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 Abstract— In this paper, a quantitative model based method 

is proposed for early fault detection and diagnosis of wind 

turbines. The method is based on designing an observer 

using a model of the system. The observer innovation signal 

is monitored to detect faults. For application to the wind 

turbines, a first principles nonlinear model with pitch angle 

and torque controllers is developed for simulation and then a 

simplified state space version of the model is derived for 

design. The fault detection system is designed and 

optimized to be most sensitive to system faults and least 

sensitive to system disturbances and noises. A multi-

objective optimization method is then employed to solve 

this dual problem. Simulation results are presented to 

demonstrate the performance of the proposed method. 

Keywords- fault detection; observer; wind turbine; sensor 

monitoring 

I.  INTRODUCTION  

Faulty components in wind turbine can cause high loses 
in energy production and possible damage to the wind 
turbines. The losses may be higher for offshore wind farms. 
This decreases the reliability and increases the cost of 
maintenance of the wind turbines. Figure 1 shows the 
percentage breakdown of the number of failures that 
occurred during the years 2000-2004 [1]. Most failures were 
linked to the electrical system followed by sensors and 
blades/pitch components. 

Wind turbine fault monitoring that is a means to avoid 
abnormal event progression and reduces productivity loss, 
system breakdowns and damage. It increases safety and 
reliability of the system to achieve higher performance. 

Fault diagnosis methods surveyed in literature can be 
classified into two general categories, quantitative and 
qualitative methods. In quantitative method, the 
understanding is expressed in terms of mathematical 
functional relationships between the inputs and outputs of the 
system in the form of system descriptions. In qualitative 
method, the relationships are expressed in terms of 
qualitative functions between different components of the 
system. This approach usually depends upon the knowledge 
from experts in both the normal and fault cases.  

This paper proposes an observer-based Fault Detection 
and Isolation (FDI) method using a multi-objective 
optimisation procedure. The paper is organized as follows: 
Next section is concerned with the requirements for 
designing an observer and theoretical residual generation. 
Linear state space model of the wind turbine is presented in 
section III. Multi-objective optimization genetic algorithm is 
briefly described in section IV. Fault modelling, observer-

based FDI and simulation results are demonstrated in section 
V. Finally, the conclusion is drawn in section VI. 

 

 

Figure 1 The distribution of a number of failures for Swedish 
wind turbines between 2000-2004 [1] 

II. OBSERVER BASED FAULT DETECTION  

A.  Observer Design  

The system described by equation (1) is used to design an 

observer. The mathematical description of the observer is the 

same as the system except that the observer has an additional 

term, the gain K(t), which is continuously correcting the 

system output and improves the state estimates. The observer 

is defined in equations (2). 

 

 
( ) ( ) ( )

( ) ( ) ( )

x t Ax t Bu t

y t Cx t Du t

= +

= +

ɺ
 (1) 

 
ˆ ˆ ˆ( ) ( ) ( ) ( )[ ( ) ( )]

ˆ ˆ( ) ( ) ( )

x t Ax t Bu t K t y t y t

y t Cx t Du t

= + + -

= +

ɺ
 (2) 

where x, u, y are the state, input and output of the system 

of dimension n, m and r and A, B, C and D are system 

matrices of appropriate dimensions. Define the difference 

between ( )x t and ˆ( )x t  as the state error vector (residual), 

e(t), thus the dynamic error  can be written as: 

 

 ˆ( ) ( ) ( ) ( )e x t x t A KC e t= - = -ɺɺ ɺ  (3) 
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For fault monitroing purposes, a weighted residual is 

defined as follows: 

 ( ) ( )r t QCe t=  (4) 

where Q is residual weighting matrix. 

Equation (3) illustrates the dynamic behaviour of the 
innovation siganl and this is governed by the eigenvalues of 
the matrix (A-KC). If the matrix A-KC is stable, the error 
will tend to zero or a constant. If the eigenvalues are chosen 
in such a way that the dynamic behaviour of the error is 
asymptotically stable and adequately fast, then any error will 
tend to zero with sufficient speed. This is possible by 
choosing an appropriate value for K to achieve the stability, 
when the system is completely observable [2]. 

B.  Residual Generations 

Assume the system is fully observable. The system 
dynamics with faults and disturbance modelscan be written 
as: 

 1

2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x t Ax t Bu t R f t d t

y t Cx t Du t R f t

= + + +

= + +

ɺ
 (5) 

where f(t) represents the fault vector and considered to be 
an unknown function of time. The vector d(t) is the 
disturbance vector. The matrices R1 and R2 are the fault 
distribution matrices.  

Using equation (2) and (5), the estimation error and the 

residual can be written as: 

 

 
1 2( ) ( ) ( ) ( ) ( )e A KC e t d t R f t KR f t= - + + -ɺ  (6) 

 
2( ) [ ( ) ( )]r t Q Ce t R f t= +  (7) 

Taking Laplace transform of Equation (7) gives: 
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-
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where e(0) is the initial value of the state estimation error.  

The effect of the faults on the signal r(t) can be 

maximized using the following performance index in 

frequency domain [3]: 

 1 2

2
[ , ]

1 1

1 2

( , ) sup {[ (

                            ) ( )] }

fJ K Q QR QC j I A

KC R KR

ω ω ω

σ ω
Î

- -
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 (9) 

where σ {.} denotes the maximal singular value. 

The disturbance effects on the residual can be minimised 
using the following performance index:  

 1( ) || ( ) ||
d

J K A KC -
= -  (10) 

  Sensor, actuator and component fault matrices can be 
represented as: 

 

1

2

0

0

R
senseor fault

B actuator fault

I component fault

R
I senseor fault

D actuator fault

component fault

=

=
 (11) 

Thus we can rewrite fault indices 
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The problem can now be stated as minimising the criteria 
in (12), (13) and (14) subject to the system dynamics in (5). 
This is a multi-objective optimisation problem and hence 
genetic algorithm is proposed to solve the problem. 

III. STATE SPACE MODEL OF THE WIND TURBINE 

Mathematical models for the main components of 
nonlinear 5MW wind turbine system, particularly 
aerodynamic, two-mass drive train, DFIG generator and their 
controllers are developed and validated in previous work [4]. 
The linear state space matrices for a 5 MW wind turbine 
defined at wind speed 10 m/s is are follows : 

Table I description of parameters of the wind turbine [4] 

DESCRIPTION SYMBOL DESCRIPTION SYMBOL 

Turbine inertia JT Leakage coefficient 
 

Gearbox ratio ng Stator current  id, iq 

Generator inertia JG Pitch angle β
 

Torsional stiffness Ks Desired pitch angle 
dβ

 

Torsional damping Cs Mechanical torque Twt 

Synchronous speed 
sω  Electrical torque Te 

Stator resistance Rs Control torque 
c

eT
 

Rotor resistance Rr Control rotor voltages vdr ,vqr 

Stator inductance Ls Wind turbine speed 
wtω

 

Rotor inductance Ls Generator speed 
mω

 

Mutual inductance Lm 
Stator voltage vs 

Gearbox ratio ng 

σ
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where and  Kc=0.8383. D is zeros matrix.   

The states x, inputs u and outputs y are defined as: 

 , 

 , 

  

The physical variables and parameters are described in 
table I. 

 

IV. MULTI-OBJECTIVE OPTIMIZATION VIA MULTI 

OBJECTIVE GENETIC ALGORITHM APPROACH   

Multi Objective Genetic Algorithm (MOGA) is used to 
minimise the objective functions. It is more suitable than 
other approaches such as genetic algorithm because an 
equality constraint is not required to apply with MOGA [5]. 
The method finds the solution of problems with two or more 
objectives to be satisfied all together.  Often, such objectives 
are in conflict with each other, and are expressed in different 
units. Because of their nature, multi-objective optimization 
problems normally have not one but a set of solutions, which 
are called Pareto points or pareto optimal solutions [8].  

In order to design the observer, MOGA is used to solve 
the multi-objective optimization problem defined as follows. 
Here we need to minimise two objective functions Jsf(K,Q) 
and Jd(K), with nxm decision variable. Mathematically, the 
problem can be written as: 

Define:  

F(X) = [F1(X); F2(X)]  

where   F1(X)= 1/Jsf(K,Q) and F2(x)=Jd(K),  given that   max 
Jsf(K,Q)= min (1/Jsf(K,Q) and X={x1,……, xnxm} is a vector 
of decision variables. 

The problem is to minimise F(X) subject to: 

F1
j
(X) ≤ 0 and F2

k
(X) ≤ 0. 

F1
j
 (X):  jth inequality constraint evaluated at X 

F2
k
(X) : kth equality constraint evaluated at X 

In the vector function F(x), some of the objectives may 
be in conflict with others, and some have to be minimized 
while others are maximized. The constraints define the 
feasible region X, and any point x∈X is a feasible solution. 
There is rarely a situation in which all F(X) have an optimum 
in X at a common point. Therefore, in the absence of 
preference information, solutions to multi-objective 
problems are compared using the notion of Pareto 
dominance. 

Without loss of generality, in a minimization problem for 
all objectives, a solution X1 dominates a solution, X2 if the 
two following conditions are true: 

• X1 is no worse than X2 in all objectives, i.e., fi(X1) ≤ 
fi(X2) 

• X1 is strictly better than X2 for at least one objective, i.e., 
fi(X1) < fi(X2).  

Then, a solution is said to be Pareto-optimal if it is not 
dominated by any other possible solution, as described 
above. Thus, the Pareto-optimal solutions to a multi-
objective optimization problem form the Pareto front or 
Pareto-optimal set [9]. 

The performance indices Jsf(K,Q) and Jd(K)  are functions 
in K and Q. Therefore, the parameters set to be designed are 
the observer gain matrix and residual weighting factor 
matrix. The matrix K must achieve the stability of the 
observer and optimisation of the performance indices. 
Ackermann’s formula is used to parameterize the matrix K 
[2].  
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where desired eigenvalues are defined as: 
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2

1

121 )())(( ⋯⋯  

To improve the design desired eigenvalues are assigned 
in predefined regions to meet stability and response 
requirements as in equations[10]: 

2

i i i i ip L (U -L )sin ( ), i=1,...,nx= +  

Li ≤ pi ≤  Ui   

where  
Ui=[-6 -10 -1 -3 -8.5 -14]; Li=[-8 -12 -2 -4 -9.5 -20]; 

where Ui and Li are the lower and higher limits for the 
eigenvalues respectively. Index xi can be freely selected. 
Constrained performance indices have now been transformed 

T
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into unconstrained as a function of X, where K(x1, x2, x3, x4, 
x5, x6) and Q=[x7 x11 x15 x19; x8 x12 x16 x20;  x9 x13 x17 x21; x10 
x14 x18 x22]. 

The Matlab Genetic Algorithm Toolbox was utilised. The 
tuning parameters were set as follows: Initial range of 
variables= [0; 10000],   population size: 75, number of 
generations: 200.  

MOGA solver can accept one or more plot functions 
through the options argument. This feature is useful for 
visualizing the performance of the solver at run time. Figure 
2(b) is the Pareto front, which plots the Pareto front at every 
generation. Figure 2(a) is the score diversity for each 
objective.   

From Figure 2, there is only one optimal value on the 
Pareto front figure, that gives Jsf(K,Q)=infinity and Jd(K) = 
258. The eigenvalues at these indices P and matrix K, 

residual weighting factor matrix Q are: 

0.012 -7.6e-06 3.7e-08 7.3e-10

0.0001 -2. -0.017 -1.8e-14

-0.0003 15.26 -0.016 3.6e-14

0.182 -4338.1 17.35 -2.2e-11

-2.2e-09 1.2e-15 -672 -0.40

-2.2e-09 1.4e-15 11.03 -7.32

K

 
 
 
 

=  
 
 
 
 

 

 

4426 4495 7814 5446

3015 4094 6897 1503

3836 3872 4308 8549

5144 6240 6211 5673

Q

 
 
 =
 
 
 

 

 

 

Fig. 2 Pareto front and the number of individuals for sensor and disturbance 

performances indices. 

V. OBSERVER-BASED SENSOR FDI SCHEME  

A successful FDI should be accompanied by a fault 
isolation procedure to isolate a particular fault from others. 
For example, to determine in which sensor, actuator or 
component the fault happened. Observer-based residual 
generator approach is suitable for detecting a fault [6], but to 
isolate the fault, a method is proposed here as follows.. 

A. Fault Model 

Faults are modelled as unknown change in signals as an 
additive fault. This fault can be classified according to their 

source as an actuator )(tu∆ , sensor )(ty∆  or component 

)(tuc∆  faults [3]. Figure 3 shows the effect of additive 

faults on the observed signals of the inputs and outputs. The 
component faults affect both the true output and the observed 

output (
c

oy ). The observed signals for the input and output 

can be rewritten as below. 

 ( ) ( ) ( ) ( )
o

u t u t u t u tδ∆= + +  (19) 

 ( ) ( ) ( ) ( )c

o o c c
y t u t u t u tδ∆= + +  (20) 

 
0

( ) ( ) ( ) ( )c

o
y t y t y t y tδ∆= + +  (21) 

where 
0( )u t , 

0
( )c

y t  and ( )oy t are the actuator, component 

and sensor outputs respectively. 

 

Fig. 3 A diagram for the additive faults, where ( )u tδ and ( )cu tδ  denote 

the actuator and component disturbance signals respectively. ( )y tδ is a 

sensor noise signal.   

B. Design of Observer-based Sensor FDI  

To design a robust observer-based sensor FDI, we assumed 
that only one sensor fault occurs, all actuators and 
components are fault free. Then from equations (5) and (11) 
the system equation can be expressed as: 

 
2

( ) ( ) ( ) ( )

( ) ( ) ( )

x t Ax t Bu t d t

y t Cx t R f t

= + +

= +

ɺ
 (22) 

Then the residual generator can be created for each sensor as: 

 
2( ) [( ( ) ( ))( )]

k m k
r t Q Ce t R f t C C= + -  (23) 

where k is the number of the measurement sensor,  Ck is 
obtained from the matrix C by deleting zero columns and 
assuming kth row equal zero. Cm is the matrix C without zero 
columns.  

From equation (23), it is obvious that each residual 
generator is driven making all other residuals equal zero.   
From above a robust and observer based sensor FDI schemes 
is designed as shown in figure 4. Each sensor residual (rk) is 

separated from the output of the residual (r) by ( ) -m kr x C C
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, and then dimension of rk is modified using Qk. The 
advantage of this approach is that it uses only one observer 
comparing with other approaches, which use a bank of 
observers such as a structured residual set designed by a 
dedicated or a generalized observer scheme [6].    

For simulation, the values of the residual weighting 
factors are selected as follows: 

 1 2
3 410

100 1000

Q Q
Q Q Q= = = =  (24) 

Q are then obtained using the Method of Multi Objective 
Genetic Algorithm. Q1, Q2, Q3 and Q4 are residual 
weighting factors for pitch angle, rotor speed, generator 
speed and torque sensors, respectively 

C. Simulation Results  

Simulation Results are shown in Figs. 5 to 8. The faults 
are applied by multiplying the sensor signal by 1.05, i.e. an 
increase of 5% at 200s, and the transient period is neglected. 
Fig. 5 shows the residual norm of the pitch sensor increased, 
when there is a fault. Fig. 6 is for a fault occurred in rotor 
speed sensor; the residual norm of the rotor and generator 
rotational speed sensors detects the faults. Fig. 7 for a fault 
occurred in generator speed sensor and Fig. 8 for a fault 
occurred in the generator torque sensor. The speed of the 
fault detection is very fast. Consequently, from figures 5, 6, 7 
and 8, we can construct the Boolean decision table as shown 
in Table II. If a fault occurs, we can compare the results with 
this fault signature table and decide the location of the fault 
as shown in the Fig. 4. Therefore, fault detection and 
isolation are achieved.   

 

Figure 4 A robust sensor FDI scheme. r1, r2, r3 and r4 represent pitch angle, 

rotor speed, generator speed and generator torque residuals respectively. r 

contains residuals for all sensors.  

 

For a specific fault, we can now find its location using 
the following thresholds: 

 
( ) | | ( ) 1

( ) | | ( ) 0

k k k

k k k

r t T f t

r t T f t

> Þ =

£ Þ =
 (25) 

where Tk is the threshold. fk(t)  sensor fault. k=1,2 ,3 ,4 (for 

pitch angle, rotor speed, generator speed and torque sensors).  
 

Table II Boolean decision for sensor faults 

 

Residual 

Pitch 

residual 

Rotor 

speed 

residual 

Generator 

speed 

residual 

Electrical 

torque 

residual 

Pitch fault 1 0 0 0 

Rotor speed 

fault 
0 1 1 0 

Generator 

speed fault 
0 1 1 1 

Electrical 

torque fault 
0 0 0 1 

VI.  CONCLUSIONS 

A robust observer-based sensor fault detection and 
isolation scheme is developed for wind turbine. This scheme 
is systematic and easy to design and implement. Simulation 
results proved that it is very suitable for detection and 
isolation faults in sensors and simple to handle multiple 
faults.    

The advantage of the proposed approach is that it 
depends on only one observer comparing with other 
approaches, which use a bank of observers such as a 
structured residual set designed by a dedicated or a 
generalized observer scheme. 
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APPENDIX A: SIMULATION RESULTS OF THE ROBUST SENSOR 

FDI SCHEME. 

 
Fig. 5  Residual norm when a fault occurs in the Pitch angle sensor. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7 Residual norm, when a fault occurs in generator speed sensor. 
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Fig. 6 Residual norm, when a fault occurs in rotor speed sensor Fig. 8 Residual norm, when a fault occurs in the generator torque sensor. 
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