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Abstract— MLE(Maximum Likelihood Estimation) is widely
applied in system identification because of its consistency,
asymptotic efficiency and sufficiency. However gradient-based
optimization of the likelihood function might end up in lo-
cal convergence. To overcome this difficulty, the non-local-
minimum conditions are very useful. Here we suggest a heuristic
method of constructing local minimum examples for ARMAX,
ARARMAX and BJ models. Based on them the derivation of
non-local-minimum conditions can be inspired by analyzing
these examples.

I. INTRODUCTION

Many methods have been presented in the area of
system identification, such as MLE[1][9], frequency domain
analysis[11] and subspace method[12]. Amongst them,
maximum likelihood estimation is one of the most popular
approaches.

The idea of MLE introduced by [7] and further proven
by [14] is to obtain the maximum likelihood estimate θ̂ML
through maximizing the likelihood function or minimizing
its corresponding natural negative logarithmic form. An
efficient method is gradient descent search [9] which is
applied extensively in optimization. However the if the
landscape of the objective function has at least one local
minimum, the gradient search may get stuck in local
convergence when badly initialized. In this case, the MLE
will produce wrong system information. Hence so-called
non-local-minimum conditions[15] have been developed to
judge whether there exists any local minimum.
N.B. To clarify the difference between the global and local
minimum, here we refer the local minimum to the “false”
non-global minimum as in [9].

An innovative method to derive non-local-minimum
conditions can be described as follows. First of all, we
design so-called “local minimum examples”, i.e. the
particular model structures with local minima. Secondly, via
tuning the model dynamics or the input signals etc of such
examples in simulation, the condition which affects the local
minimum existence can be tested. At last we analyze such
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condition theoretically in order to derive the corresponding
non-local-minimum condition. In this paper we only look at
the first step and make some suggestions on the design of
local minimum examples.

The structure of this paper is organized as follows.
Next section explains the background of MLE. In section
3 the general methodology of the construction of local
minimum examples is provided. Section 4 shows details of
local minimum examples construction for open loop OE,
ARMAX, ARARMAX and BJ models respectively. In
section 5, simulation examples for each model above are
given. Section 6 summarizes our contributions and points
out the future works.

II. BACKGROUND OF MAXIMUM LIKELIHOOD
ESTIMATION

To illustrate the concept of MLE, Ljung [9] lets the
observations represented by the random variable yN =
(y(1), y(2), . . . , y(t), . . . , y(N)) which takes values in RN

and the PDF (Probability Density Function) of yN by
fy(θ̂ ,yN). If the observed value of yN is yN

∗ , the probability
that the observation should take the value yN

∗ is proportional
to

fy(θ̂ ,yN
∗ ) (1)

This is a deterministic function of θ̂ which is known as the
likelihood function. A reasonable estimator θ̂ or explicitly
θ̂ML can be chosen so that the observed event becomes “as
likely as possible”. That is

θ̂ML(yN
∗ ) = arg max

θ̂
fy(θ̂ ,yN

∗ ) (2)

where the maximization is performed for fixed yN
∗ . This

function is known as maximum likelihood estimator.

Such an estimator is reasonable because of its three
advantages: firstly it provides a consistent estimate
asymptotically, i.e.

θ̂ML → θ with probability 1 (3)

for different model structures, e.g. [2], [4]. This property is
known as consistency [14]. Secondly the covariance of θ̂ML
is lower bounded by the inverse of Fisher information matrix,
i.e.

E[θ̂ML −θ ][θ̂ML −θ ]T ≥ (−E
[

d2

dθ̂ 2
log fy(θ̂ ,yN)|θ̂=θ

]
)−1

(4)
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where the equality holds asymptotically. This property is
known as asymptotic efficiency [5]. Here E represents the
mathematical expectation. Thirdly assume S(yN) is a suffi-
cient statistic. According to the Factorisation Theorem, (1)
can be rewritten to

fy(θ̂ ,yN
∗ ) = Ψ(S(yN

∗ ), θ̂)h(yN
∗ ) (5)

and further transformed into its logarithmic form

log fy(θ̂ ,yN
∗ ) = logΨ(S(yN

∗ ), θ̂)+ logh(yN
∗ ) (6)

Maximizing fy(θ̂ ,yN
∗ ) with respect to θ̂ is equivalent to

maximising logΨ(S(yN
∗ ), θ̂) with respect to θ̂ . This implies

fy(θ̂ ,yN) depends on yN through every sufficient statistic
S(yN). This property of MLE is sufficiency [7].

In the scope of this paper only MLE in open loop is
considered. In Fig.1, a general open loop process is shown.
We assume the system dynamics can be described by the
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Fig. 1. General Linear Model Structure of SISO Open Loop Systems

common family of model structures[9]

A(q)y(t) =
B(q)
F(q)

u(t)+
C(q)
D(q)

e(t) (7)

We also assume that the estimate model is governed by

Â(q)y(t) =
B̂(q)
F̂(q)

u(t)+
Ĉ(q)
D̂(q)

ε(t, θ̂) (8)

where the polynomials Â(q), B̂(q), Ĉ(q), D̂(q) and F̂(q) are
rational functions characterized by

Â(q) = 1+ â1q−1 + . . .+ âna q−na (9)

B̂(q) = b̂1q−1 + . . .+ b̂nb q−nb (10)

Ĉ(q) = 1+ ĉ1q−1 + . . .+ ĉncq−nc (11)

D̂(q) = 1+ d̂1q−1 + . . .+ d̂nd q−nd (12)

F̂(q) = 1+ f̂1q−1 + . . .+ f̂n f q−n f (13)

In the notations above, u(t), y(t) and e(t) are the input,
output and noise signal respectively. The super-index “ ˆ ”
represents the estimates. Combining (7) and (8), the one-
step-ahead prediction error ε(t, θ̂) can be expressed as

ε(t, θ̂) =
D̂(q)
Ĉ(q)

(
Â(q)B(q)
A(q)F(q)

− B̂(q)
F̂(q)

)u(t)+
Â(q)C(q)D̂(q)
A(q)Ĉ(q)D(q)

e(t)

(14)

Its generation is shown in Fig. 2. The estimate coefficient
vector θ̂ = [â1 . . . âna b̂1 . . . b̂nb ĉ1 . . . ĉnc d̂1 . . . d̂nd f̂1 . . .
f̂n f ]

T and the true parameter θ in a similar manner are
defined. It is worthwhile to point out that if necessary we
will also use the notations [A(q) B(q) C(q) D(q) F(q)] and
[Â(q) B̂(q) Ĉ(q) D̂(q) F̂(q)] to represent θ and θ̂ respectively.
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Fig. 2. Generation of Model Based One-step-ahead Prediction Error ε(t, θ̂)

To clarify different model structures used in this paper,
their definitions are provided in TABLE I. According to it,

Model Structures Characteristics
ARMAX[2] D(q) = F(q) = 1

ARARMAX[9] F(q) = 1
OE[6] A(q) =C(q) = D(q) = 1
BJ[4] A(q) = 1

TABLE I
DEFINITIONS OF MODEL STRUCTURES

ARMAX and OE models can be produced by ARARMAX
and BJ models via choosing D(q) = 1 and C(q) = D(q) = 1
respectively. For reference convenience, we omit the forward
shift operator (q) and its frequency domain interpretation
(e jω) when there is no misunderstanding. In addition, we
define an auxiliary notation

d(X̂ ,Ŷ ) = X(q)Ŷ (q)− X̂(q)Y (q) (15)

where X̂(q) and Ŷ (q) are the corresponding estimate
polynomials of X(q) and Y (q).

The following assumptions are postulated through out
this paper:
(AP1). The input u(t) persistently exciting of relevant
system orders is deterministic and periodic or filtered white
noise [13].
(AP2). The noise signal e(t) and true prediction error ε(t,θ)
are identical independent distributed subject to N(0,σ2)
where the variance is known.
(AP3). The true polynomials A, C, D, F and estimated
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polynomials Â, Ĉ, D̂, F̂ all have the roots inside the unit
circle.
(AP4). The orders of estimate polynomials are equal to
the true ones, i.e. na = n̂a, nb = n̂b, nc = n̂c, nd = n̂d and
n f = n̂ f .
(AP5). The number of data N goes to infinity.

Next let us derive the likelihood function for yN which is
described by the estimate model (8). Assume ε(t, θ̂) has
the PDF fe(ε(t, θ̂), t, θ̂). According to the joint PDF for
the observations yN provided in Lemma 5.1 in [9], the
likelihood function turns to be

fy(θ̂ ,yN) =
N

∏
t=1

fe(ε(t, θ̂), t, θ̂) (16)

Maximizing (16) is equivalent to minimizing

− 1
N

log( fy(θ̂ ,yN)) =− 1
N

N

∑
t=1

log fe(ε(t, θ̂), t, θ̂) (17)

When θ̂ = θ holds, i.e. ε(t, θ̂) = e(t). Then the random func-
tion fe(ε(t, θ̂), t, θ̂) turns to be a Gaussian density function.
Thus (17) can be simplified into the loss function

VN(t, θ̂) =
1

2N

N

∑
t=1

ε2(t, θ̂) (18)

The value of VN(t, θ̂) is stochastic with fixed θ̂ and a small
N. It is hard to analyze the property of VN(t, θ̂) in this case. In
order to avoid this difficulty, combining (AP5) we introduce
the asymptotic loss function

V (θ̂) = lim
N→∞

VN(t, θ̂) with probability 1 (19)

in the following instead of VN(t, θ̂). Note that (AP1), (AP2),
(AP3) and (AP4) ensure the existence of V (θ̂) [13]. For
convenience we replace limN→∞

1
N ∑N

t=1 with the symbol Ē.
Then

V (θ̂) =
1
2

Ēε2(t, θ̂) (20)

holds. Since
Ēε2(t, θ̂)≥ Ēε2(t,θ) (21)

stands under (AP2), maximum likelihood estimator can be
obtained by the minimization of (20).

III. METHODOLOGY

The methodology of local minimum design originates
from [8]. Goodwin et al define the DEPEN(Decreasing
Euclidean Parameter Error Norm) region as Γ in parameter
space. Its elements θ̂ are those which will get closer to the
true parameter θ in the Euclidean sense when an infinitesimal
step is taken along the negative gradient direction of V (θ̂).
For such region, it holds that
Lemma 1[8]. θ̂ ∈ Γ if and only if the inner product between
θ̃ = θ̂ −θ and V ′(θ̂) is positive, i.e.

θ̃ TV ′(θ̂)> 0 (22)

Proof: Let θ̂i denote the current estimate. The SDS(Steepest
Descent Search) can be expressed as

θ̂i+1 = θ̂i −ζiV (θ̂i) (23)

[9] where ζi is the step size. Subtracting θ from both sides
gives

θ̃i+1 = θ̃i −ζiV (θ̂i) (24)

Squaring both sides provides

θ̃ T
i+1θ̃i+1 = θ̃ T

i θ̃i −2ζiθ̃ T
i V ′(θ̂i)+ζ 2

i (V
′(θ̂i))

TV ′(θ̂i) (25)

When ζi is sufficiently small, we could neglect the last term
on the right side of (25) and prove the lemma. �

According to (22), those θ̂ circled by the dash-line
belong to the DEPEN region in Fig. 3 since θ̃ and V ′(θ̂)
point at the same direction. Conversely, SDS starting off at
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 ∧
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Fig. 3. Illustration of DEPEN Region and POI

points like θ̂1 which satisfies

θ̃ T
1 V ′(θ̂1)≤ 0 (26)

could possibly converge to the nearest local minimum θ̂2.
We call such θ̂ini point of interest or POI and the dash-line
circled landscape constituted by POI the region of interest.
To sum up, the construction of local minimum examples
can be transformed into the design of POI satisfying (26)
followed used in SDS as the initial value.

Remarks:
(1). In Fig. 3, the directions of the two arrows starting at
θ̂ represent the sign of θ̃ and V ′(θ̂) respectively which are
both scalars on the two-dimensional plot.

(2). The search may also possible converge to other
kinds of stationary point, such as the saddle point.

IV. LOCAL MINIMUM EXAMPLES DESIGN

In this section we review how to construct local minimum
examples for OE models[13] first and then implement the
method described in section 3 to design local minimum
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examples for ARMAX, ARARMAX and BJ models.

For open loop OE models

y(t) =
B
F

u(t)+ e(t) (27)

according to the form of the prediction error ε(t, θ̂) in (14),
its asymptotic loss function can be derived as

V (θ̂) =
1
2

Ē
[(

B
F
− B̂

F̂

)
u(t)

]2

+
1
2

Ē[e(t)]2 (28)

Söderström suggested that optimizing (28) with respect to b̂
firstly, V (t, θ̂) can be transformed into the pseudo-asymptotic
function[?]

Ṽ ( f̂ ) =
1
2
(V0 −V1( f̂ )TV2( f̂ )−1V1( f̂ )) (29)

where

V0 = Ē
[

B
F

u(t)
]2

+ Ē[e(t)]2 (30)

V1( f̂ ) = Ē[
B
F

u(t)]
[

1
F̂

u(t − i)
]

1 ≤ i ≤ nb (31)

V2( f̂ ) = Ē
[

1
F̂

u(t− i)
][

1
F̂

u(t− j)
]T

1 ≤ i, j ≤ nb (32)

Here f̂ = [ f̂1 . . . f̂n f ]
T .

[
1
F̂

u(t − i)
]

and
[

1
F̂

u(t − j)
]

are

n f -column vectors. Since V2( f̂ ) is positive definite, the
following inequality

Ṽ ( f̂ )≤ 1
2

V0 (33)

always holds. The equality only holds when V1( f̂ ) = 0. If
the curve of Ṽ ( f̂ ) = 1

2V0 bisects the stability region of f̂ ,
normally there is at least one minimum at each side of the
curve.

The POI of ARMAX and BJ models are more or
less related to the local minimum of the OE models. This
can be seen as follows.

Design of POI for ARMAX models: Assume the following
OE model

y(t) =
B(q)
F(q)

u1(t)+ e(t) (34)

has a local minimum at [B̂1 F̂1]. Then we design the provi-
sional ARMAX model

Ap(q)y(t) = Bp(q)up(t)+Cp(q)e(t) (35)

where 
Ap(q) = F(q)+δ (q),
Bp(q) = B(q),
Cp(q) = F(q),
up(t) = αu1(t).

(36)

Here α is a positive coefficient attached before the input
signal to adjust the SNR(Signal-to-Noise-Ratio)[?][?] and
δ (q) is a deviation polynomial

δ1q−1 +δ2q−2 . . .+δnaq−na (37)

introduced to avoid the overlap between OE and ARMAX
models. The selection of it yields to

∀
√

δ 2
1 + . . .+δ 2

na
< ξ s.t. θ̃ TV ′(t, θ̂)≤ 0 at [F̂1 B̂1 F̂1] (38)

where ξ is a small positive scalar. SDS initialized at
θ̂ = [F̂1 B̂1 F̂1] probably converges to the nearby local
minimum [Â2 B̂2 Ĉ2].

Design of POI for ARARMAX models: Suppose the
ARMAX model (35) has a local minimum [Â2 B̂2 Ĉ2]. For
the following ARARMAX model

Apy(t) = Bpu3(t)+
Cp

Dp
e(t), (39)

where the input signal is

u3(t) =
1

Dp
u(t), (40)

the equalities

θ̃ TV ′(θ̂) =
1
π

∫ π

0
ℜ(

C
Ĉ
)(|G1|2Φuu(ω)+ |G2|2σ2)dω

= 0 (41)

[8][?] hold at θ̂ = [Â2 B̂2 Ĉ2 Dp]. Here

G1 =
d(B̂, Â)

AĈ
G2 =

d(Ĉ, Â)
AĈ

(42)

Therefore SDS initialized at such point converges to the
nearby stationary point [Â3 B̂3 Ĉ3 D̂3]. To ensure it is a local
minimum, we only apply those Dp which let the Hessian
matrix of the stationary point positive definite.

Design of POI for BJ models: It also starts from (34)
which has the local minimum [B̂1 F̂1]. For the following BJ
model

y(t) =
B
F

u2(t)+
C
D

e(t), (43)

where B and F are the same polynomials as in (34) and the
input signal

u2(t) =
C
D

u1(t). (44)

The inner product of θ̃ and V ′(θ̂) is equal to zero at
[B̂1 C D F̂1]. Hence SDS initialized at this point θ̂ =
[B̂1 C D F̂1] converges to the nearby stationary point
[B̂2 Ĉ2 D̂2 F̂2] differing from the global minimum. To ensure
it is a local minimum point, again we only adopt those
polynomials C and D which make the Hessian matrix of
[B̂2 Ĉ2 D̂2 F̂2] positive definite.
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V. SIMULATION EXAMPLES

In this section we give a local minimum example for each
model above. In all examples, the length of all data points N
is 10000. Noise signal e(t) has unit variance. For ARMAX,
ARARMAX and BJ example, SDS based on (23) initialized
at the POI is applied iteratively until the condition

|V (θ̂i)−V (θ̂i−1)|
V (θ̂i)

< 0.0005 (45)

is met or a maximum iteration number 20 is reached.
Example 1: The dynamics of the OE model is given as{

B = q−1

F = 1−1.2q−1 +0.36q−2 (46)

The input signal is

u1(t) = (1−0.72q−2 +0.1296q−4)v1(t) (47)

Here v1(t) is i.i.d Gaussian signal with unit variance. The
contour of Ṽ ( f̂ ) is shown in Fig. 4. The curve Ṽ ( f̂ ) =

1
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Fig. 4. The Contour of Ṽ ( f̂ ) for Example 1

1.76619 bisects the stability triangle where the coefficients
f̂1 and f̂2 satisfy [10]

−1 < f̂2 < 1 (48a)

f̂1 −1 < f̂2 (48b)

− f̂1 −1 < f̂2 (48c)

into two subsets. Each subset has one minimum. They are

θ = [1 −1.200 0.360]T (global minimum) (49a)

θ̂1 = [−0.121 1.419 0.670]T (local minimum) (49b)

Example 2: Given an ARMAX model where
Ap(q) = (1−1.2q−1 +0.36q−2)+δ (q)
Bp(q) = q−1

Cp(q) = 1−1.2q−1 +0.36q−2

(50)

The input signal of the system is

up(t) = 0.3u1(t) (51)

where u1(t) is the input signal used in example 1. At

θ̂ = [1.419 0.670 −0.121 1.419 0.670]T (52)

selecting
δ (q) = 0.2q−1 +0.09q−2 (53)

makes
θ̃ TV ′(θ̂) =−0.0305 (54)

which implies (38) satisfied. Starting from (52), SDS con-
verges to the following stationary point

Â2 = 1+1.304q−1 +0.5435q−2

B̂2 =−0.1035q−1

Ĉ2 = 1+1.386q−1 +0.6022q−2

(55)

after four iterations. Its Hessian matrix
7.07 −5.99 0.14 −7.94 6.50
−5.99 7.07 −0.05 7.16 −7.94
0.14 −0.05 0.33 −0.16 0.02
−7.94 7.16 −0.16 9.11 −7.92
6.50 −7.94 0.02 −7.92 9.11


is positive definite. The trace of loss function in SDS is
shown in Fig. 5.

Example 3: For such ARARMAX model which has
the same Ap, Bp and Cp with in example 2, we assign its
Dp and input signal as Dp = 1+0.8257q−1

u3(t) =
1

Dp
up(t)

(56)

SDS starting at θ̂ = [Â2 B̂2 Ĉ2 Dp] eventually ends at the
stationary point

Â3 = 1+1.312q−1 +0.5464q−2

B̂3 =−0.1035q−1

Ĉ3 = 1+1.377q−1 +0.6009q−2

D̂3 = 1+0.815q−1

(57)

after five iterations. The Hessian matrix of this point
7.06 −5.98 0.14 −7.67 6.37 4.72
−5.98 7.06 −0.05 6.73 −7.67 −3.85
0.14 −0.05 0.32 −0.16 0.03 0.12
−7.67 6.73 −0.16 8.43 −7.25 −5.03
6.37 −7.67 0.03 −7.25 8.43 4.11
4.72 −3.85 0.12 −5.03 4.11 4.13


is positive definite. The trace of loss function in SDS is
shown in Fig. 6.

Example 4: The true polynomials of this BJ model
are 

B = q−1

C = 1+0.6428q−1

D = 1−0.6616q−1 +0.1792q−2

F = 1−1.2q−1 +0.36q−2

(58)

Its input signal is

u2(t) =
C
D

u1(t) (59)
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Let SDS begins at θ̂ = [B̂1 C D F̂1]. After eight steps of
iteration, SDS ends up at the following local minimum point

B̂2 =−0.0804q−1

Ĉ2 = 1+0.6927q−1

D̂2 = 1−1.062q−1 +0.4294q−2

F̂2 = 1+1.398q−1 +0.6252q−2

(60)

Its Hessian matrix
7.13 −1.95 −0.37 −0.94 −0.41 −0.19
−1.95 6.09 −1.39 0.99 0.32 −0.17
−0.37 −1.39 7.57 5.61 0.29 0.11
−0.94 0.99 5.61 7.57 0.09 −0.44
−0.41 0.32 0.29 0.09 0.24 −0.23
−0.19 −0.17 0.11 −0.44 −0.23 0.66


is positive definite. The trace of loss function in SDS is
shown in Fig. 7.
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Fig. 5. Evaluation of Asymptotic Loss Function V (θ̂) in SDS for Example
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Fig. 6. Evaluation of V (θ̂) in SDS for Example 3

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we design the POI followed by SDS to
construct local minimum examples for open loop ARMAX,
ARARMAX and BJ models. In particular, the POIs for AR-
MAX and BJ models have strong links to the local minimum
in the corresponding OE models. Furthermore, simulation
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Fig. 7. Evaluation of V (θ̂) in SDS for Example 4

examples are also provided for each model structure above.
These examples play as a key to the development of the
non-local-minimum conditions in MLE. In the future, we
will investigate the non-local-minimum conditions for these
models starting by changing the examples dynamics etc.
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