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Abstract—Stochastic adaptive control of a manipulator with a
passive joint which has neither an actuator nor a holding brake
is investigated. Aiming at shaping the controlled manipulators
dynamics to be of minimized motion tracking errors and joint
accelerations, we employ the linear quadratic regulation (LQR)
optimization technique to obtain an optimal reference model.
Adaptive neural network (NN) control has been developed to
ensure the reference model can be matched in finite time, in
the presence of various uncertainties and stochastic noise. In
addition, due to the stochastic noise, we transform the system
equation to the Ito stochastic differential equation (SDE) form
and then use the Ito formula to deal with the stochastic terms
of the systems. Simulation studies show the effectiveness of the
planned trajectory and the feedback control laws.

Key Words – Stochastic NN control, optimization, LQR,
model reference control

I. INTRODUCTION

Underactuated robots have received considerable research
attention in the last two decades ([1]-[7]). In contrast to
conventional robot for which each joint has one actuator
and its degree of freedom equals the number of actuators,
an underactuated robot has passive joints equipped with no
actuators. The underactuation structure make possible for the
robots to reduce the weight, energy consumption, and cost
of manipulators, which can be applied to the tasks involving
an impact, e.g., hitting or hammering an object, will be useful
since the impact causes no damage to the joint actuators. It can
also contribute to fault tolerance of fully-actuated manipulators
in case some of the joint actuators fail.

Though the passive joints are not actuated but they can
be controlled by using the dynamic coupling with the active
joints, i.e., these passive joints can be indirectly driven by other
active joints. The zero torque at the passive joints results in
a second-order nonholonomic constraint. This method allows
the control of more joints than actuators. In robotics, non-
holonomic constraints formulated as nonintegrable differential
equations containing time-derivatives of generalized coordi-
nates (velocity, acceleration etc.) are mainly studied. Such
constraints include the following: 1) Kinematic constraints
which geometrically restrict the direction of mobility; 2) Dy-
namic constraints due to dynamic balance at passive degrees of
freedom where no force or torque is applied. Wheeled vehicles
[1], rolling contact between objects [2], trailers [3], [4], and
manipulators with nonholonomic gears [5] are mechanical

systems which have constraints of the former type. Constraints
on space robots [6], [7] belong to the latter. These systems
commonly have fewer control inputs than the number of
generalized coordinates. Therefore, it is necessary to combine
the limited number of inputs skillfully in order to control all
the coordinates. So how to efficiently control this kind of
nonholonomic systems becomes an interesting research area.

In this paper we consider a n-joints under-actuated system
with passive last joint and use the LQR optimization approach
to derive a reference model for the first n−1 joints subsystems,
which guarantees motion tracking and achieves the minimized
moving accelerations. High order neural networks (HONNs)
have been employed to design the adaptive control in order to
make the controlled dynamics to match the reference model
dynamics in finite time. Instead of leaving the unactuated
joint dynamics uncontrolled, a reference trajectory for the last
joint is designed to indirectly affect the movements such that
the desired motion can be achieved. HONNs also have been
employed to construct a reference trajectory generator of the
last joint.

II. STOCHASTIC FINITE-TIME ATTRACTIVENESS

Consider the following stochastic nonlinear system with the
Ito SDE form

dx = f (x)dt +g(x)dw (1)

where x ∈ Rn is the state, w is an independent r-dimensional
standard Wiener process defined on the complete probability
space (Ω,F ,P), the Borel measurable functions f : Rn→ Rn

and g : Rn → Rn×r are locally Lipschitz continuous with
f (0) = 0 and g(0) = 0. Without loss of generality, we use
0 and x0 to denote the initial time and the initial state of the
system. The solution of system (1) with the initial state x0 is
denoted by x(t;x0).

The following two definitions come from [8], which will be
used to express our system stability.

Definition 1: For system (1), define T (x0,w) = inf{T ≥ 0 :
x(t;x0) = 0,∀t ≥ T}, which is called the stochastic settling
time function.

Definition 2: The equilibrium x = 0 of system (1) is glob-
ally stochastically finite-time attractive, if for x0 ∈ Rn, the
following conditions hold.

(i) Stochastic settling time function T0(x0,w) exists with
probability one.
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(ii) Provided that T0(x0,w) exists, then E[T0(x0,w)]< ∞.
For a given V (x) ∈ C2, the infinitesimal generator L with

regard to (1) is defined by

LV (x) =
∂V
∂x

f (x)+
1
2

Tr
{

gT (x)
∂ 2V
∂x2 g(x)

}
. (2)

We now state the stochastic Lyapunov lemma for stochastic
finite-time attractiveness, which is a combination of Corollary
1 in [8], Theorem 3.1 in [9] and Revision of Corollary 1 in
[10], and the proof is omitted here for simplicity.

Lemma 1: Assume that system (1) admits a unique solu-
tion. If there exists a C2 function V : Rn→ R+ and class K∞

function α1,α2, positive numbers c > 0 and 0 < γ < 1, such
that for ∀x ∈ Rn and t ≥ 0,

α1(‖x‖)≤V (x)≤ α2(‖x‖),
LV (x)≤−c(V (x))γ ,

then the equilibrium x= 0 of system (1) is stochastically finite-
time attractive, and E[T0(x0,w)] ≤ (V (x0))

1−γ

c(1−γ) , which implies
T0(x0,w)<+∞ a.s.

III. DYNAMICS OF UNDER-ACTUATED ROBOT
MANIPULATOR

Partition of generalized coordinate vector q as q= [qT
a , qT

b ]
T

with qa = [q1,q2, . . . ,qn−1]
T and qb = qn such that

qa = I0q, I0 = [I[n−1,n−1],0[n−1,1]] ∈ R(n−1)×n (3)

and τa = [τ1,τ2, . . . ,τn−1]
T . The dynamics model of robot

manipulator with passive last joint is described as follows:[
Ma Mab
Mba Mb

][
q̈a
q̈b

]
+

[
Ca Cab
Cba Cb

][
q̇a
q̇b

]
+

[
ga
gb

]
+

[
ẇa
ẇb

]
=

[
τa
0

]
(4)

Define

M =

[
Ma Mab
Mba Mb

]
,g =

[
ga
gb

]
,

C =

[
Ca Cab
Cba Cb

]
, ẇ =

[
ẇa
ẇb

]
Then (4) can be written in a compact form as

Mq̈+Cq̇+g+ ẇ = IT
0 τa (5)

where w is an n-dimensional independent standard Wiener
process. The following property are well known for the
Lagrange-Euler formulation of robotic dynamics:

Property 1: The matrix M is symmetric and positive defi-
nite.

Therefore, the blocks Ma and Mb are also invertable and the
inverse of matrix M exist and is

M−1 =

[
S−1

b −M−1
a MabS−1

a
M−1

b MbaS−1
b S−1

a

]
(6)

where Sa and Sb are Schur complements of Ma and Mb,
respectively, defined as Sa = Mb −MbaM−1

a Mab,Sb = Ma −

MabM−1
b Mba. Multiplying I0M−1 on both sides of (5) gives

us

q̈a + I0M−1Cq̇+ I0M−1g+ I0M−1ẇ = I0M−1IT
0 τa = S−1

b τa (7)

Then, multiplying Sb on both sides of the above equation, we
have

Sbq̈a +SbI0M−1Cq̇+SbI0M−1g+SbI0M−1ẇa = τa (8)

Define M , Sb ∈ R(n−1)×(n−1), C , SbI0M−1C = [Ca,Cb] ∈
R(n−1)×n with Ca ∈ R(n−1)×(n−1), Cb ∈ R(n−1)×1, and G =
SbI0M−1g,S = SbI0M−1, then, we have qa-subsystems as
follows

Σqa : M q̈a +Caq̇a +Cbq̇b = τa−G −S ẇa (9)

At the same time, we obtain the qb-subsystem as follows:

Σqb : Mbq̈b +Cbq̇b +gb + ẇb +Mbaq̈a +Cbaq̇a = 0 (10)

Remark 1: It should be mentioned that due to the unknown
system parameters in the above dynamics formulation, the
dynamics matrices M ,S are actually unknown for control
design.However, we still can estimate their regions. So we
assume there exist the positive constants m and m̄ such that
m≤ |M−1| ≤ m̄. But it should be mentioned that these bounds
are only used in the stability analysis, and their exact values
need not to be known in our controller design.

IV. CONTROL OF SUBSYSTEM Σa

A. Subsystem dynamics and optimal reference model

For convenience, defining q̄a = [qT
a , q̇T

a ]
T , q̄b = [qb, q̇b]

T ,
and q̄ = [qT

a , qb, q̇T
a , q̇b]

T , we rewrite (9) as

˙̄qa = Aaq̄a +Abq̄b +BM−1(τa−G )−BM−1S ẇa (11)

where

Aa =

[
0[n−1,n−1] I[n−1,n−1]
0[n−1,n−1] −M−1Ca

]
=

[
0 I

Aa1 Aa2

]
Ab =

[
0[n−1,1] 0[n−1,1]
0[n−1,1] −M−1Cb

]
=

[
0 0

Ab1 Ab2

]
B =

[
0[n−1,n−1], I[n−1,n−1]

]T (12)

For clarity, here and hereafter, the argument q̄ of Aa,Ab,M ,S
and G is omitted.

The control objective is to control the subsystem dynamics
(11) to follow a given reference model

˙̄qm = Amq̄m +BM−1
d rm (13)

where q̄m ∈ R2(n−1)×2(n−1) is the desired response of the
system,

Am =

[
0[n−1,n−1] I[n−1,n−1]
Am1(q̄m) Am2(q̄m)

]
=

[
0[n−1,n−1] I[n−1,n−1]
−M−1

d Kd −M−1
d Cd

]
∈ R2(n−1)×2(n−1) (14)

rm = −Fη(qd , q̇d), q̄m = [qT
m, q̇

T
m]

T
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In order to choose the optimal values of the reference model
parameters, we introduce the following performance index:

PI =
∫ t f

t0
(eT

mQem + q̈T
mMd q̈m

)
dt. (15)

where Q =

 q1 0
. . .

0 qn−1

, which minimizes both the motion

tracking error em = qm− qd and the joints’ angular accelera-
tions. In order to apply the LQR optimization technique[11],
we rewrite the reference model (13) as

˙̄qm = Ad q̄m +Bu (16)

with

Ad =

[
0[n−1,n−1] I[n−1,n−1]
0[n−1,n−1] 0[n−1,n−1]

]
,

u = −M−1
d [Kd , Cd ]q̄m−M−1

d Fη(qd , q̇d) (17)

Noting that u = q̈m and introducing Q̄ defined as

Q̄ =

[
Q 0[n−1,n−1]

0[n−1,n−1] 0[n−1,n−1]

]
(18)

we can then rewrite the performance index (15) as

PĪ =
∫ t f

t0

(
(q̄m− q̄d)

T Q̄(q̄m− q̄d)+uT Mdu
)
dt, (19)

where q̄d = [qT
d , q̇T

d ]
T . If we regard u as the control input to

system (16), then the minimization of (19) subject to dynamics
constraint (16) becomes a typical LQR control design problem,
where the solution of u that minimizes (19) is

u =−M−1
d BT Pq̄m−M−1

d BT s (20)

where P is the solution of the following differential equation

−Ṗ = PAd +AT
d P−PBM−1

d BT P+ Q̄, P(t f ) = 0[2(n−1),2(n−1)]

and s is the solution of the following differential equation

−ṡ = (Ad−BM−1
d BT P)T s+ Q̄q̄d , s(t f ) = 0[2(n−1)] (21)

Comparing equations (17) and (20), we can see that the
matrices Kd and Cd can be calculated in the following manner:

[Kd ,Cd ] = BT P, Fη = BT s (22)

B. NN control and model matching
According to M ’s nonsingularity and from the state

feedback control for linear systems, we conclude that
there exist K(q̄) ∈ R(n−1)×2(n−1),L(q̄) ∈ R(n−1)×2,T (q̄) ∈
R(n−1)×(n−1),G(q̄) ∈ R(n−1)×1 such that for the control law
chosen by

τa = G(q̄)+K(q̄)q̄a +L(q̄)q̄b +T (q̄)rm, (23)

the closed-loop system is the same as the reference model (13).
By substituting the control law (23) into the system equation
(11), the closed-loop system is given by

dq̄a = {[Aa +BM−1K(q̄)]q̄a +[Ab +BM−1L(q̄)]q̄b

+BM−1T (q̄)rm +BM−1[G(q̄)−G ]}dt
−BM−1S dwa (24)

Comparing it to match the reference model (13), we obtain

Aa +BM−1K(q̄) = Am, M−1T (q̄) = M−1
d

Ab +BM−1L(q̄) = 0[2(n−1),2], G(q̄)−G = 0[n−1]
(25)

Then we have

K(q̄) = M ([Am1 Am2]− [Aa1 Aa2]), G(q̄) = G , (26)
L(q̄) = −M [Ab1 Ab2], T (q̄) = M M−1

d (27)

Unfortunately, according to Remark 1, the dynamic matri-
ces Aa,Ab,M ,G are not available during practical imple-
mentation, and then the exact values of the desired gains
K(q̄),L(q̄),T (q̄) and G(q̄) are also unknown.

We can employ the HONNs [12] to approximate the con-
troller gains as follows

K(q̄) = K∗(q̄)+ εK , L(q̄) = L∗(q̄)+ εL (28)
T (q̄) = T ∗(q̄)+ εT , G(q̄) = G∗(q̄)+ εG (29)

with

K∗(q̄) = [W 〈T 〉K 〈·〉SK(q̄)],T ∗(q̄) = [W 〈T 〉T 〈·〉ST (q̄)] (30)

L∗(q̄) = [W 〈T 〉L 〈·〉SL(q̄)],G∗(q̄) = [W 〈T 〉G 〈·〉SG(q̄)] (31)

where 〈〉 expresses matrix block-wise operator, defined in [12].
WKi, j,WLi,k,WTi,s,WGi ∈ Rl×1 are the NN ideal weights for
Ki, j(q̄),Li,k(q̄),Ti,s(q̄),Gi(q̄), respectively (i = 1, · · · ,n−1; j =
1, · · · ,2(n− 1);k = 1,2;s = 1, · · · ,n− 1), l is the number
of the neurons. SK(q̄),SL(q̄),ST (q̄),SG(q̄) are the outputs of
the bounded basis functions, and εK ,εL,εT ,εG are the NN
approximation errors. For a fixed number of nodes, we know
that ‖εK‖,‖εL‖,‖εT‖,‖εG‖ are bounded, WK ,WL,WT ,WG are
unknown constant parameters.

Consider the following NN based control law

τa = K̂(q̄)q̄a + L̂(q̄)q̄b + T̂ (q̄)rm + Ĝ(q̄)+ τr

= [Ŵ 〈T 〉K 〈·〉SK(q̄)]q̄a +[Ŵ 〈T 〉L 〈·〉SL(q̄)]q̄b

+[W 〈T 〉T 〈·〉ST (q̄)]rm +[W 〈T 〉G 〈·〉SG(q̄)]+ τr

(32)

where τr is a robust control term for closed-loop stability
which will be defined later to compensate for the approxi-
mation errors of the NNs and to suppress the disturbaces.

Define

e = q̄a− q̄am, W̃K = ŴK−WK ,
W̃L = ŴL−WL, W̃T = ŴT −WT , W̃G = ŴG−WG

(33)

Substituting the control law (32) into the subsystem dynamics
(11), using (33), applying the NN approximations (28)-(29),
and recalling (25), we obtain the following error equation

de =

{
Ame+BM−1(τr− εK q̄a− εLq̄b− εT rm− εG) (34)

+BM−1[W̃ 〈T 〉K 〈·〉SK(q̄)]q̄a +BM−1[W̃ 〈T 〉L 〈·〉SL(q̄)]q̄b

+BM−1[W̃ 〈T 〉T 〈·〉ST (q̄)]rm +BM−1[W̃ 〈T 〉G 〈·〉SG(q̄)]
}

dt

−BM−1S dwa

For stable Am of the reference model, let Pm be the symmetric
positive definite solution of the Lyapunov equation

PmAm +AT
mPm =−Qm (35)
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where Qm is symmetric positive definite.
The following theorem states the stability of the adaptive

NN control.
Theorem 1: For the system (11), consider the NN based

control laws (32). If the updating laws of the weights of the
adaptive NNs are given by

( ˙̂W 〈T 〉Ki )T = −ΓKi〈·〉SKi(q̄)q̄a(eT Pme)eT Pm(B)i

( ˙̂W 〈T 〉Ti )T = −ΓTi〈·〉STi(q̄)rm(eT Pme)eT Pm(B)i

( ˙̂W 〈T 〉Li )T = −ΓLi〈·〉SLi(q̄)q̄b(eT Pme)eT Pm(B)i
˙̂WGi = −ΓGiSGi(q̄)q̄b(eT Pme)eT Pm(B)i

(36)

and

τr = −kr(eT Pme)sgn(BT Pme)− k2e− k3(‖B‖‖Pm‖‖e‖)2

kr = k1 + kr1 + kr2 (37)

where (B)i stands for the i−th column of B, k1,k2 are the
positive constants, k3 ≥ 6m̄S̄ 2,kr1 ≥ ‖εK q̄a + εLq̄b + εT rm +

εG‖,kr2 ≥ ‖[W̃ 〈T 〉K 〈·〉SK(q̄)]‖‖q̄a‖ + ‖[W̃ 〈T 〉L 〈·〉SL(q̄)]‖‖q̄b‖ +
‖[W̃ 〈T 〉T 〈·〉ST (q̄)]‖‖rm‖+ ‖[W̃ 〈T 〉G 〈·〉SG(q̄)]‖, ΓKi ∈ R(2(n−1)·l)×
(2(n−1)·l), ΓTi ∈ R((n−1)·l)×((n−1)·l), ΓLi ∈ R(2l)×(2l),ΓGi ∈ Rl×l

are the symmetric positive definite matrices, then the adaptive
NN controller ensures that the closed-loop system are stochas-
tically finite-time attractive, and for each bounded initial
condition, and the parameter estimates ŴK ,ŴL,ŴT ,ŴG satisfy

P{ lim
t→∞
‖ŴK‖, lim

t→∞
‖ŴL‖, lim

t→∞
‖ŴT‖and

lim
t→∞
‖ŴG‖ exist and are finite}= 1. (38)

Remark 2: In τr, we introduced a positive constant k2,
which is only used in the practical controller design to improve
the controller’s smoothness and doesn’t affect our stability
proof.

Proof: Choose the following Lyapunov function

V1 =U1 +U2, U1 =
1

2m̄
(eT Pme)2,

U2 =
n−1

∑
i=1

W̃ 〈T 〉Ki Γ
−1
Ki (W̃

〈T 〉
Ki )T +

n−1

∑
i=1

W̃ 〈T 〉Li Γ
−1
Ki (W̃

〈T 〉
Li )T

+
n−1

∑
i=1

W̃ 〈T 〉Ti Γ
−1
Ti (W̃

〈T 〉
Ti )T +

n−1

∑
i=1

W̃ T
GiΓ
−1
Gi W̃Gi. (39)

Bearing in mind m≤ |M−1| ≤ m̄ and applying the Ito formula

to V1 yield

LV1 ≤ 2(eT Pme)eT PmB(τr− εK q̄a− εLq̄b− εT rm

−εG)+6m̄S̄ (‖B‖‖Pm‖‖e‖)2

+2
n−1

∑
i=1

[W̃ 〈T 〉Ki 〈·〉SKi(q̄)]q̄a(eT Pme)eT Pm(B)i

+2
n−1

∑
i=1

[W̃ 〈T 〉Ti 〈·〉STi(q̄)]rm(eT Pme)eT Pm(B)i

+2
n−1

∑
i=1

[W̃ 〈T 〉Li 〈·〉SLi(q̄)]q̄b(eT Pme)eT Pm(B)i (40)

+2
n−1

∑
i=1

W̃ T
GiSGi(q̄)(eT Pme)eT Pm(B)i

+2
n−1

∑
i=1

W̃ 〈T 〉Ki Γ
−1
Ki (

˙̃W 〈T 〉Ki )T +2
n−1

∑
i=1

W̃ 〈T 〉Ti Γ
−1
Ti (

˙̃W 〈T 〉Ti )T

+2
n−1

∑
i=1

W̃ 〈T 〉Li Γ
−1
Li (

˙̃W 〈T 〉Li )T +2
n−1

∑
i=1

W̃ T
GiΓ
−1
Ti

˙̃WGi

Substituting the adaptive laws (36) to (40), and further substi-
tuting τr from (37), leads to

LV1 = −2(k1 + kr2)(eT Pme)eT PmBsgn(BT Pme)
−2k2(eT Pme)eT PmBe

≤ −k0‖e‖3 < 0,‖e‖ 6= 0,
(41)

with k0 = 2k1‖Pm‖2‖B‖ > 0. According to Theorem
1 [14], expression (41) means both U1 and U2 are
bounded in probability and consequently ‖e‖,‖W̃K‖,‖W̃T‖,
‖W̃L‖,‖W̃G‖ are bounded in probability, i.e., P{limt→∞ ‖ŴK‖,
limt→∞ ‖ŴL‖, limt→∞ ‖ŴT‖, and limt→∞ ‖ŴG‖ exist and are
finite}= 1.

On the other hand, according to (40), (41) and (37), we have

LU1 ≤ − 1
m̄
(eT Pme)(eT Qme)− k0‖e‖3 ≤−k0‖e‖3

= =−k0

(
1
‖Pm‖2 (‖e‖‖Pm‖‖e‖)2

) 3
4

(42)

≤ −k0

(
1
‖Pm‖2

) 3
4 (

(eT Pme)2) 3
4 =−c(U1)

3
4

where c = k0

(
2m̄
‖Pm‖2

) 3
4
. Thus, by Lemma 1, the closed-loop

system (34) achieves the finite-time attractiveness, i.e., the
matching error e will reach the origin in finite time with
probability one. This completes the proof.

V. REFERENCE TRAJECTORY GENERATOR FOR qb
SUBSYSTEM

For the motion of the passive joint, however, to our best
knowledge, there has been very little study to discuss the
automatic control of its movement until now. In this work, we
attempt to set up a framework to design the reference trajectory
for manipulating the last joint to track the desired trajectory.
As above discussed, after finite time, qa will exactly track qad ,
such that the dynamics (10) becomes as follows:

q̈b = −M−1
b Cbq̇b−M−1

b gb−M−1
b ẇb−M−1

b Mbaq̈ad

−M−1
b Cbaq̇ad (43)
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Let ϕ = [ϕ1,ϕ2]
T = [qb, q̇b]

T , φ = [φ T
1 ,φ

T
2 ]

T = [qT
ad , q̇

T
ad ]

T

and v = q̈ad . Then, equation (43) can be rewritten as

ϕ̇1 = ϕ2, ϕ̇2 = f (ϕ,φ ,v)−M−1
b ẇb (44)

with f (ϕ,φ ,v) = −M−1
b Mbav−M−1

b (Cbϕ2 + gb +Cbaφ2) and
φ̇1 = φ2, φ̇2 = v.

Consider the desired forward position and forward velocity
of the manipulator as qbd and q̇bd , respectively. Then, our
design objective is to construct a v (subsequently φ1 and φ2)
such that ϕ1 and ϕ2 of system (44) follow ϕ1m and ϕ2m
generated from the following reference model

ϕ̇1m = ϕ2m, ϕ̇2m = fm(qbd , q̇bd ,ϕm) (45)

where ϕm = [ϕ1m,ϕ2m]
T and fm(qbd , q̇bd ,ϕm) = −k1(ϕ1m −

qbd)− k2(ϕ2m− q̇bd)+ q̈bd . It can be easily checked that the
reference model (45) ensures that ϕ1m → qbd and ϕ2m →
q̇bd . According to implicit function theorem based neural
network design [13], there must exist a function fv : v∗ =
fv(qbd , q̇bd ,ϕ,φ) such that f (ϕ,φ ,v∗) = fm(qbd , q̇bd ,ϕ), i.e.,
there exists the ideal HONNs weight vectors such that

v∗ = [W ∗〈T 〉v 〈·〉Sv(z)]+ εv, z = [qbd , q̇bd ,ϕ
T ,φ T ]T (46)

where εv ∈R(n−1)×1 is the neural network approximation error
vector. Let us employ HONNs to approximate v∗ as follows:

v̂ = Ŵ 〈T 〉v 〈·〉Sv(z) (47)

with Ŵ 〈T 〉v = [Ŵ T
v1,Ŵ

T
v2, · · · ,Ŵ T

v(n−1)], where Ŵ T
vi ∈ Rl×1(i =

1,2, · · · ,n− 1) are the neural network weight vectors. Sub-
stituting v̂ into (44) and using f (φ ,ϕ,v∗) = fm(qbd , q̇bd ,ϕ),
we have

ϕ̇1 = ϕ2 (48)

ϕ̇2 = fm(qbd , q̇bd ,ϕ)−M−1
b (ẇb +Mba([W̃

〈T 〉
v 〈·〉Sv(z)]− εv))

where W̃ = Ŵ −W ∗. Define ϕ̃1 = ϕ1−ϕ1m and ϕ̃2 = ϕ2−ϕ2m
such that ϕ̃ = ϕ̂−ϕ . Then, the comparison between (45) and
(48) yields

˙̃ϕ1 = ϕ̃2 (49)
˙̃ϕ2 = −k1ϕ̃1− k2ϕ̃2−M−1

b (ẇb +Mba([W̃
〈T 〉
v 〈·〉Sv(z)]− εv))

Theorem 2: Consider the following weight adaptation law
for HONN employed in (47)

˙̂Wvi = ΓviSvi(z)ϕ̃T PW [0 1]T −σΓviŴvi (50)

where Γvi ∈ Rl×l and σ are suitably chosen as a symmetric
positive definite matrix and a positive scalar, respectively.
Then, the tracking errors ϕ̃1 and ϕ̃2 in (49) will be eventually
bounded into a small neighborhood around zero.

Proof: Let us rewrite the error dynamics (49) as the form
of Ito SDE

dϕ̃ =

[
AW ϕ̃− [0 1]T M−1

b

n−1

∑
i=1

Mbai(W̃ T
vi Svi(z)− εvi)

]
dt

−[0 1]T M−1
b dwb (51)

where Mbai represents the i-th element of vector Mba, AW =[
0 1
−k1 −k2

]
satisfies the Lyapunov equation AT

W PW +

                                           �|��|�                                                              ��     
��      ~

�|	|�                                                        0 

Fig. 1. Bounding set of ‖W̃ 〈T 〉v ‖ and ‖ϕ̃‖.

PW AW =−QW , i.e., for any symmetric positive definite matrix
QW , there exists a symmetric positive definite PW satisfying
the above equation.

Considering the following Lyapunov function

V2(t) = ϕ̃
T PW ϕ̃ +M−1

b

n−1

∑
i=1

MbaiW̃ T
vi Γ
−1
vi W̃ T

vi (52)

and the closed-loop dynamics (51) with the update law (50),
we obtain

LV2(t) ≤ −λQW ‖ϕ̃‖
2−2σM−1

b |Mba|‖W̃
〈T 〉
v ‖2 + ε

2‖ϕ̃‖2

+ε
2‖W̃ 〈T 〉v ‖2 +

1
ε2 ε

2
0 M−1

b |Mba|2‖PW [0 1]T‖2

+
1
ε2 σ

2M−1
b |Mba|2‖W

∗〈T 〉
v ‖2 +Tr(PW )(M−1

b )2

where |εv| ≤ ε0, λQW is the minimum eigenvalue of QW , ε is
any given positive constant and we can choose it sufficiently
small. Furthermore, we can choose the suitable QW and
σ making λQW ≥ ε2,2σM−1

b |Mba| ≥ ε2, and it follows that
V̇2(t)≤ 0 in the complementary set of a set Sb defined as

Sb ,

{
(ϕ̃,W̃ )

∣∣∣∣∣‖W̃ 〈T 〉v ‖2

ā2 +
‖ϕ̃‖2

b̄2 −1≤ 0

}

with ā =
c̄√

λQW − ε2
, b̄ =

c̄√
2σM−1

b |Mba|− ε2
, c̄ =√

1
ε2 M−1

b |Mba|2(ε2
0‖PW [0 1]T‖2 +σ2‖W ∗〈T 〉v ‖2)+Tr(PW )(M−1

b )2.
Obviously, the set Sb defined above is compact. Hence, by
Theorem 1 in [14], it follows that all the solutions of (51)
are bounded in probability. The set Sb is shown in Fig. 1 and
consists of the closed region bounded by the closed oval arc

defined by ‖W̃ 〈T 〉v ‖2
ā2 + ‖ϕ̃‖

2

b̄2 = 1. Thus, the proof is completed.

VI. SIMULATION STUDIES

In this section, the developed trajectory generator and con-
troller will be applied to the cart-pendulum system as shown
in Fig. 2 [15]. Let q1 = x and q2 = θ , then the dynamics can
be described as a fully control subsystem of q1:

Σa : q̈1 =
4mlq̇2

2 sinq2−3mgsinq2 cosq2 +4F
4(M+m)−3mcos2 q2

(53)
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Fig. 2. The cart-pendulum system

Fig. 3. The simulation results

and an uncontrolled subsystem of q2

Σb : q̈2 =
3(M+m)gsinq2−3mq̇2

2 sinq2 cosq2

4(M+m)l−3ml cos2 q2

+
3mgsinq2 cosq2

4(M+m)−3mcos2 q2
− 3

4
cosq2q̈1 (54)

where the mass of cart is 2.4kg; the mass of pendulum is
0.23kg; the length of the pendulum (2l) is 0.36m, w1,w2 are
indepent standard Weiner progresses. The control objective is
to make q2 to track π

30 sin(t).
The simulation results are shown in Fig. 3. As clearly

shown by the simulation results, in the presence of unknown
system parameters and external disturbances, the proposed
adaptive NN controller is able to guarantee the pendulum’s
exact tracking of the given trajectory.

VII. CONCLUSION

In this paper, adaptive NN control has been designed on
the stochastic under-actuated systems for dynamic balance and
motion tracking of desired trajectories. The dynamics of the
the actuated subsystem has been shaped to follow a reference
model, which is derived by using the LQR optimization
technique to minimize both the motion tracking error and the
transient acceleration. The unactuated subsystem is discussed
by suitably generating a reference trajectory. Simulation results
have demonstrated the efficiency of the proposed method.
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