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Abstract—This paper proposes a scheme for mixing enhance-
ment in the boundary layers of pressure-driven membrane
systems. This scheme uses an external electric field to activate the
ions in the area adjacent to the membrane surface and generate
an electro-osmotic flow. This scheme should reduce fouling and
concentration polarization close to the membrane surface and
may increase productivity of membrane systems. The objective
of the feedback control design for this system needs to determine
the voltage (and waveform) applied to the electrodes so that the
electric field can effectively increase the mixing in the vicinity of
membrane surface, while saving control power. This paper uses a
mixing index in terms of the spatial gradients of the perturbation
velocity field, which describes the mixing caused by both length
stretching and folding. An optimal control problem is defined
to maximize mixing in the area adjacent to the membrane and
achieve control energy efficiency. In addition, the efficacy of the
feedback scheme is validated by Computation Fluid Dynamics
(CFD) simulation. The given control law not only solves the
optimal problem but also provides the desired waveform for such
applications.

I. I NTRODUCTION

Most solid surfaces in contact with water or an aqueous
solution will be found to develop some type of electrical
charge. The mechanisms that a surface acquires an electrical
charge include preferential solution of surface ions, direct
ionization of surface groups, substitution of surface ions,
specific ion adsorption and so on [1]. The electrical charges
gather on the solid surface and form an electric double layer.
Physically, the two layers of ions align on the surface and
lead to concentration polarization. In the membrane system in
seawater filtration or brackish water filtration, the membrane
can considered as a solid surface. Concentration polarization
will result in fouling formed on the surface of the membrane.

Fouling and concentration polarization reduce the through-
put and productivity of membrane systems and significantly
increase operating costs. This in turn reduces the profitability
of water treatment processes including desalination and recy-
cling. Despite much work and improvement in the design and
operation of membrane systems, throughput and productivity
continue to be plagued by fouling and concentration polariza-
tion. Amongst the mechanisms that have been proposed to re-
duce fouling and concentration polarization, for example, feed
pre-treatment [2], membrane surface modification or cleaning
[3], reduction of solute concentration at the membrane surface

by mixing enhancement in the flow offers the most promising
way. Mixing enhancement in the vicinity of membrane sur-
face can reduce concentration polarization in the region and
hence lessen the chance of forming fouling. As a result, the
throughput of membrane increases. This paper proposes a new
approach to the reduction of solute concentration and fouling
at the membrane surface based on producing electro-osmotic
flow (EOF) instability.

Electric field is able to activate the ions in a solution
to induce an electro-osmotic flow. This paper uses this fact
to develop a new approach which enhances the mixing in
the area adjacent to the membrane surface, via the use of
electric field to generate an EOF in this area. Many results
on using electric field to motivate electro-osmotic flows have
been reported, for example, [4], [5], [6], [7], [8]. Distinct
from most of these results which moves the ions in the whole
channel like flow transport, the electric field in this scheme
will mostly act on the boundary layer close to the membrane
surface, where concentration polarization and fouling occur.
This should enable us to use less energy to achieve mixing
enhancement and hence it may be more energy efficient than
existing electro-kinetic methods.

As mentioned in [9], mixing includes several types: the
mixing of a single or similar fluids caused by stretching and
folding of fluid; the mixing governed by diffusion and chem-
ical reaction; the mixing caused by breakup and coalescence
of fluid. Due to the variety of reasons leading to mixing, there
are different mixing indices. Amongst these types, the mixing
caused by fluid stretching and folding is the one of interest
in the context of this paper. To describe this type of mixing,
[9] gives a strict definition of stretching length based on the
gradient of relative velocity, which is an important measure of
mixing. Specifically, this stretching length uses the stretching
tensor to describe mixing. Alexiadis et al [10] uses the vorticity
or spin gradient tensor to describe the mixing induced by the
vortices (folding) in the circumstance of membrane channel
containing circular spacers. This paper adds up these two
mixing measures and establishes a new mixing index.

In [11], [12], an objective function involving turbulent
kinetic energy and a measure of the spatial gradients of
turbulent velocities is used as the cost functional of an optimal
flow control problem and maximizing this cost functional leads

894

UKACC International Conference on Control 2012 
Cardiff, UK, 3-5 September 2012 

978-1-4673-1558-6/12/$31.00 ©2012 IEEE



to mixing enhancement. This cost functional includes a Frobe-
nius norm of the gradient of relative velocity (perturbation
velocity). This term reflects the stretching of fluid elements
explicitly but the folding measurement is implicit. This term
is positively related to mixing but it is not proportional to that
of enstrophy which is said to be more related to mixing. In this
paper, we further explore the Frobenius norm of the gradient
of perturbation velocity and use it as our new mixing index.

The mixing enhancement within the area adjacent to the
membrane surface leads to the increase of the throughput of
the membrane. This suggests that the mixing within this small
vicinity is much more important than that in the bulk solution;
i.e., the effect of the electric field will mostly apply to the
boundary layer of the system. In this paper, we focus our
attention on the mixing enhancement in this rectangular area.
This requires us to relate the boundary control action to the
mixing in this area. Gauss’s divergence theorem states that
the outward flux of a vector field through a closed surface is
equal to the volume integral of the divergence of the region
inside the surface[13]. Based on Gauss’s divergence theorem,
[11], [12] proposes a heuristic flow control methods which
convert a mixing increase problem in a 3D pipe to a boundary
control problem. This paper relates the electric field close to
the membrane surface to the perturbation velocity and their
spatial gradients inside the surface and hence transforms the
problem into a boundary control problem.

In addition, the electric field used to activate the fluid flow
in the vicinity is generated from a pair of electrodes, which
are installed outside the membrane. This restricts us from
manipulating the distributive value of electric field when we
construct the feeding voltage. Once the electrodes are fixed,
the spatial distribution of this electric field is fixed, viz., the
voltage will not affect the shape of this distribution. This paper
uses the integral of electric field strength on the membrane
surface to construct the feedback control law. This makes
the results of this paper distinct from those in [12], where
distributive flow injection is used.

To improve the energy efficiency, we integrate the perturba-
tion kinetic energy, the new mixing index and the control effort
to define a cost functional and formulate an optimal problem
for the fluid flow control problem for membrane systems. This
requires that the control candidates solve such an optimal
problem and maximize the cost functional. In addition, the
efficacy of the proposed mixing enhancement scheme and the
given control law has been validated by CFD simulations. CFD
is a widely used tool for the studies of membrane system.
This reliable tool is utilized in order to gain insight into the
phenomena taking place inside membrane modules, to assist
the design process and improve the performance of modules.

This paper is organized as follows: Section 2 presents a
new mixing index and the theory of enhancing mixing in the
area adjacent to the membrane surface. This section includes
the main results of this paper. Sections 3 uses CFD simula-
tions to illustrate the efficacy of the newly developed mixing
enhancement scheme and the control law; Section 4 gives a
brief conclusion to the paper. To simplify our presentation, the

proof of the main result is given in the Appendix.

Membrane

W0 =Uin

y

x
x= x0

U(t)

x= xl

y= 0

y= δ0

Fig. 1. The rectangular region close to the membrane surface.

II. OPTIMAL FEEDBACK CONTROL FORM IXING

ENHANCEMENT IN THE BOUNDARY LAYER OF MEMBRANE

SYSTEM

In this section, a special scheme is developed, which uses
an external electric field to stir up the flow in the area adjacent
to the membrane surface and thereby increase the mixing in
this area. As mentioned above, different from the previous
methods which increase mixing in the whole channel [11],
the new method restricts the influence of the external electric
field in a region adjacent to the boundary layer. The electrodes
are installed outside the membrane and the electric field does
not activate the bulk flow in the channel. This reduces energy
consumption and brings economic advantages to engineering
practice.

As shown in Fig.I, the system we consider in this paper
contains a rectangular channel, a piece of membrane installed
on the bottom wall and a pair of electrodes. The electrodes are
installed to generate the required voltage. An ions solution is
fed into the channel from its inlet. The purpose of this research
is to develop a control algorithm which generates the voltage
signal (voltage and waveform) applied to the electrodes.

This study aims to enhance the mixing of fluid flow in area
adjacent to the membrane surface and thereby reducing fouling
and concentration polarization on the membrane. Because the
purpose of this research is to explore the effect of the electric
field on the flow in the area, it is reasonable to assume that
the membrane is impermeable in our simulation study. We also
assume that the bulk flow in the channel is a laminar flow. In
addition, we use the velocity gradient∂wx

∂y on the membrane
surface as the measurements of our system to be controlled.

In the channel, fluid flow satisfies the Navier-Stokes equa-
tion and the continuity equation

∂W
∂ t

+(W ·∇)W =− 1
ρ

∇P+
µ
ρ

∆W, (1)

div(W) = 0. (2)

We assume that a velocity field(W̄, P̄) = (W̄x,W̄y,W̄z, P̄) is a
steady state solution of the equations (1) and (2) corresponding
to fully developed laminar flow in the channel. The solution
to the equations (1) and (2) can be obtained analytically. For
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example,(6Uin(1− y2

h2 ),0,12µUin
L−x
h2 ) is a solution for the

system in our simulation. Here,Uin is the fluid velocity at
the inlet of the channel,µ is the viscosity of the fluid,h and
L are the height and the length of the channel. We can take
these velocity components as the time-averaged values of the
velocity field. Now, we define the perturbation variables

w = (wx,wy,wz) = W − W̄, p = P − P̄. (3)

Substituting these variables into the equations (1) and (2), the
Navier-Stokes equation and continuity equation become

∂w
∂ t

+
(

W̄ ·∇
)

w+(w ·∇)W̄ +(w ·∇)w =− 1
ρ

∇p+
µ
ρ

∆w,

(4)
div(w) = 0. (5)

in the domainΩ= {(x,y,z) = [x0,xl ]× [−h/2,h/2]}wherexl −
x0 is the length of the region we consider.

We define a rectangular prism[x0,xl ]× [0,δ ], as shown
in Fig. I, which contains all the flow being perturbed by
the external electric field. Technically, it requires that the
perturbation velocity components and the spatial gradients of
the perturbation velocity field are all zeros on the surface
y = δ ; i.e., the flow on and above this surface will not be
perturbed by the electric field. Also, on the upstream and
downstream sides of the rectangular prism, i.e., atx= 0 and
x = xl , the perturbation velocity components and the spatial
gradients of the perturbation velocity field are also zero.

As the boundary condition on the membrane surface in-
volves actuating the control law, it is worthy discussing the
actuation scheme of the control at the first place. According
to [5], [14], when an electric field is applied, the charges in
the electric double layer induce fluid flow in the area adjacent
to the membrane surface. As the boundary layer is very thin,
the fluid flow on the membrane surface explains most effect of
the electric field. Therefore, it is reasonable to assume that the
external electric field only induces fluid flow on the membrane
surface, rather than iny direction. The induced flow velocity
is called slip velocityus and can be expressed as the product
of electro-osmotic mobilityµEO and the local electric field
E as −→u s = µEO

−→
E = εζ

µ
−→
E where ζ is the zeta potential,ε

is the permittivity, andµ is the viscosity of the fluid. In the
context of this paper, the velocity−→u s and the electric field−→
E both take thex-axial direction as positive direction and the
reverse direction as negative. Then, we write the slip velocity
simply us= µEOE = εζ

µ E. Therefore, the effect of the electric
field on the fluid flow is transformed into a slip velocity on
the membrane surface and the control problem becomes a
boundary control problem.

Now, we can define the boundary condition for the equation
(4). The equation (4) needs to satisfy the following boundary
conditions on the rectangular prism[x0,xl ]× [0,δ ]

x= x0:wx = 0, wy = 0, ∂wx
∂x = 0, ∂wx

∂y = 0, ∂wy
∂x = 0, ∂wy

∂y = 0;
x= xl : ditto;
y= δ : wx = 0, wy = 0, ∂wx

∂x = 0, ∂wx
∂y = 0, ∂wy

∂x = 0, ∂wy
∂y = 0;

y= 0: wx = us, wy = 0.

The boundary conditions on the surfacey = δ are also the
conditions for selectingδ .

In this section, we assume that the measurement of the
system to be controlled,∂wx

∂y |y=0 is known for constructing
feedback control signal.

To facilitate the development of the new mixing enhance-
ment approach, we define two concepts: perturbation kinetic
energy and mixing index. The perturbation kinetic energy,
which is equivalent to the turbulent kinetic energy as defined
in [11] when turbulence is the main cause of mixing, is defined
as

E (w) =
1
2

∫

Ω
|w|2dV =

1
2

∫ xl

x0

∫ δ

0

∫ zr

0

(

w2
x +w2

y +w2
z

)

dxdydz.

(6)
The mixing in this paper is defined as a measure of the spatial
gradients of the perturbation velocity field:

M(w) =

∫

Ω
|∇w|2 =

∫

Ω
Tr{∇wT∇w}dV. (7)

Previously, Ottino [9] defined a stretching mixing rates as

dL
dt

=

∫

Ω
Tr

(

ΦTΦ
)

dV, (8)

whereΦ = 1
2

(

∇w+(∇w)T
)

.

DefiningΨ= 1
2

(

∇w− (∇w)T
)

, then, the mixing estimation
parameter in [10], which mainly reflects the extent of mixing
caused by vortices, can be rewritten in the following form

dΛ
dt

=

∫

Ω
Tr

(

ΨT Ψ
)

dV. (9)

It is obvious that (7) is the sum of (8) and (9):

M(w) =

∫

Ω
|∇w|2dV =

∫

Ω
Tr

(

ΦTΦ
)

dV+

∫

Ω
Tr

(

ΨTΨ
)

dV

That is, the mixing index (7) describes the mixing caused by
both length stretching and folding induced by perturbations.

The proposed mixing enhancement scheme uses electric
field to induce perturbations to the boundary layer. Fluid
stretching and vortices account for most of the mixing caused
by the perturbations. Therefore, the new mixing index can
be used to describe the extent of the mixing caused by the
perturbation in the circumstance of this paper. It is worth
pointing out that this mixing index describes the mixing
enhancement due to the perturbation caused by EOF and it
does not reflect mixing inherent in the steady-state system
and related to the original velocity gradients and momentum
diffusion.

The control actuation of the proposed scheme is imple-
mented through a pair of fixed electrodes and this gives the
electric field a special distribution. This makes the proposed
methods distinct from the flow control scheme in the litera-
tures, for example, [12]. Based on aforementioned actuation
mechanism, the slip velocity

us =U(t) f (x), (10)
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whereU(t) is the voltage applied to the electrodes, which is
generated from our control algorithm, and

f (x) =C1

[

x− l1
(x− l1)2+C2

− x− l2
(x− l2)2+C2

]

describes the distribution of the electric field with the parame-
tersC1 =

εwζ

2µ ln

(

li,2−li,1−rc
rc

) , andC2 = (hm+ rc+∆y)2. Here,rc is

the radius of electrodes,hm is the thickness of membrane and
∆y is the distance between the electrode and the membrane
outside. The other constantsεw, ζ , µ are the permittivity, zeta
potential, viscosity, respectively. DefineF =

∫ xl
0 f 2(x)dx, then

F =
∫ xl

0
C2

1

[

x− l1
(x− l1)2+C2

− x− l2
(x− l2)2+C2

]2

dx

=C2
1

∫ xl

0

[

x− l1
(x− l1)2+C2

]2

dx−2C2
1

∫ xl

0

x− l1
(x− l1)2+C2

×

x− l2
(x− l2)2+C2

dx+C2
1

∫ xl

0

[

x− l2
(x− l2)2+C2

]2

dx. (11)

Now, we calculate the term on the right side of
the equation (11) one by one. First we calculate
the first term on the right side of (11). From the

fact that
[

x−l1
(x−l1)2+C2

]2
=

[

Ax+B
(x−l1)2+C2

]′
+

[

Cx+D
(x−l1)2+C2

]

where A = − 1
2, B = 1

2 l1, C = 0, D = 1
2 and ‘′’

means derivative, it follows that
∫ xl

0 C2
1

[

x−l1
(x−l1)2+C2

]2
=

[

−1/2x+1/2
(x−l1)2+C2

]xl

0
+ 1

2
√

C2
arctan x

2
√

C2
|xl−l1
−l1

= − xl−1
2(xl−l1)2+2C2

−
1

2(l21+C2)
+ 1

2
√

C2
arctanxl−l1

2
√

C2
− 1

2
√

C2
arctan −l1

2
√

C2
. In the same

way, we have

∫ xl

0

[

x− l2
(x− l2)2+C2

]2

dx=

[−1/2x+1/2
(x− l2)2+C2

]xl

0

+
1

2
√

C2
arctan

x

2
√

C2
|xl−l2
−l2

=− xl −1
2(xl − l2)2+2C2

− 1

2(l22 +C2)
+

1

2
√

C2
arctan

xl − l2
2
√

C2

− 1

2
√

C2
arctan

−l2
2
√

C2
.

The second term on the right side of (11) x−l1
(x−l1)2+C2

×
x−l2

(x−l2)2+C2
= Ax+B

(x−l1)2+C2
+ Cx+D

(x−l2)2+C2
whereA= 0 andB, C, D

are the solution of the following linear equations




2(l2− l1) 1 1
l21 − l22 −2l2 −2l1

0 l22 +C2 l21 +C2









C
B
D



=





2
−2(l1+ l2)

2l1l2



 .

Then, we can calculate
∫ xl

0
x−l1

(x−l1)2+C2
× x−l2

(x−l2)2+C2
dx =

B√
C2

arctan x
2
√

C2
|xl−l1
−l1

+ C1
2 ln[(x − l1)2 + C2]

xl
0 + (D −

Cl2) 1
C2

arctan x
2
√

C2
|xl−l2
−l2

and thus F can be integrated
analytically. From the above calculation, we can see that if
the electrodes are installed, the distribution of the strength
of the external electric field has been determined andF is a

constant; i.e., the voltage is the only design variable of the
electric field.

Now, we define the main problem to be solved in this
section:

Problem A: The optimal feedback control problem is
defined as finding an appropriateU(t) for the control law
us(x, t) =U(t) f (x), to maximize the following cost functional

J(u) = lim
t→∞

[

E (w(t))+
∫ t

0

(

µ
ρ

M(w)+Γ(w(t))

−α
∫

Ω̄
u2

s(τ)dA− µ2

4ρ2Fα

(

∫

Ω̄
f (x)

∂wx

∂y
(τ)dA

)2
)

dτ

]

.

(12)

whereΩ̄ is the surfacey= 0, andα > 0 is a constant related
to the amplitude ofU(t), which is used to adjust the applied
voltage.

In the cost functional (12), the first term describes the
perturbation kinetic energy of the flow; the second term is the
mixing index; the third term describes the stretching caused
by laminar flow and its definition is given in the Appendix
The rest two terms will be explained in the following.

The following theorem gives a solution to Problem A:
Theorem 1:Given a constantα > 0, the control law

U(t) =− µ
2ραF

∫

Ω̄
f (x)

∂wx

∂y
dA (13)

solves Problem A. Also, the slip velocity

us(x, t) =− µ
2ραF

f (x)

(

∫

Ω̄
f (x)

∂wx

∂y

)

dA (14)

is the boundary condition on the lower wall of the channel in
the system (4) and (5).

The proof of this theorem is given in the Appendix.
Here, U(t) is a continuous signal. The amplitude of this

voltage signal isUA = ‖ µλ
2ρ

(

∫

Ω̄ f (x) ∂wx
∂y

)

/F‖. Here, the for-

mula of U(t) is not an explicit function of timet but the
system dynamics behind∂wx

∂y implies U(t) is a function oft.

The term ∂wx
∂y itself is a function of time. In the area close to

the membrane surface, the absolute perturbation velocity|wx|
decreases iny direction and hence the sign∂wx

∂y is opposite to
that of wx. Since the output is fed back to the control input,
the output penalty works in conjunction with the input penalty
to minimize control effort.

III. S IMULATIONS AND M IXING MEASUREMENTS

In this section, the fluid dynamics of the EOF in a membrane
system are simulated using ANSYS CFX to validate the
efficacy of the control feedback approach; i.e., to test the effect
of mixing enhancement in the vicinity of the membrane.

In the simulation, we consider the 2D case and use a channel
with L = 0.11m and heighth = 0.004m. The electrodes are
cylindrical and hm = 0.00025m, rc = 0.005m. The distance
between the two electrodes is 0.015m.

Because the purpose of the simulation is to validate the
mixing enhancement in the area adjacent to the membrane

897



surface when the electric field is applied, we assume that the
membrane is impermeable. In our simulation, we also used
the following parameters for the system:hm= 0.00025m,µ =
0.001kg·m−1 · s−1, ρ = 1000kg·m−3, ζ = 0.02kg·m2 · s−3 ·
A−1, rc = 0.005m,εw = 7.0832×10−10m−3 ·kg−1 ·s4 ·A2. The
feeding flow velocity to the channel is a typical velocity in
membrane systems used in water treatment,W̄x = 0.14m·s−1.
In our simulation, the constant is selected asα = 0.008, the
Reynolds number of the flow is 280, and the step time is
10−5s.

To give the system an initial perturbation, we first apply
an oscillating voltage to the system, and then run the CFD
simulation using the feedback control law given in this paper.
The feedback is calculated using (13). As shown in Fig. 2, the
simulation results show that the feedback oscillates around
zero over time. The mixing extent caused by the electric field
is measured byM(w), which is the integral of spatial gradients
of the perturbation velocity field overΩ. As the electric field is
the only perturbation in the channel,Ω is selected as to contain
all the perturbations in the channel. Fig. 3 shows the mixing
effect of the mixing enhancement scheme, in comparison with
case without electric field (M(w) = 0). The mixing index has
a scale of 10−6) in Fig. 3. This is because the system itself has
a scale of 10−6. As shown in Fig. 3, the mixing index also has
oscillating features and this shows that the mixing is caused
by the input voltage. Therefore, this illustrates the efficacy of
the proposed mixing enhancement scheme and control law.

0.05 0.1 0.15 0.2
−1500
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−500
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V
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Fig. 2. The feedback control signal of the closed-loop system.

IV. CONCLUSION

This paper has proposed a method for mixing enhancement
in the vicinity of the membrane surface and increasing the
productivity of the membrane system. A new mixing index
has been defined and incorporated into the cost functional of
an optimal control problem. This paper uses the integral of
an electric field distribution function to handle the actuation
problem due to fixed electric field distribution and distributive
slip velocity. An optimal control problem has been defined
in this paper and the control law given in this paper solves
this optimal problem and maximizes the cost functional. A

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

x 10
−6

Simulation Time (sec)

M
ix

in
g 

In
de

x 
V

al
ue

 

 

Fig. 3. The mixing index value when the control law (13) is applied to the
system.

CFD simulation has been used to demonstrate the effect of
the control law on mixing in the vicinity area adjacent to
the membrane and has illustrated the efficacy of the proposed
method. It also illustrates that the control law gives the desired
waveform for such applications.

APPENDIX

A. Proof of Theorem 1:

The proof includes two parts: calculating the derivative
of turbulent kinetic energy and verifying that the control
maximizes the cost functional (12). We first consider the time
derivative of the perturbation kinetic energy

β =
d
dt

E(w) =
∫

Ω

∂w
∂ t

·wdV

=−
∫

Ω

((

W̄ ·∇
)

w+(w ·∇)W̄
)

·wdV−
∫

Ω
(w ·∇)w ·wdV

−
∫

Ω

1
ρ

∇p ·wdV+
∫

Ω

µ
ρ

∆w ·wdV. (15)

Now, we consider the terms on the right side one by one.

−
∫

Ω
(w ·∇)w ·wdV =−1

2

∫

Ω
∇(w ·w)wdV

=−1
2

∫

Ω
div ((w ·w)w) =−1

2

∫

∂Ω
[(w ·w)w] ·ndA.

On the surfacesx = x0,x = xl and y = δ , w = [wx;wy] = 0.
This results that[(w ·w)w] = 0. As w is perpendicular ton on
the surfacey= 0, the right side of the above equality is equal
to zero. Therefore,−∫

Ω (w ·∇)w ·wdV = 0.
By the divergence theorem of Gauss,− 1

ρ
∫

Ω ∇p ·wdV =

− 1
ρ
∫

Ω div(pw)dV = − 1
ρ
∫

∂Ω pw ·ndA. As w = 0 on the sur-
facesx = x0,x = xl and y = δ and the fact thatw ·n = 0 on
the surfacey= 0, we have− 1

ρ
∫

Ω ∇p ·wdV = 0.
Consider the fourth term on the right side of (15). Using the

Einstein summation notation,
∫

Ω
µ
ρ ∆w ·wdV =−2∇wi ·∇wi −

wi(∆wi)]dV = µ
ρ
∫

Ω
1
2∆(wiwi)dV − µ

ρ
∫

Ω |∇w|2dV.

The term1
2

µ
ρ
∫

Ω ∆(wiwi)dV= 1
2

µ
ρ
∫

∂Ω(∇|w|2) ·ndA. On∂Ω,
asw= 0 on the surfacesx= x0,x= xl andy= δ , we only need
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to consider the surfacey= 0 wheren=− j. From the fact that
wy|y=0 = 0, it follows that

1
2

µ
ρ

∫

Ω
∆(wiwi)dV

=−1
2

µ
ρ

∫ zr

0

∫ xl

x0

2

(

wx
∂wx

∂y
+wy

∂wy

∂y

)

y=0
dxdz

=−µ
ρ

∫ zr

0

∫ xl

x0

(

wx
∂wx

∂y

)

y=0
dxdz.

Let Γ=
∫

Ω ((W̄ ·∇)w+(w ·∇)W̄) ·wdV. Consider that̄Wy =
∂W̄y
∂y =

∂W̄y
∂x = 0 and our problem is two dimensional, we have

Γ(w) =

∫

Ω

(

W̄x
∂wx

∂x
wx+W̄x

∂wy

∂x
wy+wy

∂W̄x

∂y
wx

)

dV.

Then, we can conclude that

dE(w(t))
dt

=−Γ(w)− µ
ρ

∫ zr

0

∫ l

0
wx

∂wx

∂y
|y=0dxdz− µ

ρ
M(w).

Now, we substitute this result into the cost functional (12)
and prove that the control law (13) maximizes this cost
functional.

1
2

µ
ρ

∫

Ω
∆(wiwi)dV

=−1
2

µ
ρ

∫ zr

0

∫ xl

x0

2

(

wx
∂wx

∂y
+wy

∂wy

∂y

)

y=0
dxdz

=−µ
ρ

∫ zr

0

∫ xl

x0

(

wx
∂wx

∂y

)

y=0
dxdz.

Let Γ=
∫

Ω ((W̄ ·∇)w+(w ·∇)W̄) ·wdV. Consider that̄Wy =
∂W̄y
∂y =

∂W̄y
∂x = 0 and our problem is two dimensional, we have

Γ(w) =

∫

Ω

(

W̄x
∂wx

∂x
wx+W̄x

∂wy

∂x
wy+wy

∂W̄x

∂y
wx

)

dV.

Then, we can conclude that

dE(w(t))
dt

=−Γ(w)− µ
ρ

∫ zr

0

∫ l

0
wx

∂wx

∂y
|y=0dxdz− µ

ρ
M(w).

Now, we substitute this result into the cost functional (12)
and prove that the control law (13) maximizes this cost
functional.

J(us) = lim
t→∞

[

E (w(t))+
∫ t

0

(

−dE(w(t))
dτ

−Γ(w(t))

− µ
ρ

∫

Ω̄
us

∂wx

∂y
|y=0dA+Γ(w(t))−α

∫

Ω̄
u2

s(τ)dA

− µ2

4ρ2Fα

(

∫

Ω̄
f (x)

∂wx

∂y
(τ)|y=0dA

))2

dτ

]

= E (w(0))+ lim
t→∞

[

∫ t

0

∫

Ω̄

(

−µ
ρ

us(τ)
∂wx

∂y
|y=0dA

−α
∫

Ω̄
u2

s(τ)dA

− µ2

4ρ2Fα

(

∫

Ω̄
f (x)

∂wx

∂y
(τ)|y=0

)

dA

)2

dτ

]

.

Furthermore, we have

J(us) = E (w(0))+ lim
t→∞

[

∫ t

0

(

µ
ρ

∫

Ω̄
−U(t) f (x)

∂wx

∂y
|y=0dA

−αU(t)2F − µ2

4ρ2Fα

(

∫

Ω̄
f (x)

∂wx

∂y
(τ)|y=0dA

)2
)

dτ

]

= E (w(0))+ lim
t→∞

αF
∫ t

0

[

−U(t)
αF

(

µ
ρ

∫

Ω̄
f (x)

∂wx

∂y
|y=0

)

dA

−U(t)2− µ2

4ρ2α2F2

(

∫

Ω̄
f (x)

∂wx

∂y
(τ)|y=0dA

)2
]

dτ

= E (w(0))

− lim
t→∞

F
∫ t

0

(

U(t)+
µ
ρ

1
2αF

∫

Ω̄
f (x)

∂wx

∂y
|y=0dA

)2

dτ. (16)

WhenU(t) =− µ
2ραF

∫

Ω̄ f (x) ∂wx
∂y |y=0dA, the integral in (16)

is zero. Then, the maximum of (12) is achieved. Therefore,
(14) holds. This completes the proof.�
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