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Abstract—This paper presents a hybrid optimization 
algorithm, referred to as hybrid spiral dynamics bacterial 
chemotaxis (HSDBC) algorithm. HSDBC synergizes bacterial 
foraging algorithm (BFA) chemotaxis strategy and spiral 
dynamics algorithm (SDA). The original BFA has higher 
convergence speed while SDA has better accuracy and stable 
convergence when approaching the optimum value. This 
hybrid approach preserves the strengths of BFA and SDA and 
thus has the capability of producing better results. Moreover, 
it has simple structure, hence reduced computational cost. 
Several unimodal and multimodal benchmark functions are 
employed to test the algorithm in finding the global optimum 
point. Furthermore, the proposed algorithm is tested in the 
design of PD controller for a flexible manipulator system. The 
results show that the HSDBC outperforms SDA and BFA in all 
test functions and successfully optimizes the PD controller. 

Keywords-Spiral dynamics; bacterial chemotaxis; 
optimization algorithm; PD control; flexible manipulator. 

I.  INTRODUCTION 
Metaheuristic optimization algorithms have gained a lot 

of interest by many researchers worldwide. These algorithms 
are inspired by biological phenomena or natural phenomena. 
Some of the newly introduced algorithms include 
biogeography-based optimization (BBO) [1], firefly 
optimization algorithm [2], cuckoo search optimization [3], 
galaxy-based search algorithm [4], and spiral dynamics 
inspired optimization (SDA) [5]. All these algorithms have 
gained attention due to their simplicity to program, fast 
computing time, easy to implement, and possibility to apply 
to various applications. Each of these algorithms has its own 
unique features, advantages and also disadvantages. 
Therefore, there are a lot of possibilities to improve the 
algorithms from various aspects. Many attempts have been 
made to improve performances of the algorithms such as 
developing adaptive approaches or incorporating powerful 
mathematical functions into the algorithms and mostly 
hybridizing two or more algorithms.  

Hybridisation is a common approach used in 
metaheuristic to enhance capability of optimization 
algorithms. It may reduce computational cost by making a 
simple and better structure to lead to higher performance. 
Moreover, with the rapidly emerging computing tools and 
efficiency in current technology, hybrid approaches have 
become increasingly popular to explore. Various 

combinations of optimization algorithms have been 
considered by researchers with the aim to increase system 
performance. [6] developed a hybrid optimization algorithm 
combining bacterial foraging optimisation algorithm (BFA) 
with BBO, and referred to it as intelligent biogeography-
based optimization. In the algorithm, chemotaxis behaviour 
of bacteria is adopted into BBO migration process to 
determine a valid emigration of an individual from one place 
to another. This ensures the island that receives the 
emigrated solution preserves its fitness level by only 
accepting individuals that contribute to a better fitness value. 
[7] introduced hybrid version of BFA with differential 
evolution (DE) algorithm called chemotaxis differential 
evolution. In the algorithm, chemotaxis strategy of bacteria is 
combined with the mutation process in DE. [8], [9] and [10] 
introduced hybrid GA-BF algorithm employing modified 
mutation and crossover operation in GA while applying 
variation bacterial chemotaxis step size in BFA. [11] 
developed cooperative (BF-TS) by combining adaptive 
bacterial foraging optimization algorithm (ABFA) and 
adaptive tabu search (ATS). With limited exploration 
capability of ATS in the search space and complexity of 
ABFA, the chemotaxis strategy of ABFA is incorporated 
into ATS to provide suitable exploration at the early stage. 
On the other hand, [12] used hybrid ABFA and ATS called 
BTSO, to analyze Lyapunov’s stability of linear and 
nonlinear systems. [13] introduced a hybrid algorithm 
namely BPSO-DE synergizing BFA, particle swarm 
optimization (PSO), and DE to solve dynamic economic 
dispatch problem with valve-points effect. Bacterial 
chemotaxis strategy with adaptive step-size in BFA is used 
to perform local search to enhance exploitation while PSO-
DE features containing evolutionary operators and velocity 
update equation are used to perform exploration search over 
the entire search space. Hybrid BFA and PSO on the other 
hand, has received the most attention. [14], [15], [16], [17] 
and [18] employed velocity and position update equation in 
PSO to act as global search method while utilizing 
chemotaxis strategy in BFA to serve as local search method. 
[19] introduced simplified version of BFA employing 
bacterial chemotaxis strategy and PSO velocity update 
equation to solve parameter identification problem of heavy 
oil thermal cracking model. Reproduction and elimination 
stages were omitted to reduce computational time. 

This paper presents hybrid version of bacterial foraging 
algorithm (BFA) chemotaxis strategy and spiral dynamics 
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algorithm (SDA). The rest of the paper is organized as 
follows. Section II provides a brief literature review of the 
original BFA and spiral dynamics inspired optimization. The 
proposed HSDBC is described in section III. Validation of 
the proposed HSDBC in comparison to SDA and BFA with 
uni-modal and multi-modal test functions as well as 
application of the algorithm in optimizing a PD controller is 
presented in section IV. Section V presents concluding 
remarks. 

II. BFA AND SDA 
The original versions of BFA and SDA are briefly 

described in this section. 

A. Bacterial foraging optimization algorithm 
The BFA is a biologically inspired algorithm introduced 

in [20]. It is based on adaptation technique of Escherichia 
Coli (E. Coli) bacteria to find nutrient or food source during 
their lifetime or alternatively the technique might be called 
bacterial foraging strategy. Furthermore, E. Coli bacteria use 
saltatory search technique, which is the combination of 
cruise and ambush movement. One of the exceptional 
features of E. Coli is that it has very high growth rate, which 
is normally exponential. This extraordinary capability of E. 
Coli has motivated researchers to adopt the strategy as 
optimization technique. Bacterial foraging strategy consists 
of three basic cycles namely chemotaxis, reproduction and 
elimination & dispersal. These cycles are continuing 
processes and very effective for optimization purposes [21]. 
Moreover, it offers flexibility for researchers to manipulate 
the strategy according to a specific application area. When 
searching for food or nutrient, tumbling and swimming will 
take place. Tumbling is similar to cruise and it happens when 
the E. Coli navigates in the search area and once the food 
source is found, it swims like ambushing a target area with 
great speed, up to 20µm/s or faster in a rich nutrient medium. 
This unique movement is called chemotaxis. Reproduction, 
elimination and dispersal events then happen to bacteria with 
high fitness or healthier that has capability to reach food 
source accurately and quickly. The strength of BFA lies in 
the bacterial chemotaxis strategy adopted by many 
researchers to improve the optimization algorithm. The 
details of the original algorithm and pseudocode of BFA can 
be found in [20]. In this paper, number of bacteria, number 
of chemotaxis, chemotactic step size, number of swims, 
number of reproduction, number of elimination & dispersal 
are represented as S, Nc, C, Ns, Nre and Ned respectively. 
The probability that each bacterium will be eliminated and 
dispersed is defined as ped = 0.25 for the problems 
considered.  

B. Spiral dynamics inspired optimization algorithm 
The SDA is another metaheuristic algorithm adopted 

from spiral phenomena in nature [5]. 2-dimensional and N-
dimensional [5] logarithmic spiral discrete models have been 
tested on several benchmark functions. Moreover, 
comparisons with other optimization algorithms such as PSO 
and DE have shown that SDA performance is either better or 
the same as those [5]. This simple and effective strategy 

retains the diversification and intensification at the early 
phase and later phase of the trajectory as diversification and 
intensification are important features of the optimization 
algorithm. At the early stage, the spiral trajectory explores a 
wider search space and it continuously converges with a 
smaller radius providing dynamics step size when 
approaching the final point, which is the best solution, 
located at the centre. The distance between a point in a path 
trajectory and the centre point is varied constantly if the 
radius of the trajectory is changing at constant rate thus 
making the radius an important converging parameter for the 
algorithm. The strength of SDA lies in its spiral dynamics 
model. An n-dimensional spiral mathematical model that is 
derived using composition of rotational matrix based on 
combination of all 2 axes is given as: 

x(k +1) = Sn (r,θ )x(k)− (Sn (r,θ )− In )x
*             (1) 

where 
Sn (r,θ )x(k) = rR

n (θ1,2,θ1,3,...,θn−1,n )x(k).  
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Parameters and descriptions used in equation (1) are 

similar to those used in HSDBC optimization algorithm, 
which are shown in Table 1. Since SDA is relatively new, 
not much work in the literature involving the algorithm has 
been reported. The details of the original SDA algorithm for 
2-dimension and n-dimension can be found in [5]. The 
hybrid approach of this algorithm and its details are provided 
in the next section. 

III. HYBRID SPIRAL DYNAMICS BACTERIAL CHEMOTAXIS 
ALGORITHM 

The HSDBC is a combination of bacterial chemotaxis 
strategy used in BFA and SDA. BFA has faster convergence 
speed due to the chemotaxis approach but suffers from 
oscillation problem towards the end of its search process. On 
the other hand, SDA provides better stability when 
approaching optimum point due to dynamic spiral step in its 
trajectory motion but has slower convergence speed. 
HSDBC algorithm preserves the strengths possessed by BFA 
and SDA. Moreover, by incorporating only chemotaxis part 
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of BFA simple structure of SDA can be retained, thus 
reducing computational time and enhancing performance of 
the algorithm. The parameters and description used in n-
dimensional HSDBC optimization algorithm are presented in 
Table 1 and the algorithm is shown in Fig. 1. 

TABLE I.  PARAMETERS FOR HSDBC OPTIMIZATION ALGORITHM 

Symbols Description 

θi, j  
Bacteria angular displacement on 
xi − x j plane around the origin 

r  Spiral radius 

m  Number of search points 

kmax  Maximum iteration number 

Ns  Maximum number of swim 

x i (k)  Bacteria position 

Rn  n x n matrix 

An n-dimensional hybrid spiral dynamics bacteria 
chemotaxis optimization algorithm. 
Step 0: Preparation 

Select the number of search points (bacteria)m ≥ 2 , parameters 
0 ≤θ < 2π, 0 < r <1  of Sn (r,θ ) , maximum iteration number, 
kmax  and maximum number of swim, Ns  for bacteria chemotaxis. 
Set k = 0, s = 0 . 
Step 1: Initialization 

Set initial points xi (0)∈ Rn, i =1,2,...m in the feasible region 

at random and center x* as x* = xig (0) , 

ig = arg mini   f (xi (0)), i =1,2,...,m . 
Step 2: Applying bacteria chemotaxis 

(i) Update xi   

    xi (k +1) = Sn (r,θ )xi (k)− (Sn (r,θ )− In )x
*  

    i =1,2,...,m . 
(ii) Bacteria swim 
    (a) Check number swim for bacteria i. 
          If s < Ns , then check fitness, 
          Otherwise set i = i+1 , and return to step (i). 
    (b) Check fitness 
          If f (xi (k +1))< f (xi (k) , then update xi , 
          Otherwise set s = Ns , and return to step (i). 
    (c) Update xi  

         xi (k +1) = Sn (r,θ )xi (k)− (Sn (r,θ )− In )x
*  

         i =1,2,...,m . 
Step 3: Updating x*  

x* = xig (k +1) ,  

ig = arg mini   f (xi (k +1)), i =1,2,...,m . 
Step 4: Checking termination criterion 

 If k = kmax then terminate. Otherwise set k = k +1 ,  
 and return to step 2. 

Figure 1.  HSDBC optimization algorithm. 

In the proposed hybrid approach, bacterial chemotaxis 
strategy is employed in step 2 to balance and enhance 
exploration and exploitation of the search space. The bacteria 
move from low nutrient location towards higher nutrient 
location, placed at the centre of a spiral. The most important 
factor of HSDBC algorithm is the respective diversification 
and intensification at the early phase and later phase of the 
spiral motion. In the diversification phase, bacteria are 
located at low nutrient location and move with larger step 
size thus producing faster convergence. On the other hand, in 
the intensification phase, bacteria are approaching rich 
nutrient location and move with smaller step size hence 
avoiding oscillation around the optimum point. Another 
factor contributing to better performance of the algorithm is 
the swimming action in bacterial chemotaxis. Bacteria 
continuously swim towards optimum point if the next 
location has higher nutrient value compared to previous 
location until the maximum number of swim is reached. 

IV. VALIDATION TEST AND RESULTS 
In this section, the proposed algorithm is validated 

through simulation tests on two 3-dimensional uni-modal 
and two 2-dimensional multi-modal benchmark functions. 
Moreover, the HSDBC algorithm is tested in optimizing PD 
controller of a flexible manipulator system. Comparison with 
the original version of SDA and BFA tested on the four 
benchmark functions is also given to show the improved 
performance of HSDBC. The parameters used in the 
simulation are chosen heuristically for all test functions. 

A. Uni-modal sphere function 
The sphere function is defined as:  

f (x) = xi
2

i=1

n

∑                                      (2)  

The function has a global minimum at xi = [0, 0, 0] with 
fitness f(x) = 0. In this simulation, the sphere function is 
considered to have dimension n = 3 and variable xi is in the 
range [–5.12, 5.12]. Number of search points, m = 30, 
iteration number, 80, angular displacement, θ = π/4, and 
spiral radius, r = 0.96 were used for both algorithms. 
Number of swims with for HSDBC was defined as Ns = 5. 
BFA parameters for this function were S = 30, Nc = 30, 
C=0.01, Ns = 4, Nre = 4 and Ned = 2. The convergence plot 
for 3 dimensional sphere function thus achieved is shown in 
Fig 2.  

B. Uni-modal Ackley function 
The Ackley function is mathematically defined as:  

f (x) = −20exp(−0.2 (1
n

xi
2 )

i=1

n

∑

− exp(1
n

cos(2π xi )+ 20+ e
i=1

n

∑
             (3)  

The function has a global minimum at xi = [0, 0, 0] with 
fitness f(x) = 0. The Ackley function is considered with 
dimension n = 3 and variable xi in the range [–32.768, 
32.768]. Number of search points, m = 30, iteration number 
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200, angular displacement, θ = π/4, and spiral radius, r = 
0.96 were used in both algorithms. Number of swims for 
HSDBC with swim radius, r = 0.6 was defined as Ns = 1. 
BFA parameters for this function were S = 20, Nc = 20, C = 
0.02, Ns = 4, Nre = 4 and Ned = 2.The resulting convergence 
plot for 3-dimension Ackley function is shown in Fig 3.  

 

 
Figure 2.  Convergence plot for 3D sphere function. 

 
Figure 3.  Convergence plot for 3D Ackley function. 

C. Multi-modal Rastrigin function 
The Rastrigin function is defined as: 

f (x) = [xi
2 −10cos(2π xi )+10]

i=1

n

∑       (4) 

The function has a global minimum at xi = [0, 0] with fitness 
f(x) = 0. The Rastrigin function is considered with dimension 
n = 2 and variable xi in the range [–5.12, 5.12]. The number 
of search points, m = 50, iteration number 120, angular 
displacement, θ = π/4, and spiral radius, r = 0.96 were used 
in both algorithms. Number of swims for HSDBC with swim 
radius, r = 0.65 was defined as Ns = 2. BFA parameters for 
this function were S = 30, Nc = 20, C = 0.01, Ns = 4, Nre = 4 
and Ned = 2. The resulting convergence plot for the 2-
dimensional Rastrigin function is shown in Fig 4. 

D. Multi-modal Griewank function 
The Griewank function is defined as:  

f (x) = 1
4000

xi
2 − cos xi

i
"

#
$

%

&
'+1

i=1

n

∏
i=1

n

∑        (5) 

The function has a global minimum at xi = [0, 0] with fitness 
f(x) = 0. The Griewank function was considered with 
dimension n = 2 and variable xi in the range [–600, 600]. The 
number of search points, m = 50, iteration number 200, 
angular displacement, θ = π/4, and spiral radius, r = 0.96 
were used for both algorithms. Number of swims for 
HSDBC with swim radius, r = 0.55 was defined as Ns = 1. 
BFA parameters for Griewank function were S = 30, Nc = 
10, C = 0.1, Ns = 4, Nre = 4 and Ned = 2. The resulting 
convergence plot for the 2-dimensional Griewank function is 
shown in Fig 5. 

 
Figure 4.  Convergence plot for 2D Rastrigin function. 

 
Figure 5.  Convergence plot for 2D Griewank function. 

It can be clearly seen in the plots, in Figures 2-5 that the 
HSDBC outperformed SDA and BFA in terms of 
convergence speed and improved accuracy. Numerical 
results of HSDBC, SDA and BFA performance tests with the 
benchmark functions are shown in Tables II, III and IV 
respectively. It is noted that HSDBC has achieved better 
performance than SDA and BFA with the test functions in 
terms of convergence speed and accuracy. 

TABLE II.  HSDBC PERFORMANCE ON BENCHMARK FUNCTIONS 

Cost 
Function 

Name 

Performance 
Best 

fitness 
Converge 
time (iter) X1 X2 X3 

Sphere 6x10-7 26 2x10-4 6x10-7 -7x10-4 

Ackley 3x10-7 20 1x10-7 2x10-8 -3x10-8 

Rastrigin 0 15 -2x10-9 4x10-10 - 

Griewank 2x10-11 18 -3x10-6 6x10-6 - 

756



TABLE III.  SDA PERFORMANCE ON BENCHMARK FUNCTIONS 

Cost 
Function 

Name 

Performance 
Best 

fitness 
Converge 
time (iter) X1 X2 X3 

Sphere 5x10-3 63 -4x10-2 -5x10-2 -7x10-3 

Ackley 6x10-3 159 9x10-4 2x10-5 -2x10-3 

Rastrigin 1x10-6 84 -8x10-5 -2x10-5 - 

Griewank 7x10-5 91 -6x10-3 -1x10-2 - 

TABLE IV.  BFA PERFORMANCE ON BENCHMARK FUNCTIONS 

Cost 
Function 

Name 

Performance 
Best 

fitness 
Converge 
time (iter) X1 X2 X3 

Sphere 5x10-5 84 4x10-3 -4x10-3 3x10-3 

Ackley 2x10-2 40 -5x10-3 -9x10-3 -1x10-3 

Rastrigin 5x10-4 85 -8x10-4 -1x10-3 - 

Griewank 7x10-4 45 -1x10-2 4x10-2 - 

E. Controller design optimization 
The HSDBC algorithm is employed here to optimize PD 

controller of a flexible manipulator system (FMS). 
Schematic diagram of the flexible manipulator system is 
shown in Fig. 6. XoOYo and XOY represent the stationary 
and moving coordinate frames respectively. τ represents the 
applied torque at the hub. Young modulus, area moment of 
inertia, mass density per unit volume, cross-sectional area, 
hub inertia, displacement and hub angle of the manipulator 
are represented by E, I, ρ, A, Ih, v(x, t) and θ(t)  respectively 
[23].   

 
 

 

type flexible manipulator of dimensions 900 × 19.008 × 
3.2004 mm³, E = 71 × 109 N/m², I = 5.1924 × 1011 m4 , ȡ = 
2710 kg/m3 and IH = 5.8598 × 10-4 kgm2 is considered. These 
parameters constitute a single-link flexible robot 
manipulator experimental-rig developed for test and 
verification of control algorithms [6]. 
 

X0

Y0

X

θ(t)

Flexible Link ( ρ, E, I, L )

τ

Y

Rigid Hub ( IH, r)

v(x,t)

 
Fig. 1 Description of the flexible manipulator system. 

 

III. MODELLING OF THE FLEXIBLE MANIPULATOR 

This section provides a brief description on the 
modelling of the flexible manipulator system, as a basis of a 
simulation environment for development and assessment of 
the hybrid fuzzy logic control techniques. The assume mode 
method with two modal displacement is considered in 
characterizing the dynamic behaviour of the manipulator 
incorporating structural damping. The dynamic model has 
been validated with experimental exercises where a close 
agreement between both theoretical and experimental results 
has been achieved [7]. 

Considering revolute joints and motion of the 
manipulator on a two-dimensional plane, the kinetic energy 
of the system can thus be formulated as 
 

 ³ +++=
L

bH dxxvvIIT
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where bI  is the beam rotation inertia about the origin O0 as 
if it were rigid. The potential energy of the beam can be 
formulated as 
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This expression states the internal energy due to the elastic 
deformation of the link as it bends. The potential energy due 
to gravity is not accounted for since only motion in the plane 
perpendicular to the gravitational field is considered. 

To obtain a closed-form dynamic model of the 
manipulator, the energy expressions in (1) and (2) are used 

to formulate the Lagrangian UTL −= . Assembling the mass 
and stiffness matrices and utilizing the Euler-Lagrange 
equation of motion, the dynamic equation of motion of the 
flexible manipulator system can be obtained as  
 

 )()()()(
...

tFtKQtQDtQM =++  (3) 
 

where M, D and K are global mass, damping and stiffness 
matrices of the manipulator respectively. The damping 
matrix is obtained by assuming the manipulator exhibit the 
characteristic of Rayleigh damping. F(t) is a vector of 
external forces and Q(t) is a modal displacement vector 
given as  
 

 [ ] [ ]TTT
n qqqqtQ θθ == ...)( 21  (4) 
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Here, nq  is the modal amplitude of the i th clamped-free 
mode considered in the assumed modes method procedure 
and n  represents the total number of assumed modes. The 
model of the uncontrolled system can be represented in a 
state-space form as 
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IV. CONTROLLER DESIGN 

In this section, control schemes for rigid body motion 
control and vibration suppression of a flexible robot 
manipulator are proposed. Initially, a collocated PD 
controller is designed. Then a non-collocated PID control 
and feedforward control based on input shaping are 
incorporated in the closed-loop system for control of 
vibration of the system.  
 
A. Collocated PD Control 

 A common strategy in the control of manipulator 
systems involves the utilization of PD feedback of 
collocated sensor signals. In this work, such a strategy is 
adopted at this stage. A sub-block diagram of the PD 
controller is shown in Fig. 2, where Kp and Kv are 
proportional and derivative gains, respectively, θ  and θ�  
represent hub angle and hub velocity, respectively, Rf is the 
reference hub angle and Ac is the gain of the motor amplifier. 
Here the motor/amplifier gain set is considered as a linear 

357

 
Figure 6.  Schematic diagram of flexible manipulator system. 

Mathematical model of FMS adopted here is that derived 
using Lagrange method in [22]. The FMS model has been 
used by many researchers in testing various types of 
controller for flexible systems [23], [24]. The dynamic 
equation of motion of FMS can be represented as:  

M Q(t)+D Q(t)+KQ(t) = F(t)    (6) 
 

where M, D and K are mass, damping and stiffness matrices 
respectively.  F(t) and Q(t) are vectors of external forces and 
modal displacement respectively;  

F(t) = [ τ 0 0  0 ]T    (7) 

Q(t) = [ θ q1 q2  qn ]
T = [ θ qT ]T      (8) 

More details of the derivation and parameters of FMS can be 
found in [22], [23]. A state-space model of FMS is obtained 
by linearizing (6) and it is used to design PD controller 
through HSDBC. The control strategy of FMS is adopted 
from [23] and [24] where PD feedback of collocated sensor 
signals is employed. A block diagram of the control structure 
is shown in Fig. 7, where Kp, Kv and Ac are the proportional, 
derivative and motor amplifier gains respectively. The input 
of the system is reference hub angle, Rf and the outputs of the 
system are hub angle, θ and hub angle velocity, θ . In this 
simulation, number of search points, m = 30, iteration 
number 100, angular displacement, θ = π/4, and spiral radius, 
r = 0.96, and number of swim Ns = 3 were used to optimize 
the PD controller. 

!

Rf#
!

+"
"
#"

! !

!

+"
"
#"

Flexible!
Manipulator!
System!

Ac#

Kv#
!

Kp#
!

 
Figure 7.  Collocated PD control structure of FMS. 

Integral square error (ISE) of hub angle was chosen as 
cost function for the optimization algorithm. As a means of 
examining the proposed algorithm, this paper is only dealing 
with step input tracking capability of FMS. Step input was 
defined to have final value at 0.8 radians, which is the final 
location of hub angle. Graphical plot of the hub angle 
achieved is shown in Fig. 8.  

 
Figure 8.  Hub angle response of FMS. 

In this plot, for the purpose of comparison, the hub angle 
response with PD controller designed using root locus 
approach from [24] is also shown. Simulation with HSDBC 
optimization algorithm on the FMS gave Kp =72.3459 and Kv 
=20.6227 while Kp =60 and Kv =19 using root locus 
technique [24]. It is clear from Fig. 8, that hub angle 
response of FMS using HSDBC was better than hub angle 
response using root locus technique in terms of speed of 
response. Numerical results of the hub angle response are 
shown in Table V. It is noted that the HSDBC approach 
resulted slightly larger overshoot within acceptable range. 
However, the response rise time with HSDBC was better, 
which indicates that the algorithm can perform faster with 
satisfactory response overshoot and no error at steady state. 
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TABLE V.  PERFORMANCE SPECIFICATION OF HUB ANGLE RESPONSE 

Tuning 
Method 

Performance Specification 

Overshoot, 
%os (%) 

Settling 
time, ts (s) 

Rise time, tr 
(s) 

Steady 
state error, 

ess 

HSDBC 0.84 1.47 0.44 0 

Root locus 0.53 1.47 0.50 0 

V. CONCLUSION 
A novel hybrid spiral dynamics bacterial chemotaxis 

optimization algorithm has been proposed. Validation with 
uni-modal and multi-modal benchmark functions and 
comparison with standard SDA and BFA have been carried 
out. Moreover, the HSDBC has been used in controller 
design of a flexible manipulator in comparison with root 
locus design approach. Simulation results have shown that 
the proposed algorithm outperformed its counterpart in all 
test functions and it successfully optimized PD controller of 
flexible manipulator system in terms of convergence speed 
and accuracy. 
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