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A variable structure observer for unknown input estimation in sampled
systems

L. Orihuela, S. K. Spurgeon, X. G. Yan and F. R. Rubio

Abstract— This paper considers the design of a variable which were perceived as problematic for many control ap-
structure observer for unknown input estimation and/or fault  plications have no disadvantages for software based observer
reconstruction in Systems where the process measurements are frameworks. The ab|||ty to generate a Slldlng motion on the

sampled. It is well known that the principle of the equivalent
injection signal from the sliding mode domain can be used for error between the measured plant output and the output of

reconstruction of unknown inputs but much of the associated the observer ensures that a sliding mode observer produces
theory is predicated on output sampling of infinite frequency. a set of state estimates that are precisely commensurate with
Sample rate may be a physical constraint of the process and the the actual output of the plant. Further, analysis of the average
reconstruction properties of such continuous time sliding mode value of the applied observer injection signal, the so-called
observers degrade under this constraint. This paper explores . o . . N .

how a recently developed ultimately bounded stable variable equwglent injection signal, contains useful |nf9rmat|on about
structure discrete time observer can be used for unknown input  theé mismatch between the model used to define the observer
estimation. The main novelty of the approach is that the design and the actual plant [5]. This property has been employed
of the observer is written as an optimization problem with linear  for general unknown input estimation as well as for fault
constraints with the output sampling incorporated explicitly in _reconstruction [6], [7], [8]. The results obtained to date most

the model used for observer design. The design methodology is . . - S .
shown to have advantages in terms of reconstruction accuracy frequently require that an ideal sliding motion is attained

when the performance is compared to that of a classical sliding in finite time and the effects of sampling on the physical

mode observer on a case study. measurements used to drive the observer are typically not
considered within the observer design frameworks. However,
I. INTRODUCTION in the presence of a sampled output, the ideal sliding

Variable structure systems were perhaps originally bestode cannot be achieved. Indeed, the error dynamics in the
known for their potential as a robust control method [1], [2]observer may become unstable if the sampling frequency
[3]. They are characterised by a suite of feedback contrig reduced significantly. The effect of output sampling on
laws and a decision rule. The decision rule, termed thidae performance of a sliding mode observer designed using
switching function, has as its input some measure of thelassical continuous variable structure control theory has
current system behaviour and produces as an output theen discussed by several authors, see for example [9], where
particular feedback controller which should be used at th#ite fast sampling required for fault reconstruction via such
instant in time. In sliding mode control, variable structurea sliding mode observer on a motor experiment is reported.
control systems are designed to drive and then constrain theln practice, the sample rate is not always a parameter
system state to lie within a neighbourhood of the switchinghat can be selected by the designer and in this case con-
function. The paradigm has several advantages: the dynarsideration must be given to developing design methods that
behaviour of the system may be specified by the choice ofcorporate the sampling characteristics if good estimates are
switching function and the system is completely insensitivéo be obtained for the unknown inputs. Recent work has
to an important class of uncertainties. A disadvantage ebnsidered the development of a sliding mode observer in the
the methodology has been the fundamentally discontinuopgesence of sampled output information and its application
control signal which, in theoretical terms, must switch witito fault reconstruction by using the delayed continuous-time
infinite frequency to provide total rejection of uncertaintyrepresentation of the sampled-data system, for which a set
Control implementation via approximate, smooth strategies & Linear Matrix Inequalities (LMIs) provide conditions for
widely reported, but in such cases total invariance is routinelyltimate boundedness of the solution [10]. An alternative
lost. approach is to consider a discrete time observer design

In contrast, the application of sliding mode methods to thevethodology. Compared to the continuous time case, the
observer problem is less mature and has some fundamentdilgrature in this area is sparse. Several contributions develop
different properties [4]. The discontinuous injection signalsliding mode observers for systems with a single output

' _ _ [11], [22], [13]. More recently, [14] studied sliding mode
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within the design has been recently developed [15]. I1l. VARIABLE STRUCTURE OBSERVER

This paper extends this later framework to incorporate the The proposed variable structure observer for the multi-
estimation of faults and/or unknown inputs as a design rgs,tput system (3)-(5) is defined as

guirement and assesses the degree to which the methodology

overcomes problems of sampled data implementation frame- ~ 21(k+1) = Audi(k) + Ai2y(k) (6)
works for variable structure based signal reconstruction. 2(k+1) = Aoi(k)+ Ani(k) (7
. The paper is structu_red as follows. The problgm is stated —(Agy — ASy)ex (k) + v(k)
in Section Il. The variable structure observer is proposed . _
in Section IIl. The estimation of unknown inputs usingwheree. (k) = 2(k) — y(k) and A3, € RF*P is a design
the discrete-time observer is studied in Section V. Som@atrix. The variable structure tero(k) is defined by:
examples are presented in Section V. The paper ends with r )\ ]
conclusions and a discussion of future research directions. sat é A
sat (2B
A
II. PROBLEM STATEMENT (k) = Bfsat(es(k),A) = B 8)
Consider the multi-output, discrete-time linear system de- :

scribed by sat (eZPA(k))

z(k+1) = Az(k)+ Dw(k), (1) . )

whereA is a positive scalar an® € RP*? is also a design
y(k) = Cua(k), (2)  matrix. The functionsat(.) is defined as:

wherez € R" is the statey € R? is the output andv € e.i(k) sgn(eLi(k)), lesi(k)] > A

R™ is the unknown input. Matriced, D, C are known with ~ $%¢ <—) = { ezi(k) le.i (k)| < A

appropriate dimensions. It is assumed that the Q&iIC) is . A . _ZZ o o

observable. Note that no control input affects the system, as!t can be viewed as a set f unidimensional switching

the observer problem is the focus of this paper. The inclusidHctions. Each one switches whenever the associated com-

of the control signal can be trivially dealt with, as both thé@nent of the output observation erkgy, i = 1..., p crosses

observer and the system are subject to the same input dfi§ Poundary of the region. X

thus the control signal has no affect on the dynamics of the L&t the state estimation errors be(k) = &1 (k) — 21 (k)

error between the system and observer. ande. (k) = z(k) — z(k). It follows that the error dynamics
Assume thatrank(C'D) = m and the invariant zeros of ar¢

the triple (4, D, C) lie inside the unit circle. Then, there er(k+1

exists a linear change of coordinatEs (see [3]) such that

the system can be written as:

) = Anei(k)—Diw(k), )
€Z(k+1) = A21€1 (k)—l—Aggez(k)—Dgw(k)—i—u(k) (10)

wherey(k) = z(k) in (5) is used to obtain the equations

wri(k+1) = Anai(k) + Aigz(k) + Diw(k),  3)  gpove.
z(k+1) = Anzi(k)+ Asz(k) + Dow(k), (4) In order to study the stability of the observer, a Lyapunov
ylk) = z(k), (5) framework is used. Definings as the ultimate boundedness,

the objective of this section is to design the variable structure
observer in such a way thdk is minimized ensuring that
the forward increment of the Lyapunov function is negative
%or all k& such that|e.(k)| > A. Consider the following
)}/apunov function:

wherez(k) € RP, x1 € R* P andDy € RP*™. Matrix A;;
is stable andD, has full column rank.

Unlike [10] and similar approaches, the disturbance pr
cess or unknown inputv(k) affects both dynamics. The
classical nomenclature used in sliding mode theory, name
unmatched and matched disturbances has been adopted (see V' (k) = ef (k)Prey (k) + el (k) Pye. (), (11)

[3). Itis assumed to be bounded by where Py, P, are positive definite matrices of appropriate

w(k)|| <&, Vk, dimensions.
Due to the presence of the saturatiofik) is a nonlinear
function. A linear representation of the saturation is intro-

The following secti(_)n is devoted to the design of any,ceq which will be useful when designing the observer via
ultimately bounded variable structure observer for the systef oo matrix inequalities. This idea was presented in [15].

(1), by q_riv?ng the. observatiqn grrm(l_f) to the vicjnity Qf Denote by€; the set of states such that
the equilibrium poink(k) = 0 in finite time and maintaining
it in the neighbourhood thereafter. Due to the presence of thquﬁ = {(e1(k),e.(k)) | er(k) € R" 7P e.(k) € RP,
disturbances, asymptotic stability is not possible. However, o7 T 1
the proposed observer reduces the ultimate bound on the V(k) = ex (k) Prea(k) + ez (k) Poe- (k) < 577},
response when compared to classical observation strategi@s. a positive scalar3. The following lemma gives the
In Section IV, the properties of this observer will be used itinear representation of the nonlinear dynamics.

order to estimate the unknown inputk).

where¢ is a known positive scalar.
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Lemma 1. [15] Given 8 > 0, assume that there existsis satisfied by (14).
a matrix H, € RP*P, such that|h,e.| < 1, for all As the assumption of Lemma 1 is verified, the polytopic
e, € €g, where h,; denotes thei-th row of H,. Then, description of the system given in that lemma holds. Using
for (e1,e.) € &g, the observation error dynamic systemthis linear representation, the Lyapunov function (11§ -afl
(9)-(10) with switching function (8) admits the following for vertex; of the polytope i$

representation: Vi (k4 1)
j =

alk+1) = Auei(k) = Drw(k), = (Aner — Dl’w)T P (Ar1e1 — Diw)
H(k+1) = A k) + Asqe.(k) — Daw(k

(bt D) 21;1( )+ Apex(k) = Daw(k) + (A21€1+M2jez_D2w)TP2 (Ag1e14Myje.—Dyw),

+ BZ/\j(k)Ajez(k)a where
Jj=1 _
where: Ms; = A3+ BF;K + BF; H..
A;j = FK+F;H., j=1,.2" The forward increment of the Lyapunov function will be

- AVj(k)= Vj(k +1) = Vj (k)
Zl )\J(k) = b /\j (k) 2 O’Vk >0, = —6,{Q161 - 26{A?1P1D1’w + wTD?PlDlw
j=

K = diag{l/A,.. 1/A}, + ef A3, Py Age1 + 2ef Ag Py Myje.,

T AT T T
with F; a diagonal matrix with diagonal elements that = 2e1 Ay PaDow + e (M P Mo — Po)es
are either 1 or 0, and’;” £ I,,, — Fj, Vj. — 2el My] PyDyw + w' D} PyDow (15)

A T "
From Lemma 1, it can be concluded that the nneaWhgfi _% — bAlk;Pl/tjlld_b ?Dl' The positive term
representation for the saturation is valid only if the regiod (k)Jw(k) can be bounded by:
&3 (defined by the parametg) and a corresponding matrix T 5 T
H, can be found such that the error remainsgin for all Tw” (Rw(k) < 76 < —=e; (kez(k),
k. Hence, this must be an additional constraint in the desqgking into account thafe, (k)|
of the observer.
The following theorem presents the main result of this T€?
section. Az
_ _ ) From (15) and (16), it follows that
Theorem 1. Given the disturbance bour@dand the size
j3 of the set€g, if positive definite matrice®;, P, matrices ~ AVj(k) = Vj(k + 1) — V;(k)

| > A. Therefore,

(Fe-(k) = 70T (R)w(k) >0 (16)

As,, B, H, of appropriate dimensions and scatar 0 solve = el (Af1P1A11 —-P+ AngPzAm) e1 +

the following optimization problem 2e:fA2TlP2M2jez 9T (AglplplDl + AQTlPQDg) w
AS?BF]?}_’%%HZJ A (12) +€z (MQ?PQMQJ- - Pg) €, — QGZMQ?PQDQ’U}

subject to (13)-(14), then the observation error dynamic +w” (DY PLDy + D} P,Dy) w

system (9)-(10) is ultimately bounded stable. The minimum TE2 o

boundedness id. N (ke (k) — Tw" (k)w(k)

o . . Then, the increment of the Lyapunov function can be written
Proof. It is first p_roved that cond|t|or_1$ (13)-(14) imply i the following quadratic manner:
that, given a positiveA, the forward increment of the
Lyapunov function (11) decreases for glL (k)| > A. AV;(k) < ¢CP(k)E¢(k),
The inequalities (14) guarantee th@dt.;e.| < 1, (i =
1,...,p) for all (e1,e.) € €a. This results from the fact that
any error belonging te; satisfies e1(k)

where the stacked state vector is

Bel (k) Prei(k) + Bel (k)Pye, (k) <1 C(k) = (Z((]]j))
= Be; (k) Pre(k) <1 . N :
o - and the symmetric matri¥; is given in equation (13).
Then, for(e1, e) € €g, the following inequalities The inequalities (13) imply that matricé&s; are negative
2> 1+ Bel (k) Pye. (k) > 2|he.| definite for all the vertices of the polytope, and then, the

forward increment of the Lyapunov function will be negative
for all {(k) # 0 (see [16]), which ensures the asymptotic
stability of the system.

imply that|h.;e.| <1 fori=1,...,p. The latter inequality,
which can be written as

(1 o+l ]| P s
Z x [P te, | =7 1The time scriptk has been removed for ease of exposition.
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AﬂPlAll — Pl + AglpgAgl AQTngng —AﬂPlDl — Aglpng

* M2?P2M2j - P+ TAg—jI —M2?P2D2 < 0,5=1..,2" (13)
* * —7I+ DY P,D, + DI P,Dy
1 hy .
N > =1,....p.

where
My; = A5, + BF;K + BF; H..

Finally, it must be ensured that the state of the systemith
remains in€s. To demonstrate this, the fact that the gt T T T T o virT
is an invariant set is utilised so that from any initial condition ©; = Aph+ K F;W +H F;W,
€1(0), e-(0) in €3, any errore; (k), e~ (k) will belong to€s,  then the observation error dynamic system (9)—(10) is ulti-
for all & > 0. The reason is clear aAV (k) is negative mately bounded stable by taking = Py, 'W. Matrix h.;

definite, thenV/ (k) < V(0) < g~ 1. denotes the i-th row off..

Finally, the optimization problem is introduced to Proof. See Appendix.
minimize the size of the ultimate boundedness This The optimization of scala’A can be easily carried out
concludes the proof. O by means of a bisection algorithm or similar. The condi-

tions are linear matrix inequalities with design parameters
Theorem 1 does not give any insights into the desigw,, P,, W, 7, so the problem can be easily solved using

of the observer. There are many unknown matrices thappropriate software.
must be designed: some related to the observer dynamics
Aj,, B and some are needed for stability considerations IV. ' UNKNOWN INPUT ESTIMATION
such asP;, P», H,. There are also constanfs, 3,7 to be This section is devoted to the unknown input estimation
selected. In the following subsection some modifications oproperties of the variable structure observer designed pre-
the conditions of Theorem 1 are introduced in such a wayiously. Specifically, the switching function(k) contains
that some Linear Matrix Inequalities (LMIs) are obtaineduseful information about the mismatch between the model
which can be efficiently solved using appropriate softwarased to define the observer and the actual plant.

tools. Let w(k) denote the estimate of the unknown input. From
the dynamics of the observation error (9), the actual error
A. OBSERVER DESIGN VIA LMI can be estimated as
Assume that the matriceds, and H, have been well k—1 .
designed. Imposing a particular choice ofs,, define e1(k) = Af e1(0) + Z(A’ffl_leﬁ)(i))-
the dynamics of the observation error when there are no i=0

disturbances (see eq. (10)). The following lemma can be As A, is stable, the first term vanishes in some steps, so:

used to design the observer. o1

er(k) = Y (AT Dra(i)). (19)

=0
Note that actuak, (k) depends on past values af(k).
On the other hand, using the output error dynamics (10), and

Lemma 2. Given matricesA3,, H, and scalarss, &, if
positive definite matriced’;, P, matrix W of appropriate
dimensions and scalar> 0 solve the following optimization

roblem
P min A assuming that slow disturbances will imply slaw, then:
_ Pt ex(k) ~ eu(k+1),
subject to ~  Agiei(k) 4+ Aje. (k) — Dyw(k) + v (k).
T T
—P 0 e 0 AnP AnP As the observer is asymptotically stable when(k)| >
* =P+ 713:1 0 0 0, A, it can be assumed that it is evolving inside the ball for
* * —7I —D{Pi —D3P>| <0, sufficiently largek. In that case,
* * * -P 0 B
* * * * —Py v(k) = <e.(k) = e.(k)=AB 'w(k),
ji=1,..,2° (17) ) A o )
assuming nonsingulaB. Substituting in the previous equa-
tion:
AR 0, i=1 (18)
x [Py =7 = el Dow(k) = Agre1(k) + [A(ASy — B~ + v (k).
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[ 01051 |0 —7.4143 2.5489 ] 0.0435

A= —0.0003 | 1 —0.0119 0.0915 | B— 0.0015

0.1053 | 0 22255 —0.3016 |’ —0.0049

L —0.0084 | 0 —0.2681  0.8447 0.0293
01 0 O
C=10]0 1 0
0j]0 0 1

It is assumed that in both cases, the same control signal is
used. Specifically, a sliding mode controller is implemented.
Furthermore, it is assumed that the unknown inputs enter the
system through the same channel as the control input, that

By least squares, the unknown input can be estimatésl D = B. Using Lemma 2 with3 = 0.01 and¢ = 0.15, the
using thee; (k) given in (19) and the actual value ofk):  optimization problem leads a minimum boundAf= 0.02.

The variable structure observer is defined by

Fig. 1. Scheme of the inverted pendulum with cart

w(k) ~ M (Asier(k) + [A(AS, — 1) B! + Iv(k)) ,

[ 0.3000 0 0
where M = (DY D,)~'DY. Here the matrixD3 D, is A3 = 0 02000 0 :
nonsingular becausB, has full column rank. | 0 0 0.4000

[ —0.0062 0.0000 —0.0000

B = 0.0000 —0.0042 0.0000
V. EXAMPLE: INVERTED PENDULUM —0.0000  0.0000 —0.0088

Th bl fthe i q dul ith Figures 2 and 3 compare the results of both observers. The
€ problem of the inverted pendulum with & cart CoNg; | ations have been performed using the nonlinear model

stitutes a benchmark study for the application of nonline%r the pendulum given in equations (20)-(21). The sum of

design methods_, [17]. The problem _also_ Ier_lds itself Qo sinusoidal functions has been applied as the unknown
assessment of linear frameworks, as linearization errors

a mot_ivation for control engineer; to emplpy robust controf] Figﬁre 2 shows that the proposed observer exhibits an
techniques and observers. Consider the inverted pendulyMi- transient time after which a good estimate of the

With a cart ShOW.” in Figure_l. Using the same model giVe[]nknown input is obtained. This is because some of the
in [3], the equations of motion are assumptions made in Section IV are correct only if the
. . observation error is close to zero. Moreover, linearization
(M +m)i + Fyi + ml(fcosd — 6?sinf) = u,(20) errors are more apparent at the transient, when the pendulum
JO + Fypf — mlgsinf + mlicosd = 0,(21) is far from the equilibrium. However, after this transient time,
Figure 3 reveals that the discrete-time observer produces a
where the values of the physical parameters used are givegtter estimate than its continuous counterpart. Comparing
in Table 1. the error in the steady state, the continuous observer has a
maximum absolute error #0295 units whereas the discrete
TABLE | observer achieves a maximum error0a®183. There is thus
MODEL PARAMETERS FOR THE INVERTED PENDULUM WITH CART a circa60% difference in the error bound, with the proposed
observer providing the greater accuracy of reconstruction.

M (kg) 3.2 Fy (kg/s) 6.2
m (kg) 0.535 Fy (kgm?) 0.009 VI. CONCLUSIONS
2 2
‘l] (k‘(’m”; ) 8:gg§ g (m/s5) 98 Following the same framework as in [15], an unknown

input observer has been presented for sampled systems. The
proposed method has several advantages. On the one hand,
To evaluate the performance of the proposed unknowthe design exploits all the degrees of freedom available in the
input observer, it will be compared with the continuousbserver framework proposed in [15] in a positive way. On
sliding mode observer proposed in [3]. However, to makée other hand, the quality of the estimate of the unknown
an appropriate comparison, additional sampling will be ininputs is higher when compared with a classical continuous
troduced between the plant and observer in this continuosiding mode observer. In the nonlinear bench mark inverted
version to reflect the practical situation whereby signals fromendulum with cart example, a ciré®% improvement in
the plant are sampled. In both cases, the system must the error bound is achieved with the proposed synthesis. It is
linearised around the equilibrium point at the origin. Usinglear that the current methodology relies upon knowledge of
z,0,4 and § as system states, and assuming that ehly the sample rate used for implementation and development of
and i are available as measured outputs, the discrete-timeethods which incorporate sampling of uncertain or variable
model with sampling timd;,, = 0.1s is given by the triple rate must now be considered.
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8 T . . . : . :
Unknown input

++ Continuous observer| |
— — = Discrete observer

(1]
(2]
(3]
(4
(5]

input

1 2 s 4 5 6 1
time(s)

(6]

Fig. 2. Unknown input estimation with the continuous SMO (dotted line)
and the discrete VSO (dashed line)

(7]

0.25 T T T T T T T
Unknown input
0.2 ...+ Continuous observer : 1 g
— = = Discrete observer [ ]
0.15
0.1
[9]
0.05
—
a
0
£ (0]

-0.05

-0.1 %

~0.15} [11]
-0.2
025 ‘ ‘ ‘ ‘ ‘ ‘ ‘ [12]
4 0 , 12 14 16 18 20
time(s)

[
Fig. 3. Unknown input estimation with the continuous SMO (dotted line)
and the discrete VSO (dashed line)

[14]

APPENDIX

It will be shown that the conditions given in Lemma 2[15]
and in Theorem 1 are equivalent. The first set of inequalities
(13),Z; < 0 can be rewritten as:

[16]
—P 0 0
2
*  —P+7I0 0 |+ [17]
* * —71
A3y
+ sz Pz[ A1 Maz; —Do }—5—
—D2T
Ah
+ 0 P1[A11 0 —D1]<0,
_Dif
for 5 = 1,...,2P. Using the Schur complement, the previous
inequalities are equivalent to
—-P; 0 0 ATy A3
« —P+75I 0 0 Mg
* * -1 —-D¥ DI | <O,
* * * —Pfl 0
* * * * —P;l
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for j =1, ..., 2P. Pre- and post-multiplying the previous inequalities
by diag{I,I,I,P:, P>} and its transpose, conditions (17) are
obtained. Then, the proof is finished by direct application of
Theorem 1.
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