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Abstract—Automatic control of fuel cell stacks (FCS) using non-

adaptive and adaptive radial basis function (RBF) neural 

network methods are investigated in this paper. The neural 

network RBF inverse model is used to estimate the compressor 

voltage for fuel cell stack control at different current demands, 

reduction in the compressor gain (30% and 20%) and manifold 

leak (15%) in order to prevent the oxygen starvation. A PID 

controller is used in the feedback to adjust the difference between 

the requested and the actual oxygen ratio by compensating the 

neural network inverse model output. This method is designed 

and conducted in three stages, starting with the collection of data 

from the available fuel cell stack model and finished with the non 

adaptive and adaptive RBF neural network control. RBF neural 

networks with the K-means and P-nearest Neighbour’s training 

algorithms are used for the investigation. Furthermore, the RBF 

inverse model is made adaptive to cope with the significant 

parameter uncertainty, disturbances and environment changes. 

Simulation results show the effectiveness of the adaptive control 

strategy. 

 

Keywords-Fuel cell stacks; Non-adaptive; Adaptive; Radial 

Basis Function Neural Network; Feed-forward; Feedback oxygen 

starvation. 

I. INTRODUCTION  

Burning current natural sources causes many environment 
problems today. A lot of harmful gases, such as CO2, rise in the 
environment as a result of burning fossil fuels and destructs the 
ozone layer, which leads to climatic change and what is known 
as the greenhouse effect. To recover this problem, the world 
has been looking for energy sources that are clean and safe on 
the environment. Fuel cells are a kind of clean and safe energy 
source on the environment. Polymer electrolyte membrane 
(PEM) fuel cells emerge as one of the most clean and 
promising alternatives to reduce fossil fuel dependency [1]. In 
the last years many researchers have presented some methods 
to control the fuel cell stacks, in order to prevent the oxygen 
starvation and improve the fuel cell control, which are now 
reviewed. Sedighizadeh M. [2] discussed the application of 
wavelet networks in the implementation of adaptive controllers 
for PEMFC’s. Jiang Z. et al. [3] presented an adaptive control 
strategy for active power sharing in the hybrid power source. 
This control strategy is able to adjust the output current set-
point of the fuel cell according to the state of the charge (or 
voltage) of the battery. An adaptive MPPT controller using the 

extrermum-seeking algorithm [4] is used to automatically keep 
the fuel cell working at maximum power point (MPP) all the 
time. Fiacchini M. et al. [5] is presented an adaptive control 
scheme for the safe operation of a fuel cell system. In 
particular, the aim of control action is to avoid that the oxygen 
ratio reaches dangerous values. In this paper adaptive and non-
adaptive control methods are implemented to achieve better 
control for the fuel cell breathing. Furthermore, in this paper, 
we first explain the fuel cell working principles followed by 
description of the dynamic model of fuel cell stacks. We then 
formulate the RBF adaptive and non adaptive model. Finally 
we demonstrate simulation results for the fuel cell control with 
adaptive and non adaptive controllers. 

II. FUEL CELL DYNAMICS 

A. Fuel Cell Working and prenceples  

Fuel cells consume a hydrogen fuel (on the anode side) and 

oxygen (on the cathode side) and produce electric energy with 

water and some heat through a chemical reaction [1], to satisfy 

different power requirements (Fig. 1). Generally, the reactants 

flow in and reaction products flow out while the electrolyte 

remains in the cell. Fuel cells differ from batteries in that they 

do not need recharging, they operate quietly and efficiently, 

and when hydrogen is used as fuel they generate only electric 

power and drinking water. So, they are called zero emission 

engines. William Grove discovered the basic operating 

principle of fuel cells by reversing water in 1839 [6].  In 

particular, proton exchange membrane fuel cells (PEM-FCs), 

also known as polymer electrolyte membrane fuel cells, are 

considered to be more developed than other fuel cells 

technologies, because they have high power density, solid 

electrolyte, operate at low temperature, long cell and stack life 

and low corrosion [6]. The PEM-FC takes its name from the 

special plastic membrane used as the electrolyte. This 

membrane electrode assembly (MEA), not thicker than a few 

hundred microns, is the heart of a PEM-FC and, when supplied 

with fuel and air, generates electric power at cell voltages 

around 0.7 Volt and power densities of up to about 1 W/cm 

electrode area. Fig. 2 shows a schematic of a PEM-FCS and 

MEA. The MEA is typically located between a pair of current 

collector plates (platinum-impregnated porous electrodes) with 

machined flow fields for distributing fuel and oxidant to the  
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Figure 1.   PME- FC reaction and structure 
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Figure 2.   PEM fuel cell structure 

 

 

anode and cathode, respectively. A water jacket for cooling is 

often placed at the back of each reactant flow field followed by 

a metallic current collector plate. The cell can also contain a 

humidification section for the reactant gases, which are kept 

close to their saturation level in order to prevent dehydration of 

the membrane electrolyte. Many FCs are connected electrically 

in series (Fig. 2) to form an FC stack (FCS).  
 

B. Fuel Cell Stack Model 

 The fuel cell stack (FCS) model simulated in this paper 

consists of four interacting sub-models (Fig. 3) which are the 

stack voltage, the anode flow, the cathode flow, and the 

membrane hydration models [6]. The voltage model contains 

an equation to calculate stack voltage based on fuel cell 

temperature, pressure, reactant gas partial pressures and 

membrane humidity, in summary, the fuel cell voltage E is 

given by   

 

)1(
2

1
)(51043085)29815(31085.02229.1 22 OHf ppfcTcTE 

 

where, Tfc is the fuel cell temperature in Kelvin, pH2  and pO2 

are the partial pressures of hydrogen and oxygen respectively, 

details in [1,6]. In this model the stack temperature is assumed 

to be constant at 80oC. The model which is used in our 

investigations is given in [6]. The FCS Simulink model is 

created in Matlab 6.5.  

 

 

Figure 3.  Simulink model of integrated PEM fuel cell 

III. FEED-FORWARD CONTROL DESIGN BASED  ON 

NN 

A. NN Inverse Model 

The radial basis function neural network (RBFNN) has an 

ability to model any non-linear function. However, this kind of 

neural network can need many nodes to achieve the required 

approximating properties [7]. The first step in the fuel cell 

modelling is the generation of a suitable training data set. The 

accuracy of the neural network modelling performance will be 

influenced by the training data. In the fuel cell stack data 

collection, the training data must be representative fuel cell 

behavior in order to analyze the performance of RBF fuel cell 

models in practical operating conditions. This means that input 

and output signals should sufficiently cover the region in which 

the system is going to be controlled [8]. As shown in Fig. 3, the 

fuel cell stack used for this research has to inputs compressor 

voltage vcm and the load current Ist, has three outputs (stack 

voltage SV, net power NP and oxygen ratio y=O2). A set of 

random amplitude signals (RAS) were designed (0~3000 

samples) for the fuel cell current load demand (Ist) and the 

compressor voltage (vcm) to obtain a representative set of input 

data. The RASs of the current load demand and fuel cell 

compressor voltage were bounded between 100 and 300 

Ampere for the current and between 100 and 235 volts for the 

compressor voltage see table I. Appling these two random 

input signals on the fuel cell model produces three outputs 

which are oxygen ratio (y), stack voltage (SV) and net power 

(NP) see table II and Fig. 4.  
 

TABLE I.  RAS INPUTS SIGNAL FOR cmv̂ MODELLING 

Parameters  Minimum Maximum 

vcm 100 Volts 235 Volts 

Ist 100 300 

TABLE II.  OUTPUTS SIGNAL FOR cmv̂ MODELLING 

Parameters  Minimum Maximum 

y=O2 0.7051 5.24 

SV 112.64 Volts 282.79 Volts 

PN 3850 6630 
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Figure 4.   Fuel cell stack parameters output after applied RAS of  Ist & vcm 

 

For RBF neural network training, the K-means algorithm 

is used to choose the centers, ρ-nearast neighbor algorithm 

decides the widths and the recursive training algorithm [9] 

calculates the weights for the output layer. Here, a RBFNN 

based inverse model is used to predict the compressor voltage 

)(ˆ kcmv which is the manipulated variable in the next sample 

time.The RBFNN block diagram is illustrated in Fig. 5, where 

the RBFNN input at sample k is a vector x(k) it also given by 

the following equation: 
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T
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Figure 5.  The RBFNN block diagram with Input variables 

where g(.) is the nonlinear neural network function and )(ˆ kcmv  

is the estimated compressor voltage. In order to train this neural 
network model, RASs were applied to the two fuel cell stack 
inputs Ist and vcm and data for the fuel cell were collected for 
O2, SV and PN at each sample time. The raw data were scaled 
using the following equation before training: 

],1[
)}(min{)}(max{

)}(min{)(
)( Ni

ixix

ixkx
kxscale 




  

The training data set with 2000 samples are used to train the 
RBFNN model. Then, the test set with 1000 is applied to the 
trained model and the model output prediction results are 
displayed in Fig. 6. The mean absolute error (MAE) is used to 
evaluate the modelling and control performance in this 
research, which is given by the following equation: 

)5()(
1

1
)()(ˆ

1

1



 


N

kcmcm
ke

N

N

k
kvkv

N
MAE

 
where )(ˆ kcmv is the prediction by the inverse neural 

network model and vcm is the compressor voltage. The )(ˆ kcmv  

in Fig. 6 is the normalized value and the MAE is 0.0142. The 
output of the neural network is nearly equal to the actual 
compressor voltage input.  This is because y(k-1), which can be 
calculated online at sample time k, was also used to predict the 
value of compressor voltage ).(ˆ kcmv  Also this inverse 

RBFNN model can predict the required )(ˆ kcmv for one sample 

step. The )(ˆ kcmv can be calculated according to (3). 

B. Non-Adaptive FF and FB Control Scheme  

The RBFNN-based non-adaptive feed-forward with 
feedback control system structure in our implementation is 
shown in Fig. 7. After trained the RBFNN inverse model and 
we got satisfy results. So, all the Recursive Least Square 
parameters (w(0),μ and ρ(0) will be saved in order to use them 
in non-adaptive and adaptive feed-forward controllers, then we 
will use this model in the feed-forward path to predict the 

scaled compressor voltage )(ˆ kcmv  and is given by (6). 

        wv Tkcm )(ˆ            (6) 

 So, to get the non scaled compressor voltage the (7) should 
be applied: 
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Figure 6.   vcm Validation data for RBFNN model MAE (Mean Absolute 

Errors=0.0142) 
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)minmax)(ˆmin)( cmcmcmcmcm vvkvvv k        (7) 

On the other hand, to enhance the performance in steady 
state, the PID controller is added to form the feedback 
controller. In this case the activating compressor voltage is the 
sum of two controller outputs variables, one is from the RBF 
based feed-forward neural network controller, the other from 
the feedback PID controller. The current demand changing 
during the control is shown in Fig. 8. The following digital PID 
controller equation is used in [9]: 
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After fine tuning, the PID controller that is used here with RBF 
based neural network controller for oxygen ratio regulation is  

)9()2(102.2)1(45)(585)1(
2

ˆ 4
)(   kekekeky

cm
v k

Here the sampling time is chosen to be 0.1sec. The measured 
oxygen ratio with time delay is the feedback signal of system. 

C. Adaptive FF and FB Control Scheme 

The different of the strategy of adaptive RBFNN based FF 
control of oxygen ratio is the widths and the weights will be 
updated at each sample time. The RBF-NN based adaptive 
feed-forward and feedback control system structure is 
illustrated in Fig. 9. After training the RBFNN inverse model 
and we got satisfy good match. The PID controller is added to 
form the feedback control as discussed in the non-adaptive 
control. 
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Figure 7.   RBFNN FF and PID controller on the FCs 
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Figure 8.  Fuel cell current demand changing during the control 
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Figure 9.   RBFNN FF and PID Controller on the Fuel Cell Stack 

IV. SIMULATION RESULTS  

The output responses simulation of the oxygen ratio for 

non-adaptive and adaptive RBFNN feed-forward control for 

fuel cell stack are illustrated in fig. 10 and 11, the significant a 

difference can be seen between the performances of the two 

controllers. The tracking MAE of oxygen for non-adaptive and 

adaptive are 0.0045 and 0.0036 respectively. 

A. Control Performance with 30% and 20%  Reduction in 

the Compressor Gain 

The compressor is a machine to press the air inside the 

cathode but in some cases there are some problems associated 

with the compressor, which leads to reduce efficiency of the 

compressor. 
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Figure 10.   Simulation Result of Non-Adaptive RBF-Based FF & FB Control 

on FCS Oxygen Ratio 
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Figure 11.   Simulation Result of Adaptive RBF-Based FF & FB Control on 

FCS Oxygen Ratio 
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Figure 12.  FCS Compressor Efficiency Fault Simulation 
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Figure 13.   Simulation Result of Non-Adaptive FF and FB Controller on O2 

with 30~ 20% Reduction in Compressor Gain 
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Figure 14.   Simulation of Adaptive FF and FB Control on O2 Ration With 

30~20% Reduction In Compressor Gain 

So, it needs regular maintenance because it contains gears and 
movement parts with oil circulation. When there is a problem 
in any part will affect on the efficiency of the compressor. The 
adaptive and non-adaptive RBFNN feed-forward controllers 
are evaluated with the current signal demand (Fig. 8) and the 
compressor gain reduction (Fig. 12). After reducing the 
compressor gain by 30% and 20% respectively, which will 
decrease the value of O2 flow into the FCS port, the non-
adaptive RBFNN model has a little capability to deal with this 
problem because it cannot retune itself according to this error, 
as a result it can’t overcome this change and its MAE is 0.0083 
(Fig. 13). However the adaptive RBF has the capability to 
retune itself to cope this situation and hence, achieves an 
improved control performance with a mean absolute error of 
0.0075 (Fig. 14). 

B. Control Performance with Compressor Gain Reduction 

and Manifold Leak 

 

Manifold leak is called component fault and to represent the 
air leakage fault, the manifold pressure equation in [6] is 
modified to (10): 

LWW
dt

dm
smcp

sm             (10) 

Where, Wcp is the inlet mass flow (compressor flow), Wsm is 
the supply manifold outlet mass flow and the added term ΔL is 
used to simulate the leakage from the supply air manifold, 
which decrease the air outflow from the manifold. ΔL =0 
represents no air leak in the intake manifold. The air leakage 
level is simulated as 15% of total air intake in manifold as 
shown in Fig.15, and was simulated by changing the Simulink 
model of the FCS. From the oxygen ratio output shown in Fig. 
16, the performance of non adaptive RBF FFC is acceptable 
and the MAE is 0.0126%. However, the performance of the 
adaptive RBF FFC as shown in Fig. 17 is better than the non 
adaptive. The adaptive RBF FFC can handle the manifold leak 
and therefore, achieves an improved control performance with 
mean MAE equal to 0.0090.  
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Figure 15.  Manifold leak error simulate  
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Figure 16.   Oxygen ratio control result of the non adaptive RBF FFC with 

compressor gain reduction and leak  

0 5 10 15 20 25 30
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Time(Sec)

F
C

S
 O

xy
ge

n 
O

ut
pu

t 
(y

O
2)

 

Figure 17.   Oxygen ratio control result of the adaptive RBF FFC with 

compressor gain reduction and leak  
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TABLE III.   EVALUATED  

Type of control method Mean Absolute Error MAE 

Non-adaptive RBFNN Control+PID 

controller 
0.0045 

Adaptive RBFNN +PID controller 0.0036 

Non-adaptive RBFNN Control+PID 

controller with compressor gain reduction 

30% and 20% 

0.0087 

Adaptive RBFNN Control+PID controller 

with compressor gain reduction 30% and 

20% 

0.0075 

Non adaptive RBFNN Control+PID 

controller with compressor gain reduction 

30% and 20% and the manifold leak 15% 

0.0126 

Adaptive RBFNN Control+PID controller 

with compressor gain reduction 30% and 

20% and the manifold leak 15% 

0.0090 
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Figure 18.   Comparing Adaptive and Non-Adaptive Control Performance 

when there is gain reduction 
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Figure 19.   Comparing Adaptive and Non-Adaptive Control Performance 

when there are gain reduction and manifold leak 

V. DISCUSSION 

From the Fig. 10 and 11 and the table III, when there is no 
reduction in the compressor gain, the RBFNN adaptive can 
give good performance than non-adaptive FFC with MAE 
equal to 0.0036 and 0.0045 respectively. However, reducing 
the compressor gain by 30% and 20% respectively, which will 
decrease the value of O2 flow into the FCS port, the non-
adaptive RBF controller has little capacity to deal with this 
situation because it was trained off-line and is fixed. As result 
it was unable to cope with an environment change see Fig. 13. 
However, the adaptive RBFNN can adjust the compressor 
voltage according to the real-time condition of the FCS and 
compensate for the influence of this system error after several 
sample times see Fig. 14. Fig. 18 show the comparison on 
oxygen ratio rates between Fig. 13 and 14. After that, the 

performance of the non adaptive and adaptive RBF FFC is 
evaluated with manifold leak Fig. 15 additional to current 
disturbance Fig. 8 and compressor gain reduction Fig. 12, the 
simulation results are as given in Fig. 16 and 17.  The adaptive 
performance also, has more capacity to overcome the 
environmental change than the non adaptive because it was 
trained on-line according to the error see table III and Fig. 19.  

 

VI. CONCLUSION AND FUTURE WORK 

This paper presents an adaptive and non-adaptive RBF 
control strategy to estimate the compressor voltage for fuel cell 
stack control to prevent fuel cell oxygen starvation and 
compressor surge during rapid load demands, gain reduction 
(30% and 20%) and manifold leak 15%. APID controller is 
used in the feedback to adjust the difference between the 
requested and the actual oxygen ratio by compensating the 
neural network inverse model output. When there is no 
reduction in the compressor gain the control strategy can adjust 
the compressor voltage of the fuel cell according to the current 
demand. From the other hand, when there is reduction (30% 
and 20%) in the compressor gain and 15% manifold leak. The 
non-adaptive RBF controller less ability than adaptive RBF 
controller because the adaptive was trained off-line, as a result 
it was unable to cope with an environmental changes. 
Furthermore, the adaptive RBFNN is able to adjust the 
compressor voltage to adapt to the real-time condition of the 
FCS and compensate for the influence of this system error after 
several sample times. The simulation results show the 
effectiveness of the adaptive control strategy.  
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