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Abstract—In this paper, we propose a distributed robust uncertainties, and a sliding mode control term is employed
control method for synchronized tracking of multiple Euler- to handle the uncertainties that the DOB cannot compensate
Lagrange systems, where the time-varying reference trajectory for sufficiently. By some damping terms, the boundedness
is sent to only a subset of the agents. It is assumed that the . . " .
agents can exchange information with their local neighbors on an ‘?f the signals of the overall multiple nonlinear §y_stems IS
undirectionally connected communication graph. The controllers first ensured. Then we show how the DOB and sliding mode
are not only distributed on the network, but also decentralized control play in a cooperative way in each coordinate to achieve
for each generalized coordinate within each agent. Theoretical gn excellent synchronized tracking performance. Simulation

analysis is perforrn_ed. And simulation results are provided to results are provided to support the theoretical results.
support the theoretical results.

Il. BACKGROUND AND PROBLEM STATEMENT

. L . . . ~A. Graph Theory
Motivated by applications in physics, biology and engineer- . . .
ing the study of synchronized control of collections of locally Consider a graply = (V,€,A) with a finite set of v
connected dynamic systems has become an important topRd€sY = {vi,v2,---,un} and a set of edgeS € V x V.

in control theory. Examples of interesting research directioh§! ¢ deénotes theth agent. An edge of is denoted as;; =
include coverage control, consensus, formation control, flock%: vj) € € where agenj can receive information from agent
ing, and leader-follower tracking [1]. In recent years, there " @ directed graph, agentdoes not send information to
have been some remarkable works on synchronized trackﬁ'@fntl’ whereas in an undirected graph,_(ui,vj) < 5 then
problem for multiple multiple Euler-Lagrange (EL) system&Us- Vi) € €. A graph is called connected if there exists a path
when only a portion of the agents can access the leader Pgfween any two distinct agents. Denote the adjacency matrix

— NXN H i
[2], a method of finite time synchronization tracking controfS A = [aij] €R N owith a; > 0 if (v_j,vi) € &, and
of multirobot systems is proposed. The agent models gt = 0 otherwise. Notey; = 0. For an undirected graph, we
The set of neighbors of a nodg is N; =

assumed to be known and each agent’s controller requireshi’é’e dij = Gji-

neighbors’ control signals. In [3], a model-independent slidin,ij”j < ,VKUJ"W) €&} e, t_he set OT nodes with injfvorrjpa}tion
acoming tow;. The Laplacian matrixC = [I;;] € RV > is

mode control algorithm is proposed. However, the algorithm § : N v
discontinuous and requires the availability of the informatiofhen defined ag; =35, ;; aij, andly; = —aq;,i 7 j.
of both the neighbors and the neighbors’ neighbors. In [
an adaptive robust control algorithm is proposed for multiple
uncertain EL systems. In [5], the problem of position syn- Consider N agents governed by the following EL vector
chronization of multiple EL systems is studied. However, thequations fori = 1,--- | N.
proposed method considers the tracking of a stationary leader . .y .
which sends a piece-wisely constant reference position signal. Mi(0:)0; + C;(0:,0:)0: + gi(6:) + fi(0:) =wi (1)

In our recent work [6], we proposed a decentralized adaptiythere 9, — 6;(t) € R" is the generalized coordinate vector;
robust controller for trajectory tracking of robot manipulators,, ¢ R~ is the input torque vector);(6) = MT(6) €
In this paper, the work of [6] is modified and extended tgrxn pr(g,) > 0 is the inertia matrixC;(6;, 6;)6; € R is
develop a new distributed robust control method for Syfhe centrifugal and Coriolis torqug;(6;) € ™ is the grativity
chronized tracking of multiple EL systems, where the timqorque; f;(4) € )R is the friction force torque.
varying reference trajectory is sent to only a subset of thewe first impose the following assumption.
agents. It is assumed that the agents can exchange i”formaﬁoﬂssumption 1:The reference trajectom(t) € R™ and the
with local neighbors on an undirectionally connected coMgme derivativesd, (t) andf,(t) are bounded signals.

I. INTRODUCTION

. EL System models

munication graph. In the local controller equipped in each pefine an auxiliary error vectat; = [r;1,- - ,ris|T as

. . . 1T (2% yhin
generalized coordinate of each agent, a disturbance observer
(DOB) is introduced to compensate for the low-passed coupled Ty = €; + Pi€; (2)
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wheree; = 0; — 84 is the local tracking error vectorp; =
diag(ei1, -, ®in) > 0 with constant entries.
Substitutinge; andr; into (1), we have

M (0;)7; + Ci(0s,0:)ri = u; + & 3

where§; = [§1,- -
term of (3), and

& = —M;(0;)(Oa—piei)—Ci(0;,0;) (Ba—ies)—gi (0:)— f:(0:)

,&n]T is considered to be an uncertaire, = He, whereH = (L + B) ® I,,, e5 =

where the scalar pinning gaiy > 0. If agent: receives
information directly from the leader the > 0, otherwise
b; = 0. a;; is the (4, j) entry of the adjacency matrid which
defines the communication topology of the network.

Then the global synchronization error vector is given as

[ezla"' a€ZN]T

B = diag(b), b = [by,--- ,bn]|T.
We impose the following assumption on the communication
topology of the network [4], [3].

(4) e )
. . . Assumption 2:The communication grapé = (V, &, A) of
The global dyr.1.am|cs of t_he multiple E_L systems 1s the multiple EL systems is undirected and connected.
M(0)0+C(0,0)0+g(0)+ f(0) =u (5) Then, the following lemma is useful [3], [4].
L Lemma 1:If the information interchange graph is undi-
M(0)=diag|M1(61),.., MN (0
0(9(6‘; —d;zg%c 1((9 1)97 )’ ]é( 1(\/9)] O] rected and connected, and if at least one of the elemerits of
’(9):[ (ge )1. o ’('é’ )f} NoUN ®) is nonzero, therC + B is a positive definite symmetric matrix.
g 0 B 91 0.1 N éN " According to the aforementioned definitions, the global
f(0)= {fl( 1), #N( N)] auxiliary synchronization error vector, is given as
U= Ui, - ,UN
wheref = 67, ... 6%]T rs =Hr = H(é+ Pe) = & + Pes (14)
— V1> yYNID ¢
And the global version of (3) is given as wherery = [ro1, -+, 7sn]T rei = [Psit o+ 5 Tsin] " -
. . For the EL system model (3), it is well known that the
M(0)r +C(0,0)r =u+¢ @) uncertainty term is bounded by the following relation [8]:
€= _M(G)(1N®9d—<1>e)—0(979)(1N®9d—¢e)—g(9)—f((g)) € 1la< a1 +as || ell2 +as || € |2 +aa | e|l2]l €ll2 (15)
where ® = diag(¢y, .., on), € = [&1,---,En]T s the global whereay, as, as, ay are some positive ponstants.
uncertain termy = [r1, -+ ,rn]7 is the global auxiliary error ~ For a vector-valued signal(t), we define a truncated norm

vector, ance = 6 — 1y ®6, is the global tracking error vector.for 7' > 0 as|| z ||7= supyco,7y || (?) ||2- Then we have [8]

Then the following properties hold [7].

Lemma 2:Let Assumption 1 and Properties-4 hold. If

Property 1: there is a constani’ such that|| r || exists, then for all
t € [0, T] we have for somél,, 52, B3 > 0,
,umin(M)I S M(G) S ,umax(M)I (9) 2
: : [ € ll2<Br+Ballrlle+8s 77 (16)
where pimax (), pmin () > 0 denote respectively the maximal
and minimal eigenvalues of a matrix. I1l. CONTROLLER DESIGN
Property 2: A. Introduction of DOB
| C(0,0) [|2< e || 6|2 (10) Replacingr in (7) by r,, we have
forPsometco3nstantH > 0. H Vi = M+ M—l(g . C(ﬁ,é)?—l‘lrs) (17)
roperty 3: . . :
) . For the sake of design a distributed and decentralized
I 9(0) [2< cg, | £(0:) [2< cp1 +cpa || O ]l2 (11)  controllerw,; for each generalized coordinate, we defig"
for some constants,, cs1,cr2 > 0. and M, as some diagonal nominal matrices &f! and M
Property 4: respectively, and then we have
1. . MoHg Y = u+ MoM=1(& - C(0,0)H 1 r,
T | 2N(0) — C(6,6)| 2 =0, a0 (12) oMo Fo = ut MoM™HE = CO, )H )
2 (MM~ = Iu+ Mo(Hyt — H1)r,
C. Synchronized tracking problem ) _ (18)
The control objective is to design a controller for each agehft Moo = Mso = diag(msor, -+, mson) With mso; =

to track a time-varying reference trajectory exerted by a lead@tae(msoit, -
with the aid of the neighbor agents’ information obtained b‘{ﬁ

certain communication protocol. That is.e; ||2 and| €; ||2
(¢=1,---,N) should be controlled to be small.

To construct a feedback controller, we define the followin

local synchronization error vector of agehtwhich will be
used as a feedback signal:

€gi = Z aij(Oi — 93) + b1(01 — Hd)
JEN

13)

g/herew = [wf, -

,Ms0in) > 0. Then we have the following

ctor-valued nominal linear system model.
MS()’I."S =u+w (19)

;wi )T with w; = [wir, -+, wi,]T is the
lobal lumped disturbance vector expressed as
w= MM~ — C(0,0)Hry) + (MM~ — Iu

+Mo(Hg ' = HY)7
(20
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Writing the dynamics of thegth generalized coordinate of summarized ag in (8). The constant; is chosen such that

the ith agent, we have li >|| 7 ]2 /VNn for all ¢ > 0. It will be shown that
. 21 there exists such ah. The term—;; is a compensation

Ms0iTsij = Wij + Wij @) term by DOB for each generalized coordinate. Since the
wherew;; is considered as a lumped disturbance term. SinBOBS’ outputsw; (i = 1,---, N, j =1,---,n) may disturb

calculation ofr;; by direct differentiation is usually contam-mutually, to suppress the interactions dueitg, we employ
inated with high frequency noise, we may pass through a the damping term term-p,wrs;;. The last term ofu;; is a

low-pass filter to obtain its estimate as smoothed version of sliding mode control term. The damping
term—p.nmaxrsi; IS a term to suppress the interactions among
Qij(s)wij = Qij(8)(Ms0iSTsij — Uij) (22)  the sliding mode control terms.

In this paper, for convenience of expressiedenotes not only 1 he global expression is given as below which will be used
the Laplace operator, but also a differential operator. This fg @nalysis of the global system.
the so-called DOB studied extensively in the literature. In this

2 o o
a study, we adopt a simple second-order filter U= —PaliTs = puTTs = Pelmaxt’s — W —nSat(rs)  (26)

1 where @ = [Wy, -+, 0N]|T, @; = [Wi, -, Win)T
i. 8 _ @ 23 . 9 b 1 1 . 21 b wm b
@is(s) (14 Xjjs)? (23) n = diaglm, o8t m = d%ag[nila"' Min) L
3 Sat(rs) = [sat(rs1), - ,sat(rsn)]’, sat(rs;) =
where \;; > 0. (sat(rasy ), - . sat(rap) L

However, we can only exped(s)w;; ~ w;; at low-

frequencies due to limited pass-band of the DOB. Moreover, Remark 1:The contrpller (26) is an exten§|on or modifi-
the DOBS’ outputsiy; (i = 1, ,n, j = 1,---,N) may cation of the decentralized controller for a single EL system

disturb the signals of the other generalized coordinates. é% Compared to the controller in [6] where some nonlinear
r

ease the analysis shown later, a straightforward and simg@"PiNg terms with signal dependent gains are used, in the
idea is to saturate the output of the DOB as esent controller, we have to use some linear damping terms

with relatively high constant gains, such @g?r;, pywrs and
w for [Qs;(s)(msoijsrsj — wij)| =@ PeNmax’s- This is mainly due to the presence of the matrix

) Qui(8) (masoigsriy — wig) ‘H in (30) given later. Therefore, as Fhe price qf multiple EL
Wij = _ system control, the controller design is less flexible as the case
for |Q” (s)(msoijsmj — ’U,Zj)| <w .
- _of a single agent.
—w for |Qij(s)(m50ijsrij — u”)| < —w
(24)

wherew > 0 is a selected upper bound fifi;|. Usually, it C. Comments and guidelines of parameter design

is recommended to choose a sufficiently lafge However,  The guidelines of parameter design are aummarized here
even wherw is not so large such thab;; is really saturated based on the theoretical analysis given later.

and hence the estimation erran;; — @;;) is not sufficiently  The constant; in (25) should meet the requirement that
small, the control performance is still satisfactory, owingto the > || ||, /v/Nn for all ¢ > 0. That is, we have to guess the
sliding mode control term included in the local controller (25)pper bound of|  ||,. See Theorem 1 later.

given later. The key point is that the DOB and the sliding mode The entries ofg; that appeared in (2) should not be very
control term work in a cooperative manner as suggested in [f%lrge, since large values of them may lead to a very large
Owing to their cooperative effects, the problems of high-gawr |2 which may violate the condition imposed én

or chattering can be avoided. This will be confirmed later by A small smoothing factod,; for satr;;) in (25) leads to a
the numerical examples. small ultimate tracking error of the corresponding generalized
coordinate. However, as well known in the literature, a less
. . . . .smooth switching function may cause the chattering problem.
Motivated by the aforementioned discussions, we desg\nhigh sliding mgde control g;/i% helps to achievegapsmall

the L(?”O\t'\/m% local controllerluizh for t.hﬁbﬁh. g];tenera;hzed fcontrol ultimate tracking error, but it may also cause the
coorcinate o agent, using only the neighbor informa lon o chattering problem, and may cause a high gain control term
agent; to ensure the boundedness of the global system sngngls

. . Tgi-
and to achieve a satisfactory control performance. c A

B. Description of the controller

The saturation levab of the DOBs should not be very large
Ui = —pal%rsij — PoWTsij — PelmaxTsij — Wij — Nijsat(rs;;) 1O avoid causing a high gain control tergwrs;.

(25) Usually, a smallen;; of the DOB filter (23) leads to a better
wherek, pa, po, pe, 1, mij > 0, sat(rsi;) = rsi;/(|rsij| + 6i;), disturbance performance. However, too smal;amay make
3ij >0, Mmax = max(M11, -, Mn, 1IN, > TINn)- w;; sensitive to the noise.

The controller is explained as follows. Whenl?, W, nmax andn;; meetthe aforementioned require-
The damping term—p,l3rs; is adopted to suppress thements, the choice op,, p, and p. in (25) is trivial. Some
effects of neglected uncertainties of the global system modebderate values of these parameters are satisfactory.
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V. PERFORMANCE ANALYSIS Here,nmax is the maximum diagonal elementpfCompleting
Since all of the agents interact with their neighbors, we squares, we have
cannot easﬂ_y see if the signals of the agents are all bounded. V(t,r) < —pal2pimmin(F) |7 112 + | 7 ll2ll € |l2
We should first ensure the boundedness of the global system i )
signals. Then provided the boundedness of the global system + | w I3 Nnnax
signals, we can analyze the control performance of each agent. 4ppWptmin(H)  4pchmaximin (H)
Therefore, the performance analysis includes two phases. By (28), and the assumption that there exists a smallest time

A. Analysis of the global system Ty such that|| 7(T1) [[2= V' Nnli, we have| r [2< vV Nnly
qu anyt < Ty. Then using Lemma 2, we have fox 17,

(1)

The results of analysis are given in Theorem 1. The pro

is an extension of [8], [6], but with modifications specified by - Patimin (H) 4 9
the newly designed controller in this study. Vit,r) < - Nn Frllz 4 7 ll2 (By + Baly + Bsli)
Theorem 1:Let Assumptions 1 and 2 hold. For the multiple n Nnw Nnnmax
EL systems (5) controlled by the proposed distributed robust 4pppimin (M) 4petimin(H)
controller (26), there exists a constdnt> 0, such thatr is Papbomin(H) 2NN (B + Boly + B5l2)
bounded VNnl; and h Il the | I'signals = —— o I 7 ll2 (115 - :
ounded ag| r ||2< v Nnl; and hence all the internal signals N PN Y,
are bounded, provided the following condition. Paftmin(H) (I " N2n2w a mﬁgngnmax )
— Pl P2 () )14 = _
i M) i [2Nn(B + Bals + But}) ] 2Nn 2eapbitmin (L) 2popettnin(M)
—— =V Nnly >
,Umax(M) PaMmin (H) (32)
2,2 2,2 /4 We then can say that there exists a time instant 177 —t; >
N*n“w N*n*n
Z + max
<2papr12111n(H) zpal)cﬂ'fnin(H)) @7) 0, 1> 0 such that
72 1/3
Remark2: The first inequality of (27) is easily satisfied for Nnly >|| 7(Ty — t1) |2= [QNn(ﬂl ol + 6311)}
sufficiently largel;, p,. The second inequality of (27) can be Patimin (M)
satisfied for sufficiently largé,, ps, pe. N2n2w N20210 1/4
Proof. According to Assumption 2, we have Lemma 1 and > (2 270 2 5 (7—[))
hence imin(#) > 0. We are now ready to show that there PaPbHmin PaPeHimin (33)

exists a constant; > 0, such thatr is bounded ag| » |2< However, according to (32), we hav&/dtV(t) < 0, for all
VNnly. The conclusion is proved by contradiction. To thig ¢ (7, — ¢, T3]. Therefore, for allt € [T} — t1, Ty, we have

end, according to (27) we first let a positive constargatisfy
V[Th T(Tl)] S V[(Tl — t1)7 T(Tl — tl)]

2y11/3
| 7(0) flo< |2t Paby 1 Balh) 1 INR(B) + Boby + i) ]
Pami (H) Sf,umax(M)
aMmin (28) 2 PaMmin (H) (34)
< “min((MM))\/an1 < v/Nnl; But the definition ofT} leads to
Mmax
1
Now assume the signalt) is not bounded. Thus there al- Vi, r(T)] 2 §“min(M)N”l% (39)

ways exists a smallest tini§ such that| »(71) ||2= vV Nnl;. C

. : ) . learly, the last two inequalities are in contradiction, according
Consider a Lyapunov function candidate with respect to tl?g (28). This implies that the assumption f r(T}) [la—
global tracking error vector.

v Nnl; is false. Thus the error signal vecteris bounded
V(t,r) = }rTM(g)r (29) @and satisfie| r(t) o< VNnl, for all ¢ > 0.
2 Furthermore, according to Assumption 1, and (2), (15) and
Taking the derivative along the trajectory of the closed-loofi4), we conclude that, ¢, 6, 6, £ andr, are bounded. And

system, we have hence each local controller;; is bounded. Therefore, all the
) ) 1. internal signals are bounded.
Vit,r)=r" (U +&—C(0,0)r + QM(Q)T) Remark 3:The condition (27) is always satisfied for a

sufficiently large bound, . The results of Theorem 1 only tell

us thatr and hence all the internal signals can be made to be

= —palirTHr — pywrT Hr —r bounded. It should be emphasized here that at the present stage
— pelmaxr T Hr — rTnSat(rs)+ || v 2] € |2 (30)  our purpose is only to ensure the boundedness of the signals.

And hence a conservative bound of the signals is acceptable.

<rTut ||zl € 112
T

2 2
< —palifmin(H) |7 Iz + (17 (2l € [l2 Later, we will show that the individual synchronization error
— oW i (H) || 7 15 + || 7 |l2]| @ ||2 rsi; can be made sufficiently small by virtue of the corre-
—peNmaxtmin(H) || 7 13 +V N1max || 7 1|2 sponding local controller.
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B. Analysis of each agent the initial value of(w;; — w;;) has decayed out sufficiently

We are now ready to analyze how the DOBs and sliding'ch that for a relatively small constan ;- we have

mode control techniques bring improvement in each general-
ized coordinate. Substituting the local controller (25) into the
subsystem (21), the resultant subsystem ofjthegeneralized
coordinate of theth agent becomes

sup (44)

tij(Nij ) STt

Mt = [wij (1) — Wi (7)]
Comparing (37) and (44), it is expected thﬁ}yt“ can be
much smaller tham;; ,. Then we have '

Corollary 1: For ¢t > t;;();;), the synchronization error of
the jth generalized coordinate of thith agent satisfies

2,. e .
—PaliTsij — PoWTsij — PcNmaxTsij

Tsij

Ms0ijTsij =

(36)

Owing to the results of Theorem 1y;;(t) and @;;(t) are i ()] < [roi (£7)| e~ 7o 700) 0is it (45)
. sij > [Tsig\lij
bounded. Define c
Nij0 = S lwij () — Wiz ()| @7) i mig =0, OF
T<t
. —mmog (t—tis)
Theorem 2:Let the assumptions and results of Theorem rsij ()] < |rsig(tij)le *meois
1 hold. The synchronization error of th@gh generalized (46)

+ (n;kj,tij - nij) + )2(51']'771‘]'
C C

6”777”0 (38) if 0<m;< M54, Wheree = Pal? + P + Pefmax-
¢ Theorem2 and Corollary 1 imply that the auxiliary syn-
chronization error is uniformly ultimately bounded (UUB),
and hence the auxiliary tracking error= H~'r, is UUB.

coordinate of theth agent satisfies

—_c
7sij (1) < |rsiz(0)]e ™e0is " +

if ni; > n7;.0, OF
(77:},0 — 1ij)

Iy 20,1
C C

(39)

R - S—
741 (1) <|rei:(0)]e 2msoii 4
Iresg (D1 < Irsis (O)] V. SIMULATION STUDIES
if 0 <mi; <00, Wherec = pol3 + po + pelimax-
Proof. We first consider the case 9f; > 7;; ,, i.e., the sliding
mode control gain exceeds the maximum amplitudéugf —

For the sake of comparison, we borrow the example in
[3] and carry out the numerical simulations under the same
conditions as possible. Consider a group of 6 two-DOF planar

W;;). From (36), we have

d msol“rfi: *
0t (5 J) < _Crgij + 041550 (40)
and hence
__2c (57 :
P2 (8) < e o 2, (0) 4“2 130 (41)

This leads to (38).
In the case o) <n;; <n;;,, we have

2 * 2
d(meosig\ (e (e Mo~
dt 2 = g i 2! s Ve

n (77;},0 - 77z‘j)2

28 + 5ij7]ij
(42)
and hence
* 2
2 -t 9 (771']',0 — 7ij) 2044
() < Ms0ij (0
Tszg( ) >e€ rsz]( )+ ( 012 + C;
(43)

This leads to (39). O

robot arms:
e e 1[G )+ e ]
[ ]-]

wherei =1,---,6, and

mi11(0;) =mil%, +mio(1Z +125) + In + Lio
+2myoli1leio cos(6;2)
mi12(0;) = mizliig + Lo + mialirleio cos(8i2) (48)

M1 (0;) =mi12
Mmoo (0;) =miol%s + Lio

hi1(0:,0;) = —mialinleiz (20,1052 + 62%) sin(6;2)
hi2(0;, 97) = mi2li1lci29i21 sin(f;2)
gi1 (91) = g(millcil + mi2li1) COS(Qil)
+miagleiz cos(bi1 + 0;2)
gi2(0;) =miagleiz cos(0i1 + 0i2)

(49)

whereg = 9.807[m/s?], and the physical parameters are given

However, 7;; , may not be small since the initial valuein Table I.

w,;(0) is often set to be zero. To investigate the performanceThe network topology for communication among the agents

after a short transient phase of DOB. ltgt(\;;) be an effec- is shown in Fig. 1. It can be verified that agents6lare

tive time-constant of the DOB depending agy, until which

undirectionally connected, and only agents 3 and 6 have access
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PHYSICAL PARAMETERS OF THE ROBOT MANIPULATORQZ' =1, ,6)

TABLE |

link mass [kg]

mi1 = 1.0 4+ 0.3, m;o = 1.5+ 0.3

link length [m]

l;1 = 0.2+ 0.061, I;52 = 0.3 + 0.067

masscenter [m]

lic1 = 0.1 4+ 0.03¢, l;c2 = 0.15 + 0.037

DOBs’ outputsw;i, w;, where the lines of magenta, cyan,
red, green, black and blue represents the signals of agents
1~6 respectively. It can be found in Fig. 1 that the proposed
distributed controllers deliver a very excellent synchronized
tracking performance, owing to the cooperative effects by

I;1 = 0.0073,0.0137,0.0229,
0.0355,0.0521,0.0732
I;2 = 0.0194,0.0309, 0.0461,
0.0656, 0.0900, 0.1198

O« - - @

/
/
/

inertial tensor [kgm?]

)

|

—0

4

6, ¢

Fig. 1. Information exchange graph of the leader and followers

to the leader (agent 0). The corresponding adjacency matr
and pinning vector are given as follows.

Fig. 2.

DOBs and sliding mode control terms.

2
+ 1\ « A\
o™ v s
oj == 0
-1 -2
0 10 20 0 10 20
2 2
\-":( 0 ! s.ﬁ 0 —_—
-2 -2
0 0.5 1 0 0.5 1
50 50;+
:*:' == === | :_f! 0 _
=50 =50
0 10 20 0 10 20
g 20 g 20
s Sy ofFESSs—
= 20 = 20
0 10 20 0 10 20
Time [sec] Time [sec]

Synchronized tracking results of 6 two-DOF planar robot arms.

VI. CONCLUSIONS

010100
101010

o100 0 1 B -

A=11 0 0 0 1 ol ?=100.01001" (50
010101

001010

In this paper, a distributed robust control method for syn-
chronized tracking of multiple EL systems has been proposed.

We investigate the synchronized tracking performance fey,, problem setting is similar to the works of [3], [4], where

the following reference trajectory vector and

generated by the leader.

its derivatiVie (ime-varying reference trajectory is sent to only a subset

of the agents and the network graph is assumed to be undirec-
tionally connected. The proposed distributed controllers while
delivering a very excellent control performance, are model-

o (55 (5]
() [ (). ()]

And to show that the controllers are robust against nonzero
initial tracking errors, the initial conditions are given as

w, w17
0;(0) = [?i, gi] rad]
6;(0) =[0.05i — 0.2, —0.05i + 0.2]" [rad/s]

According to the design guidelines, we choose the desidﬁ]
parameters of the local controllers (25) as follows.

(51)
the

[
(G2) [

(4]

i1 = ¢i2 = 0.5

Pa=pb=pc=1, M1 =mni2 =3 (53)

ll - 2, (Sﬂ = (51'2 = 005 [5]
wherei = 1,--- ;6. The nominal values in (21) are given as

. ; 6
ms0i1 = Msos2 = 1. The time-constants of the DOB filters el

are given as\;; = \;2 = 0.02. And the saturation level of the
DOBs is chosen as = 30 (see (24)). 7]

The simulation results are shown in Fig. 2, where from the
top to the bottom are respectively the position-tracking errork]
ei1, €2, auxiliary errorsr;q, r;2, control signalsu;;, u;o and

746

free and require only the neighbors’ information. Therefore

proposed method is considered to be simple and requires

moderate computational burden.
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