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Abstract—This paper presents the flight path angle tracking
control of the longitudinal dynamics of a generic hypersonic
flight vehicle(HFV). Due to the use of digital computers and
microprocessors for controls applications, the discrete hypersonic
flight control is investigated. The altitude command is trans-
formed into the flight path angle information. The back-stepping
scheme is applied for the attitude subsystem which includes
flight path angle, pitch angle and pitch rate. The virtual control
is designed with nominal feedback and Neural Network (NN)
approximation. To use the information of throttle setting, the
multi-rate sampling method is employed for the two subsystems
where the velocity subsystem is considered as slow dynamics.
Under the proposed controller, the semiglobal uniform ultimate
boundedness (SGUUB) stability is guaranteed. The simulation
is presented to show the effectiveness of the proposed control
approach.

I. INTRODUCTION

Given the widespread use of digital computers and mi-
croprocessors for controls applications, the discrete-time case
is certainly warranted [1]. For the control of flight vehicle
and spacecraft, controller on the basis of continuous system
is usually implemented by a digital computer with a certain
sampling interval [2], [3]. Since modern aircraft are equipped
with digital computers, the controller should be designed in
discrete-time form [4]. There are two methods for designing
the digital controller. One method, called emulation, designs a
controller with the continuous-time system, and then discretiz-
ing the controller. The other is to design the controllers directly
based on the discrete system. In contrast to the emulation
method, the discrete controller is designed in a discrete domain
so that the performance of the controller may not depend on
the sampling rate and the upper bounds of the NN weight
update rates guaranteeing the convergence can be estimated
analytically while emulation method is otherwise [5].

In this paper, the discrete hypersonic flight control is an-
alyzed. Hypersonic Flight vehicles are intended to present
a reliable and more cost efficient way to access space with
dramatic reductions in flight times. The longitudinal model
of the dynamics is known to be unstable, non-minimum phase
with respect to the regulated output, and affected by significant
model uncertainty. In the last decade, considerable research
focused on robust and adaptive hypersonic flight control [6],
[7]. In [8], the control structure combines the inputs from the

pilot model, baseline controller and adaptive controller. Based
on the input-output linearization using Lie derivative notation,
sliding mode control [9] is designed. The sequential loop
closure controller design [10] is based on the decomposition of
the equations into functional subsystems. The method followed
the approach that combined robust adaptive dynamic inversion
with back-stepping arguments to obtain control architecture.
In [11], one high gain observer based controller is proposed
for HFV control with only one NN to compensate the lumped
uncertainty. In [12], the attitude states are considered as fast
dynamics and the altitude control is transformed into the flight
path angle tracking.

It is illustrated that sometimes the controller based on Euler
approximate discrete-time model of the plant is superior to
back-stepping controllers based on digital control based on
continuous-time plant model [13]. In this way, the discrete
HFV model is obtained and the dynamic inversion is applied
in [14]. By proper assumptions the discrete model is trans-
formed into the strict-feedback form where some theoretical
results have been studied in [15]. For the nonlinearity and
the coupling, the nominal part of the dynamics should be
considered for the feedback control design to provide good
performance. The back-stepping neural design is analyzed
in [16], [17]. By considering the uncertainty with Gaussian
distribution, the Kriging design [18] is studied. In this paper,
we focused on the control of the altitude subsystem. Continued
with the work in [16], the altitude tracking is done with flight
path angle tracking. The controller is designed with nominal
value of the control gain. In this way, there is no need to know
the upper bound. By multi-rate sampling design, the throttle
setting can be viewed as constant during the attitude subsystem
controller design. In this way, the assumption of T sinα in [16]
is eliminated.

This paper is organized as follows. Section II describes the
longitudinal dynamics of a generic hypersonic flight vehicle.
The strict-feedback form is formulated and the discrete anal-
ysis model is obtained in Section III. The brief description
of HONN is explained in Section IV. Section V presents the
adaptive controller design. The simulation result is included in
Section VI. Section VII presents several comments and final
remarks.
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II. HYPERSONIC AIRCRAFT MODEL

The control-oriented model of the longitudinal dynamics
of a generic hypersonic aircraft is considered. This model is
comprised of five state variables X = [V,h,α,γ,q]T and two
control inputs Uc = [δe,β ]T where V is the velocity, γ is the
flight path angle, h is the altitude, α is the attack angle, q is
the pitch rate, δe is elevator deflection and β is the throttle
setting.

V̇ =
T cosα −D

m
− μ sinγ

r2 (1)

ḣ = V sinγ (2)

γ̇ =
L+T sinα

mV
− (μ −V 2r)cosγ

V r2 (3)

α̇ = q− γ̇ (4)

q̇ =
Myy

Iyy
(5)

where T , D, L and Myy represent thrust, drag, lift-force and
pitching moment respectively, m, Iyy and μ represent the mass
of aircraft, moment of inertia about pitch axis and gravity
constant. r is the radial distance from center of the earth and
r = h+RE . The related definition can be found in [9].

This paper focused on the cruise control with no consider-
ation of the reentry process. The main goal of this paper is to
design the altitude and velocity controller separately to follow
the tracking reference hd and Vd .

III. SYSTEM TRANSFORMATION

A. Strict-Feedback Formulation

Assumption 1: Since γ is quite small, we take sinγ ≈ γ
in (2) for simplification.

Remark 1: Similar assumption is made in [10] where the
value of the flight path angle is set to be inside [−3◦,3◦].

The velocity subsystem (1) can be rewritten as

V̇ = fV +gV uV
uV = β
yV =V

(6)

where fV =−(D/m+μ sinγ/r2)+ q̄S×0.0224cosα/m, gV =
q̄S × 0.00336cosα/m if β > 1. Otherwise fV = −(D/m +
μ sinγ/r2), gV = q̄S×0.02576cosα/m.

The tracking error of the altitude is defined as h̃ = h− hd
and the flight path command is chosen as

γd = arcsin
[−khh̃− kI

∫
h̃dt + ḣd

V

]
(7)

if kh > 0 and kI > 0 are chosen and the flight-path angle is
controlled to follow the reference command γd , the altitude
tracking error is regulated to zero exponentially.

Define XA = [x1,x2,x3]
T ,x1 = γ ,x2 = θp,x3 = q where θp =

α + γ .

Then the strict-feedback form equations of the attitude
subsystem (3)-(5) are written as

ẋ1 = f1 (x1)+g1 (x1)x2

ẋ2 = f2 (x1,x2)+g2 (x1,x2)x3

ẋ3 = f3 (x1,x2,x3)+g3 (x1,x2,x3)uA

uA = δe

y = x1

(8)

where f1 = −(μ −V 2r)cosγ/(V r2) − q̄S×0.6203/(mV ) ×
γ − T sinα , g1 = q̄S×0.6203/(mV ), f2 = 0, g2 = 1, f3 =
q̄Sc̄[CM(α)+CM(q)−0.0292α]/Iyy, g3 = 0.0292q̄Sc̄/Iyy.

In the analysis [11], the altitude is mainly up to elevator
deflection while the velocity is controlled by throttle setting.
By command transformation, we know attitude subsystem is
controlled by elevator deflection. To obtain the information
of β from the velocity subsystem, the multi-rate sampling
design is employed so that velocity and β can be considered
as constant during the altitude subsystem controller design.
The similar idea is studied in [19] where the airspeed, altitude
and flight path angle are selected as slow-dynamics variables
and considered invariant during the controller design of the
fast dynamics.

The control objective of system (8) is to design an adaptive
controller, which makes γ → γd , further h → hd and all the
signals involved are bounded.

Assumption 2: fi and gi are unknown smooth functions
which can be decomposed into the nominal part fiN , giN and
the unknown part Δ fi, Δgi, i = 1,3,V .

B. Discrete-time Model

By Euler approximation with different sample time period
TV and Ts, systems (6) and (8) can be approximated as

V (k+1) =V (k)+TV [ fV (k)+gV (k)uV (k)] (9)

x1(k+1) = x1(k)+Ts[ f1(k)+g1(k)x2(k)]
x2(k+1) = x2(k)+Ts[ f2(k)+g2(k)x3(k)]
x3(k+1) = x3(k)+Ts[ f3(k)+g3(k)uA(k)]

(10)

Here TV is selected four times as Ts. So during the design of
attitude subsystem, the velocity and throttle setting could be
considered as constant.

IV. HONN APPROXIMATION

Higher order neural network (HONN) is one kind of linearly
parameterized NNs. The structure of HONN is expressed as
follows:

U(ω,X) = ωT θ(X) ω,θ(X) ∈ RN (11)

θi(X) = ∏
j∈Ii

[s(Xj)]
d ji

(12)

where X ⊂ Rm is the input to HONN, N is the NN nodes
number, {I1, I2, ..., IN} is a collection of N not-ordered subsets
of {1,2, ...,m}, specified by the designer, d ji’s are prescribed
nonnegative integers, ω is an adjustable synaptic weight vec-
tor, and s(Xj) is a monotonically increasing and differentiable
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sigmoidal function. In this paper, it is chosen as a hyperbolic
tangent function, i.e.,s(Xj) = (eXj − e−Xj)/(eXj + e−Xj).
For a desired function U∗, it is assumed there exists an ideal
weight vector ω∗ such that the smooth function vector can be
approximated by an ideal NN on a compact set

U∗ = ω∗T θ(X)+ ε(X),‖ε(X)‖< εM (13)

where ε(X) is the bounded NN approximation error vector
and εM is the supreme of ε(X).

V. DISCRETE CONTROL DESIGN

A. Adaptive NN Control for Attitude Subsystem

The errors are defined as

z1(k) = x1(k)− x1d(k) (14)
z2(k) = x2(k)− x2d(k) (15)
z3(k) = x3(k)− x3d(k) (16)

where x2d(k), x3d(k) are the virtual control inputs to be
designed.
Step 1. From (14),

z1(k+1) = x1(k)+Ts[ f1(k)+g1(k)x2(k)]− x1d(k+1) (17)

where x1d(k+1) is acquired from (7).
Since g1(k) and f1(k) are unknown, the uncertainty is

defined as

U1(k) = − 1
Tsg1(k)

[−Ts f1(k)− x1(k)+ x1d(k+1)]

+
1

Tsg1N(k)
[−Ts f1N(k)− x1(k)+ x1d(k)]

= ω∗T
1 θ1 (X1 (k))+ ε1 (X1 (k)) (18)

where X1(k)= [V (k),x1(k),h(k),hd(k),hd(k+1)]T , f1N(k) and
g1N(k) are the nominal parts of f1(k) and g1(k), ω∗

1 is the
optimal parameters for NN to approximate U1(k) and ε1(X1)
is the NN reconstruction error.
Take x2(k) in (17) as the virtual control input and design its
desired value as

x2d(k) =
1

Tsg1N(k)
[c1z1(k)−Ts f1N(k)− x1(k)+ x1d(k)]

+ ω̂T
1 (k)θ1 (X1 (k)) (19)

where ω̂1 is the estimation of ω∗
1 .

Combining (15), (17) and (19), the following equation can
be obtained.

z1(k+1) = x1(k)+Ts[ f1(k)+g1(k)x2(k)]− x1d(k+1)

= Tsg1(k)z2(k)+Tsg1(k)[ω̃T
1 (k)θ1(X1(k))− ε1(X1(k))]

+
g1(k)

g1N(k)
c1z1(k)

(20)

where ω̃1(k) = ω̂1(k)−ω∗
1 . The robust updating algorithm for

the NN weights is

ω̂1(k+1) = ω̂1(k)−λ1z1(k+1)θ1(X1(k))−δ1ω̂1(k) (21)

where λ1 > 0 and 0 < δ1 < 1.
Step 2. From(15),

z2(k+1) = x2(k)+Ts[ f2(k)+g2(k)x3(k)]− x2d(k+1) (22)

Define X2(k) = [XT
1 (k),x2(k),hd(k+2)]T . From (19), x2d(k+

1) involves x1(k+1), f1(k+1) , z1(k+1) and x1d(k+2). It
can be concluded that x2d(k+1) is the function of X2(k) . The
uncertainty U2(k) is defined and can be approximated by NN
as

U2(k) = x2d(k)−x2d(k+1) =ω∗T
2 θ2(X2(k))+ε2(X2(k)) (23)

where ω∗
2 is the optimal parameters and ε2(X2(k)) is the NN

reconstruction error.
Take x3(k) in (22) as the virtual control input and design

its desired value as

x3d(k) =
1

Tsg2(k)
[−x2(k)+ x2d(k)+ c2z2(k)]+ ω̂T

2 (k)θ2(X2)

(24)
where ω̂2 is the estimation of ω∗

2 . The result of (23) and (24)
is due to the fact that f2 = 0 and g2 = 1.

The robust updating algorithm for the NN weights is

ω̂2(k+1) = ω̂2(k)−λ2z2(k+1)θ2(X2(k))−δ2ω̂2(k) (25)

where λ2 > 0 and 0 < δ2 < 1.
Step 3. From (16),

z3(k+1) = x3(k)+Ts[ f3(k)+g3(k)uA(k)]− x3d(k+1) (26)

Define X3(k) =
[
XT

2 (k),x3(k),hd(k+3)
]T . Similarly we can

deduce that the uncertainty U3(k) is the function of X3(k) and
it can be approximated by NN as

U3(k) = − 1
Tsg3(k)

[−Ts f3(k)− x3(k)+ x3d(k+1)]

+
1

Tsg3N(k)
[−Ts f3N(k)− x3(k)+ x3d(k)]

= ω∗T
3 θ3 (X3 (k))+ ε3 (X3 (k)) (27)

where ω∗
3 is the optimal parameters for NN to approximate

U3(k) and ε3(X3(k)) is the NN reconstruction error. The actual
control input is designed as

uA(k) =
1

Tsg3N(k)
[−Ts f3N(k)− x3(k)+ x3d(k)+ c3z3(k)]

+ ω̂T
3 (k)θ3 (X3 (k)) (28)

where ω̂3 is the estimation of ω∗
3 . where ω̃3(k) = ω̂3(k)−ω∗

3 .
The update law for the NN weights is

ω̂3(k+1) = ω̂3(k)−λ3z3(k+1)θ3(X3(k))−δ3ω̂3(k) (29)

where λ3 > 0 and 0 < δ3 < 1.
Theorem 1: Considering system (10) with the con-

troller (28), virtual design (19), (24) and the update
law (21), (25), (29), all the signals involved are semiglobal
uniform ultimate bounded.

The proof is quite similar to [16] and thus omitted here to
save space.
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B. Adaptive NN Control for Velocity Subsystem

Define XV (k) = [V (k),x1(k),x2(k),x3(k),x4(k),Vd(k+1)]T

and zV (k) =V (k)−Vd(k)

zV (k+1) =V (k+1)−Vd(k+1)
=V (k)+TV [ fV (k)+gV (k)uV (k)]−Vd(k+1) (30)

The control input is designed as

uV (k) =
1

TV gV N
[−TV fV N(k)−V (k)+Vd(k+1)]

+ ω̂T
V (k)θV (XV (k)) (31)

where ω̂V is the estimation of ω∗
V .

The robust updating law for NN weights is

ω̂V (k+1) = ω̂V (k)−λV zV (k+1)θV (XV (k))−δV ω̂V (k) (32)

where λV > 0 and 0 < δV < 1.
Theorem 2: Considering system (9) with the controller (31)

and the update law (32), the velocity is semiglobal uniform
ultimate bounded. The proof is omitted here.

VI. SIMULATIONS

In this section, we verify the effectiveness and performance
of the proposed adaptive neural controller. The flight of the
vehicle is at trimmed cruise condition M = 15, V = 15,060ft/s,
h = 110,000ft. Reference commands are generated by the
filter:

hd

hc
=

ωn1ω2
n2

(s+ωn1)(s2 +2εcωn2s+ω2
n2)

(33)

Vd

Vc
=

ωn3

(s+ωn3)
(34)

where ωn1 = 0.2, ωn2 = 0.2, εc = 0.7, ωn3 = 0.1.
The parameters for the controller are selected as kh = 0.2,

kI = 0.1, λ1 = 0.05, λ2 = 0.05, λ3 = 0.05, δ1 = 0.02, δ2 = 0.02,
δ3 = 0.02, Ts = 0.03s, TV = 0.12s, c1 = 0.9, c2 = 0.8, c3 = 0.2,
cV = 0.6.
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Fig. 7. Square Signal Tracking: Altitude and Velocity Response
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A. Step Tracking

Fig.1 depicts the response performance that the altitude con-
troller tracks the step change with magnitude 500ft while the
velocity steps from 15060ft/s to 15160ft/s. The control inputs
of the elevator deflection and the throttle setting are shown
in Fig.2. Flight path angle tracks the reference command very
well in Fig.3 so that the system tracks the altitude step change.
From the pitch angle in Fig.4 and pitch rate response in Fig.5,
we know the related system states are bounded. Also we find
the NN weights are bounded in Fig.6.

B. Square Signal Tracking

The system tracks the square signal with amplitudes 500ft
and period 80 seconds while velocity is maintained in the
neighborhood of 15060ft/s. The results are referred to Fig.7-
12. It can be observed that all the system states are bounded
and the velocity is regulated with a small error around the
initial value. Also it is noted that the system states flight path
angle, pitch angle, pitch rate perform good tracking response
of altitude command, x2d , x3d separately.

VII. CONCLUSIONS

The altitude control of HFV is transformed into the flight
path angle tracking. The two dynamics are sampled by dif-
ferent rate. In this way, the velocity and throttle setting from
the slow dynamics can be employed for the design of attitude

subsystem. Simulation results show the effectiveness of the
method.

ACKNOWLEDGEMENTS

This work was supported by DSO National Laboratories
of Singapore through a Strategic Project Grant (Project No.
DSOCL10004), National Science Foundation of China (Grants
No: 61134004,61004002), NWPU Basic Research Funding
(Grant No: JC20120236) and Aeronautical Science Foundation
of China(Grant No: 20110184).

REFERENCES

[1] C. Yang, S. Ge, and T. Lee, “Output feedback adaptive control of a class
of nonlinear discrete-time systems with unknown control directions,”
Automatica, vol. 45, no. 1, pp. 270–276, 2009.

[2] R. Stengel, J. Broussard, and P. Berry, “Digital controllers for VTOL
aircraft,” IEEE Transactions on Aerospace and Electronic Systems, no. 1,
pp. 54–63, 1978.

[3] N. Lincoln and S. Veres, “Application of discrete time sliding mode con-
trol to a spacecraft in 6DoF with parameter identification,” International
Journal of Control, vol. 83, no. 11, pp. 2217–2231, 2010.

[4] K. Kanai, N. Hori, and P. Nikiforuk, “A discrete-time multivariable
model-following method applied to decoupled flight control,” Journal
of Guidance, Control, and Dynamics, vol. 9, no. 4, pp. 403–407, 1986.

[5] D. Shin and Y. Kim, “Nonlinear discrete-time reconfigurable flight
control law using neural networks,” IEEE Transactions on Control
Systems Technology, vol. 14, no. 3, pp. 408–422, 2006.

[6] Y. Hu, F. Sun, and H. Liu, “Neural network-based robust control
for hypersonic flight vehicle with uncertainty modelling,” International
Journal of Modelling, Identification and Control, vol. 11, no. 1, pp.
87–98, 2010.

[7] H. Buschek and A. Calise, “Uncertainty modeling and fixed-order
controller design for a hypersonic vehicle model,” Journal of Guidance,
Control, and Dynamics, vol. 20, no. 1, pp. 42–48, 1997.

[8] Z. Dydek, A. Annaswamy, and E. Lavretsky, “Adaptive control and the
NASA X-15-3 flight revisited,” IEEE Control Systems Magazine, vol. 30,
no. 3, pp. 32–48, 2010.

[9] H. Xu, M. Mirmirani, and P. Ioannou, “Adaptive sliding mode control
design for a hypersonic flight vehicle,” Journal of Guidance, Control,
and Dynamics, vol. 27, no. 5, pp. 829–838, 2004.

[10] L. Fiorentini, A. Serrani, M. Bolender, and D. Doman, “Nonlinear robust
adaptive control of flexible air-breathing hypersonic vehicles,” Journal
of Guidance, Control, and Dynamics, vol. 32, no. 2, pp. 401–416, 2009.

[11] B. Xu, D. Gao, and S. Wang, “Adaptive neural control based on HGO
for hypersonic flight vehicles,” SCIENCE CHINA Information Sciences,
vol. 54, no. 3, pp. 511–520, 2011.

[12] D. Gao and Z. Sun, “Fuzzy tracking control design for hypersonic
vehicles via TS model,” SCIENCE CHINA Information Sciences, vol. 54,
no. 3, pp. 521–528, 2011.
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