

0.95

1

Time (min)

V
a
lv

e
 p

o
s
it
io

n
 (
p
.u

)

 

 

Case.B

Case.A

 

Fig.10 input variables to the boiler-turbine-generator system 
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Fig.11 variables of each mill in service 

VI. CONCLUSION AND FUTURE RESEARCH 

 In this paper, a complete power plant process model 

including fuel preparation milling process. The model 

prepared a platform for us to investigate the influences of 

mill control to the whole power plant responses. A new 

strategy of applying model predictive control is reported and 

the new contribution for the strategy is to use the MPC to 

update the control set-up/desired values instead of tuning 

the individual local loop controllers.  This improved the 

power plant responses over the existing control strategy. As 

a future recommendation, it is suggested to extend the 

method of modeling and control to ultra-supercritical power 

plant. 
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