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Abstract— This paper considers the design of a variable
structure observer for unknown input estimation and/or fault
reconstruction in systems where the process measurements are
sampled. It is well known that the principle of the equivalent
injection signal from the sliding mode domain can be used for
reconstruction of unknown inputs but much of the associated
theory is predicated on output sampling of infinite frequency.
Sample rate may be a physical constraint of the process and the
reconstruction properties of such continuous time sliding mode
observers degrade under this constraint. This paper explores
how a recently developed ultimately bounded stable variable
structure discrete time observer can be used for unknown input
estimation. The main novelty of the approach is that the design
of the observer is written as an optimization problem with linear
constraints with the output sampling incorporated explicitly in
the model used for observer design. The design methodology is
shown to have advantages in terms of reconstruction accuracy
when the performance is compared to that of a classical sliding
mode observer on a case study.

I. INTRODUCTION

Variable structure systems were perhaps originally best
known for their potential as a robust control method [1], [2],
[3]. They are characterised by a suite of feedback control
laws and a decision rule. The decision rule, termed the
switching function, has as its input some measure of the
current system behaviour and produces as an output the
particular feedback controller which should be used at that
instant in time. In sliding mode control, variable structure
control systems are designed to drive and then constrain the
system state to lie within a neighbourhood of the switching
function. The paradigm has several advantages: the dynamic
behaviour of the system may be specified by the choice of
switching function and the system is completely insensitive
to an important class of uncertainties. A disadvantage of
the methodology has been the fundamentally discontinuous
control signal which, in theoretical terms, must switch with
infinite frequency to provide total rejection of uncertainty.
Control implementation via approximate, smooth strategies is
widely reported, but in such cases total invariance is routinely
lost.

In contrast, the application of sliding mode methods to the
observer problem is less mature and has some fundamentally
different properties [4]. The discontinuous injection signals
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which were perceived as problematic for many control ap-
plications have no disadvantages for software based observer
frameworks. The ability to generate a sliding motion on the
error between the measured plant output and the output of
the observer ensures that a sliding mode observer produces
a set of state estimates that are precisely commensurate with
the actual output of the plant. Further, analysis of the average
value of the applied observer injection signal, the so-called
equivalent injection signal, contains useful information about
the mismatch between the model used to define the observer
and the actual plant [5]. This property has been employed
for general unknown input estimation as well as for fault
reconstruction [6], [7], [8]. The results obtained to date most
frequently require that an ideal sliding motion is attained
in finite time and the effects of sampling on the physical
measurements used to drive the observer are typically not
considered within the observer design frameworks. However,
in the presence of a sampled output, the ideal sliding
mode cannot be achieved. Indeed, the error dynamics in the
observer may become unstable if the sampling frequency
is reduced significantly. The effect of output sampling on
the performance of a sliding mode observer designed using
classical continuous variable structure control theory has
been discussed by several authors, see for example [9], where
the fast sampling required for fault reconstruction via such
a sliding mode observer on a motor experiment is reported.

In practice, the sample rate is not always a parameter
that can be selected by the designer and in this case con-
sideration must be given to developing design methods that
incorporate the sampling characteristics if good estimates are
to be obtained for the unknown inputs. Recent work has
considered the development of a sliding mode observer in the
presence of sampled output information and its application
to fault reconstruction by using the delayed continuous-time
representation of the sampled-data system, for which a set
of Linear Matrix Inequalities (LMIs) provide conditions for
ultimate boundedness of the solution [10]. An alternative
approach is to consider a discrete time observer design
methodology. Compared to the continuous time case, the
literature in this area is sparse. Several contributions develop
sliding mode observers for systems with a single output
[11], [12], [13]. More recently, [14] studied sliding mode
observers for a class of discrete-time multi-output systems,
but the design of the observer is largely heuristic, and
it is not possible to ensurea priori the stability of the
observer. A variable structure observer design framework for
discrete-time multi-output systems which uses Linear Matrix
Inequalities to constructively exploit the degrees of freedom
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within the design has been recently developed [15].
This paper extends this later framework to incorporate the

estimation of faults and/or unknown inputs as a design re-
quirement and assesses the degree to which the methodology
overcomes problems of sampled data implementation frame-
works for variable structure based signal reconstruction.

The paper is structured as follows. The problem is stated
in Section II. The variable structure observer is proposed
in Section III. The estimation of unknown inputs using
the discrete-time observer is studied in Section IV. Some
examples are presented in Section V. The paper ends with
conclusions and a discussion of future research directions.

II. PROBLEM STATEMENT

Consider the multi-output, discrete-time linear system de-
scribed by

x(k + 1) = Ax(k) +Dw(k), (1)

y(k) = Cx(k), (2)

wherex ∈ Rn is the state,y ∈ Rp is the output andw ∈
Rm is the unknown input. MatricesA,D,C are known with
appropriate dimensions. It is assumed that the pair(A,C) is
observable. Note that no control input affects the system, as
the observer problem is the focus of this paper. The inclusion
of the control signal can be trivially dealt with, as both the
observer and the system are subject to the same input and
thus the control signal has no affect on the dynamics of the
error between the system and observer.

Assume thatrank(CD) = m and the invariant zeros of
the triple (A,D,C) lie inside the unit circle. Then, there
exists a linear change of coordinatesTo (see [3]) such that
the system can be written as:

x1(k + 1) = A11x1(k) +A12z(k) +D1w(k), (3)

z(k + 1) = A21x1(k) +A22z(k) +D2w(k), (4)

y(k) = z(k), (5)

wherez(k) ∈ Rp, x1 ∈ Rn−p andD2 ∈ Rp×m. Matrix A11

is stable andD2 has full column rank.
Unlike [10] and similar approaches, the disturbance pro-

cess or unknown inputw(k) affects both dynamics. The
classical nomenclature used in sliding mode theory, namely,
unmatched and matched disturbances has been adopted (see
[3]). It is assumed to be bounded by

‖w(k)‖ ≤ ξ, ∀k,

whereξ is a known positive scalar.
The following section is devoted to the design of an

ultimately bounded variable structure observer for the system
(1), by driving the observation errore(k) to the vicinity of
the equilibrium pointe(k) = 0 in finite time and maintaining
it in the neighbourhood thereafter. Due to the presence of the
disturbances, asymptotic stability is not possible. However,
the proposed observer reduces the ultimate bound on the
response when compared to classical observation strategies.
In Section IV, the properties of this observer will be used in
order to estimate the unknown inputw(k).

III. VARIABLE STRUCTURE OBSERVER

The proposed variable structure observer for the multi-
output system (3)-(5) is defined as

x̂1(k + 1) = A11x̂1(k) +A12y(k) (6)

ẑ(k + 1) = A21x̂1(k) +A22ẑ(k) (7)

−(A22 −As
22)ez(k) + ν(k)

where ez(k) = ẑ(k) − y(k) andAs
22 ∈ Rp×p is a design

matrix. The variable structure termν(k) is defined by:

ν(k) = Bfsat(ez(k),∆) = B

















sat
(

ez1(k)
∆

)

sat
(

ez2(k)
∆

)

...

sat
(

ezp(k)
∆

)

















(8)

where∆ is a positive scalar andB ∈ Rp×p is also a design
matrix. The functionsat(.) is defined as:

sat

(

ezi(k)

∆

)

=

{

sgn(ezi(k)), |ezi(k)| > ∆
ezi(k)

∆ , |ezi(k)| ≤ ∆

It can be viewed as a set ofp unidimensional switching
functions. Each one switches whenever the associated com-
ponent of the output observation errorezi, i = 1..., p crosses
the boundary of the region.

Let the state estimation errors bee1(k) = x̂1(k) − x1(k)
andez(k) = ẑ(k)− z(k). It follows that the error dynamics
are

e1(k+1) = A11e1(k)−D1w(k), (9)

ez(k+1) = A21e1(k)+As
22ez(k)−D2w(k)+ν(k). (10)

where y(k) = z(k) in (5) is used to obtain the equations
above.

In order to study the stability of the observer, a Lyapunov
framework is used. Defining∆ as the ultimate boundedness,
the objective of this section is to design the variable structure
observer in such a way that∆ is minimized ensuring that
the forward increment of the Lyapunov function is negative
for all k such that|ez(k)| ≥ ∆. Consider the following
Lyapunov function:

V (k) = eT1 (k)P1e1(k) + eTz (k)P2ez(k), (11)

whereP1, P2 are positive definite matrices of appropriate
dimensions.

Due to the presence of the saturation,ν(k) is a nonlinear
function. A linear representation of the saturation is intro-
duced which will be useful when designing the observer via
linear matrix inequalities. This idea was presented in [15].

Denote byEβ the set of states such that

Eβ = {(e1(k), ez(k)) | e1(k) ∈ Rn−p, ez(k) ∈ Rp,

V (k) = eT1 (k)P1e1(k) + eTz (k)P2ez(k) ≤ β−1},

for a positive scalarβ. The following lemma gives the
linear representation of the nonlinear dynamics.
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Lemma 1. [15] Given β > 0, assume that there exists
a matrix Hz ∈ Rp×p, such that |hziez| ≤ 1, for all
ez ∈ Eβ , where hzi denotes thei-th row of Hz. Then,
for (e1, ez) ∈ Eβ, the observation error dynamic system
(9)-(10) with switching function (8) admits the following
representation:

e1(k + 1) = A11e1(k)−D1w(k),

ez(k + 1) = A21e1(k) +As
22ez(k)−D2w(k)

+ B

2p
∑

j=1

λj(k)Ajez(k),

where:

Aj = FjK + F−

j Hz, j = 1, .., 2p,

2p
∑

j=1

λj(k) = 1, λj(k) ≥ 0, ∀k > 0,

K = diag{1/∆, ..., 1/∆},

with Fj a diagonal matrix with diagonal elements that
are either 1 or 0, andF−

j , Im − Fj , ∀j.

From Lemma 1, it can be concluded that the linear
representation for the saturation is valid only if the region
Eβ (defined by the parameterβ) and a corresponding matrix
Hz can be found such that the error remains inEβ for all
k. Hence, this must be an additional constraint in the design
of the observer.

The following theorem presents the main result of this
section.

Theorem 1. Given the disturbance boundξ and the size
β of the setEβ , if positive definite matricesP1, P2, matrices
As

22, B,Hz of appropriate dimensions and scalarτ > 0 solve
the following optimization problem

min
As

22
,B,P1,P2,Hz,τ

∆ (12)

subject to (13)-(14), then the observation error dynamic
system (9)-(10) is ultimately bounded stable. The minimum
boundedness is∆.

Proof. It is first proved that conditions (13)-(14) imply
that, given a positive∆, the forward increment of the
Lyapunov function (11) decreases for all|ez(k)| ≥ ∆.

The inequalities (14) guarantee that|hziez| ≤ 1, (i =
1, ..., p) for all (e1, ez) ∈ Eβ . This results from the fact that
any error belonging toEβ satisfies

βeT1 (k)P1e1(k) + βeTz (k)P2ez(k) ≤ 1

⇒ βeTz (k)P2ez(k) ≤ 1

Then, for(e1, ez) ∈ Eβ , the following inequalities

2 ≥ 1 + βeTz (k)P2ez(k) ≥ 2|hziez|

imply that |hziez| ≤ 1 for i = 1, ..., p. The latter inequality,
which can be written as

[

1 ±eTz
]

[

1 hzi

∗ βP2

] [

1
±ez

]

≥ 0,

is satisfied by (14).
As the assumption of Lemma 1 is verified, the polytopic

description of the system given in that lemma holds. Using
this linear representation, the Lyapunov function (11) atk+1
for vertexj of the polytope is1

Vj (k + 1) =

= (A11e1 −D1w)
T
P1 (A11e1 −D1w)

+
(

A21e1+M2jez−D2w
)T
P2

(

A21e1+M2jez−D2w
)

,

where

M2j = As
22 +BFjK +BF−

j Hz .

The forward increment of the Lyapunov function will be

∆Vj(k)= Vj(k + 1)− Vj(k)

= −eT1 Q1e1 − 2eT1 A
T
11P1D1w + wTDT

1 P1D1w

+ eT1 A
T
21P2A21e1 + 2eT1 A

T
21P2M2jez

− 2eT1 A
T
21P2D2w + eTz (M2

T
j P2M2j − P2)ez

− 2eTz M2
T
j P2D2w + wTDT

2 P2D2w (15)

where −Q1 , AT
11P1A11 − P1. The positive term

τwT (k)w(k) can be bounded by:

τwT (k)w(k) ≤ τξ2 ≤
τξ2

∆2
eTz (k)ez(k),

taking into account that‖ez(k)‖ ≥ ∆. Therefore,

τξ2

∆2
eTz (k)ez(k)− τwT (k)w(k) ≥ 0 (16)

From (15) and (16), it follows that

∆Vj(k) = Vj(k + 1)− Vj(k)

= −eT1
(

AT
11P1A11 − P1 +AT

21P2A21

)

e1 +

2eT1 A
T
21P2M2jez − 2eT1

(

AT
11P1D1 +AT

21P2D2

)

w

+eTz
(

M2
T
j P2M2j − P2

)

ez − 2eTz M2
T
j P2D2w

+wT
(

DT
1 P1D1 +DT

2 P2D2

)

w

+
τξ2

∆2
eTz (k)ez(k)− τwT (k)w(k)

Then, the increment of the Lyapunov function can be written
in the following quadratic manner:

∆Vj(k) ≤ ζT (k)Ξjζ(k),

where the stacked state vector is

ζ(k) =





e1(k)
ez(k)
w(k)





and the symmetric matrixΞj is given in equation (13).
The inequalities (13) imply that matricesΞj are negative

definite for all the vertices of the polytope, and then, the
forward increment of the Lyapunov function will be negative
for all ζ(k) 6= 0 (see [16]), which ensures the asymptotic
stability of the system.

1The time scriptk has been removed for ease of exposition.
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



AT
11P1A11 − P1 +AT

21P2A21 AT
21P2M2j −AT

11P1D1 −AT
21P2D2

∗ M2
T
j P2M2j − P2 +

τξ2

∆2 I −M2
T
j P2D2

∗ ∗ −τI +DT
1 P1D1 +DT

2 P2D2



 < 0, j = 1, ..., 2p, (13)

[

1 hzi

∗ βP2

]

≥ 0, i = 1, ..., p. (14)

where
M2j = As

22 +BFjK +BF−

j Hz .

Finally, it must be ensured that the state of the system
remains inEβ . To demonstrate this, the fact that the setEβ

is an invariant set is utilised so that from any initial condition
e1(0), ez(0) in Eβ , any errore1(k), ez(k) will belong toEβ ,
for all k ≥ 0. The reason is clear as∆V (k) is negative
definite, thenV (k) ≤ V (0) ≤ β−1.

Finally, the optimization problem is introduced to
minimize the size of the ultimate boundedness∆. This
concludes the proof. �

Theorem 1 does not give any insights into the design
of the observer. There are many unknown matrices that
must be designed: some related to the observer dynamics
As

22, B and some are needed for stability considerations
such asP1, P2, Hz . There are also constants∆, β, τ to be
selected. In the following subsection some modifications on
the conditions of Theorem 1 are introduced in such a way
that some Linear Matrix Inequalities (LMIs) are obtained,
which can be efficiently solved using appropriate software
tools.

A. OBSERVER DESIGN VIA LMI

Assume that the matricesAs
22 and Hz have been well

designed. Imposing a particular choice ofAs
22, define

the dynamics of the observation error when there are no
disturbances (see eq. (10)). The following lemma can be
used to design the observer.

Lemma 2. Given matricesAs
22, Hz and scalarsβ, ξ, if

positive definite matricesP1, P2, matrix W of appropriate
dimensions and scalarτ > 0 solve the following optimization
problem

min
P1,P2,W,τ

∆

subject to












−P1 0 0 AT
11P1 AT

21P2

∗ −P2 + τ ξ2

∆2 I 0 0 Θj

∗ ∗ −τI −DT
1 P1 −DT

2 P2

∗ ∗ ∗ −P1 0
∗ ∗ ∗ ∗ −P2













< 0,

j = 1, ..., 2p, (17)

[

1 hzi

∗ βP2

]

≥ 0, i = 1, ..., p. (18)

with

Θj = AsT
22 P2 +KTFjW

T +HT
z F

−

j WT ,

then the observation error dynamic system (9)–(10) is ulti-
mately bounded stable by takingB = P−1

2 W . Matrix hzi

denotes the i-th row ofHz.
Proof. See Appendix.
The optimization of scalar∆ can be easily carried out

by means of a bisection algorithm or similar. The condi-
tions are linear matrix inequalities with design parameters
P1, P2,W, τ , so the problem can be easily solved using
appropriate software.

IV. UNKNOWN INPUT ESTIMATION

This section is devoted to the unknown input estimation
properties of the variable structure observer designed pre-
viously. Specifically, the switching functionν(k) contains
useful information about the mismatch between the model
used to define the observer and the actual plant.

Let w̄(k) denote the estimate of the unknown input. From
the dynamics of the observation error (9), the actual error
can be estimated as

e1(k) = Ak
11e1(0) +

k−1
∑

i=0

(Ak−1−i
11 D1w̄(i)).

As A11 is stable, the first term vanishes in some steps, so:

e1(k) ≈
k−1
∑

i=0

(Ak−1−i
11 D1w̄(i)). (19)

Note that actuale1(k) depends on past values of̄w(k).
On the other hand, using the output error dynamics (10), and
assuming that slow disturbances will imply slowez, then:

ez(k) ≈ ez(k + 1),

≈ A21e1(k) +As
22ez(k)−D2w̄(k) + ν(k).

As the observer is asymptotically stable when|ez(k)| >
∆, it can be assumed that it is evolving inside the ball for
sufficiently largek. In that case,

ν(k) =
B

∆
ez(k) ⇒ ez(k) = ∆B−1ν(k),

assuming nonsingularB. Substituting in the previous equa-
tion:

D2w̄(k) ≈ A21e1(k) + [∆(As
22 − I)B−1 + I]ν(k).
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replacements

x

θ

Fig. 1. Scheme of the inverted pendulum with cart

By least squares, the unknown input can be estimated
using thee1(k) given in (19) and the actual value ofν(k):

w̄(k) ≈ M
(

A21e1(k) + [∆(As
22 − I)B−1 + I]ν(k)

)

,

where M = (DT
2 D2)

−1DT
2 . Here the matrixDT

2 D2 is
nonsingular becauseD2 has full column rank.

V. EXAMPLE: INVERTED PENDULUM

The problem of the inverted pendulum with a cart con-
stitutes a benchmark study for the application of nonlinear
design methods, [17]. The problem also lends itself to
assessment of linear frameworks, as linearization errors are
a motivation for control engineers to employ robust control
techniques and observers. Consider the inverted pendulum
with a cart shown in Figure 1. Using the same model given
in [3], the equations of motion are

(M +m)ẍ+ Fxẋ+ml(θ̈ cos θ − θ̇2 sin θ) = u, (20)

Jθ̈ + Fθθ̇ −mlg sin θ +mlẍ cos θ = 0, (21)

where the values of the physical parameters used are given
in Table I.

TABLE I

MODEL PARAMETERS FOR THE INVERTED PENDULUM WITH CART

M (kg) 3.2 Fx (kg/s) 6.2
m (kg) 0.535 Fθ (kg m2) 0.009
J (kg m2) 0.062 g (m/s2) 9.8
l (m) 0.365

To evaluate the performance of the proposed unknown
input observer, it will be compared with the continuous
sliding mode observer proposed in [3]. However, to make
an appropriate comparison, additional sampling will be in-
troduced between the plant and observer in this continuous
version to reflect the practical situation whereby signals from
the plant are sampled. In both cases, the system must be
linearised around the equilibrium point at the origin. Using
x, θ, ẋ and θ̇ as system states, and assuming that onlyθ, x
and ẋ are available as measured outputs, the discrete-time
model with sampling timeTm = 0.1s is given by the triple

A =







0.1051 0 −7.4143 2.5489
−0.0003 1 −0.0119 0.0915
0.1053 0 2.2255 −0.3016
−0.0084 0 −0.2681 0.8447






, B =







0.0435
0.0015
−0.0049
0.0293







C =





0 1 0 0

0 0 1 0

0 0 0 1





It is assumed that in both cases, the same control signal is
used. Specifically, a sliding mode controller is implemented.
Furthermore, it is assumed that the unknown inputs enter the
system through the same channel as the control input, that
is, D = B. Using Lemma 2 withβ = 0.01 andξ = 0.15, the
optimization problem leads a minimum bound of∆ = 0.02.
The variable structure observer is defined by

As
22 =





0.3000 0 0
0 0.2000 0
0 0 0.4000



 ,

B =





−0.0062 0.0000 −0.0000
0.0000 −0.0042 0.0000
−0.0000 0.0000 −0.0088





Figures 2 and 3 compare the results of both observers. The
simulations have been performed using the nonlinear model
for the pendulum given in equations (20)-(21). The sum of
two sinusoidal functions has been applied as the unknown
input.

Figure 2 shows that the proposed observer exhibits an
initial transient time after which a good estimate of the
unknown input is obtained. This is because some of the
assumptions made in Section IV are correct only if the
observation error is close to zero. Moreover, linearization
errors are more apparent at the transient, when the pendulum
is far from the equilibrium. However, after this transient time,
Figure 3 reveals that the discrete-time observer produces a
better estimate than its continuous counterpart. Comparing
the error in the steady state, the continuous observer has a
maximum absolute error of0.0295 units whereas the discrete
observer achieves a maximum error of0.0183. There is thus
a circa60% difference in the error bound, with the proposed
observer providing the greater accuracy of reconstruction.

VI. CONCLUSIONS

Following the same framework as in [15], an unknown
input observer has been presented for sampled systems. The
proposed method has several advantages. On the one hand,
the design exploits all the degrees of freedom available in the
observer framework proposed in [15] in a positive way. On
the other hand, the quality of the estimate of the unknown
inputs is higher when compared with a classical continuous
sliding mode observer. In the nonlinear bench mark inverted
pendulum with cart example, a circa60% improvement in
the error bound is achieved with the proposed synthesis. It is
clear that the current methodology relies upon knowledge of
the sample rate used for implementation and development of
methods which incorporate sampling of uncertain or variable
rate must now be considered.
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APPENDIX

It will be shown that the conditions given in Lemma 2
and in Theorem 1 are equivalent. The first set of inequalities
(13),Ξj < 0 can be rewritten as:





−P1 0 0

∗ −P2 + τ ξ2

∆2 I 0

∗ ∗ −τI



+

+





AT
21

M2
T
j

−DT
2



P2

[

A21 M2j −D2

]

+

+





AT
11

0

−DT
1



P1

[

A11 0 −D1

]

< 0,

for j = 1, ..., 2p. Using the Schur complement, the previous
inequalities are equivalent to













−P1 0 0 AT
11 AT

21

∗ −P2 + τ ξ2

∆2 I 0 0 MT
2j

∗ ∗ −τI −DT
1 −DT

2

∗ ∗ ∗ −P−1

1
0

∗ ∗ ∗ ∗ −P−1

2













< 0,

for j = 1, ..., 2p. Pre- and post-multiplying the previous inequalities
by diag{I, I, I, P1, P2} and its transpose, conditions (17) are
obtained. Then, the proof is finished by direct application of
Theorem 1. �
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