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Abstract—In this work, a Predictive Control formulation for
trajectory planning with multiple target sets is proposed, which
solves the problem of performing all tasks in finite time via
minimization of a weighted-time-fuel cost function, generating a
feasible trajectory. An approach involving a procedure to order
the list of the target sets to be visited in terms of the distance
between them is used for comparison and it is shown that the
proposed technique outperforms this approach in terms of time
and fuel spent to accomplish the mission.

Index Terms—Predictive control, trajectory planning, target
set.

I. INTRODUCTION

In the context of aircraft guidance and control, the path

planning problem becomes more complex than the simple

search for a curve that connects the starting point to the goal

while avoiding obstacles. Some of the reasons for that include

the presence of dynamic constraints, usually in the form

of velocity and acceleration limits, the need for a feedback

control strategy in real time in order to make the system robust

to atmospheric disturbances, and constraints on the amount of

fuel available to execute the maneuver [1].

Model-based Predictive Control (MPC) techniques have

been increasingly employed in the aeronautical industry [2]

due to their ability to handle constraints on inputs and states

of the plant [3]. More recently, MPC formulations as the one

proposed in [4] have been used to perform trajectory planning

for autonomous vehicles. Many particularities of the trajectory

planning problem have been addressed in [4], namely the

task of reaching a terminal set in finite time, while avoiding

obstacles. Through the introduction of a variable horizon, it is

possible to calculate the smallest horizon needed to reach the

terminal set by solving a Mixed Integer Linear Programming

(MILP) problem. Thus, a minimum time trajectory between

a source point and a target set can be determined by using

a kinematic model of the vehicle. Moreover, by enhancing

the model with rigid body dynamics and characteristics of

actuators, this problem can be extended to a more elaborate

guidance and vehicle control framework. The MILP formu-

lation also circumvents the difficulties brought about by the

introduction of obstacles, particularly the loss of convexity of

the set of admissible solutions.

However, a mission may require that the vehicle visits a

number of sets. In this scenario, it may be convenient to

consider all sets in the trajectory planning in order to minimize

the total time to carry out all the tasks (visit all the target sets),

instead of setting a single target set to be reached at every step.

In the present work a formulation to solve the trajectory

planning problem with multiple target sets (termed Multitask

Trajectory Planning) in the presence of obstacles is proposed.

Simulation results with a fictional vehicle are presented in

order to illustrate the success of the proposed technique. For

comparison, the formulation presented in [4] with a single

terminal target set was used with a list of sets to be visited,

which was updated upon reaching each one of them. This list

was ordered according to a criterion based on minimal distance

between the initial position of the vehicle and the first target

set as well as between the current target set and the next one.

The remainder of this paper is organized as follows. In

Section II, the Predictive Control formulation adopted in the

present work and proposed in [4] is presented, which involves

minimizing a weighted-time-fuel cost function that penalizes

the time to reach a given terminal set in the presence of

obstacles. The approach for trajectory planning with multiple

target sets is proposed later in Section III. Section IV presents

the set ordering technique used for comparison. Simulation

results of the application of both approaches are presented

and discussed in Section V. Finally, conclusions are drawn

and suggestions for future work are given in Section VI.

II. MPC FORMULATION

The formulation employed in this work is similar to the one

adopted in [4], with exception of the contribution related to

the inclusion of multiple target sets, which will be introduced

in Section III. The problem is recast in a Mixed-Integer Linear

Programming (MILP) form much in the same way as in [4],

again with exception of the inclusion of multiple target sets

in Section III.

Figure 1 presents the basic elements of a predictive con-

troller operating in discrete time, namely:

• A model used to predict the state of the plant over a

horizon of N steps in the future, based on the current

state x(k) and the control sequence {û(k + j|k)}, j =
0, . . . , N − 1 to be applied.

• An algorithm to optimize the control sequence regarding

the cost function specified for the problem and the

existing constraints on inputs and states of the plant.

The notation used is as follows: u ∈ Rp and x ∈ Rn denote

the input and state variables of the plant, respectively. ♦̂(k +
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j|k) denotes the predicted value of variable ♦ at time k + j
(j ≥ 1) based on information available up to time k. The

optimal control to be applied to the plant at time k is denoted

by û∗(k|k).

Optimizer

Prediction Model

Plant

Cost

Function Constraints

Predictive Controller

û(k+j-1|k)

j = 1,…,M

û*(k|k) x(k)

x(k+j-1|k)

j = 1,…,N

ˆ

Fig. 1. Predictive control loop using state feedback.

In [4] the cost function is of the form:

J [x̂(·|k),û(·|k),N(k)] =

N(k)
∑

j=0

(1 + γ ‖û(k + j|k)‖1), γ > 0

(1)

subject to

x̂(k + j|k) =

{

x(k), j = 0
Ax̂(k + j − 1|k) +Bû(k + j − 1|k), j > 0

(2a)

x̂(k + j|k) ∈ X(j), j = 1, . . . , N(k) (2b)

û(k + j|k) ∈ U(j), j = 0, . . . , N(k) (2c)

x̂(k +N(k) + 1|k) ∈ Q(N(k) + 1) (2d)

where U(j) and X(j) are the sets of admissible controls and

states, respectively, and Q(N(k)+1) is the terminal set. In [4]

the dependence of the sets X, U and Q in terms of j and N(k)
is inserted in order to provide robustness to an unknown but

limited disturbance input. If this disturbance is disregarded,

the sets are independent of time.

The first term of the cost function in Eq. (1) penalizes

the time necessary to reach the target set. The second term,

involving the norm of the control vector at each sampling time,

penalizes the fuel spent. Thus, such a formulation provides a

compromise between minimizing the time to achieve the goal

and the fuel spent, which can be adjusted by the weight γ.

With a small abuse of notation, this cost is usually denoted

simply by J(k) in order to clarify that it is a function to be

optimized at the k-th sampling time.

Optimization algorithms should be employed to obtain the

optimal control sequence {û∗(k + j|k), j = 0, . . . , N(k)} that

minimizes the cost given by Eq. (1) subject to the constraints

of Eqs. (2a), (2b), (2c) and (2d). The first element of such a

sequence is applied to the plant (i. e., u(k) = û∗(k|k)) and

the optimization is repeated at the next sampling time, making

u(k+1) = û∗(k+1|k+1). This strategy is known as “receding

horizon” [5].

A. Horizon minimization

If the terminal set is given in terms of linear inequalities

Q = {x : pTi x ≤ qi, i = 1, . . . , NQ},
pi ∈ Rn, qi ∈ R, i = 1, . . . , NQ

(3)

then the terminal constraints can be rewritten as:

pTi x̂(k + j + 1|k) ≤ qi +M [1− b(j)], i = 1, . . . , NQ (4)

where M > 0 is a constant and b(j) is a binary decision

variable defined as

b(j) =

{

1, if j = N(k),
0, if j 6= N(k)

(5)

The scalar M must be taken so that M > pTi x− qi, ∀i for

all admissible x [6].

Thus, the cost can be recast in terms of a maximum preset

value N̄ for the horizon, that is

J(k) =

N̄
∑

j=0

(jb(j) + γ ‖û(k + j|k)‖1) (6)

subject to additional constraints

N̄
∑

j=0

b(j) = 1 (7)

The cost expressed in Eq. (6) coincides with the one in Eq.

(1) if the optimal value N∗(k) for the horizon is less than

or equal to N̄ and the optimal control is null after N∗(k),
i. e., û∗(k + j|k) = 0, j > N∗(k). This last condition is

guaranteed as the constraints of equations (2b) and (2c) are

imposed only up to the horizon N∗(k). After this horizon,

there is no constraint to be satisfied and thus the minimization

of ‖û(k + j|k)‖1 for j > N∗(k) results in a zero control.

In [4] the state and control constraints are also rewritten

up to the horizon N̄ using scalars large enough so that they

become inactive after N(k). Indeed, let the sets of admissible

states and controls be

X = {x : rTi,xx ≤ qxi , i = 1, . . . , Nx},
U = {u : rTl,uu ≤ qul , l = 1, . . . , Nu},

ri,x ∈ Rn, rl,u ∈ Rp, qxi , q
u
l ∈ R,

i = 1, . . . , Nx, l = 1, . . . , Nu

(8)

The constraints on the states and controls can then be

rewritten as

rTi,xx̂(k + j|k) ≤ qxi +Mx

j−1
∑

m=1

b(m), i = 1, . . . , Nx

rTl,uû(k + j − 1|k) ≤ qul +Mu

j−1
∑

m=1

b(m), l = 1, . . . , Nu

(9)

which makes the constraints inactive for j > N(k) as

b(N(k)) = 1. Mx ∈ R must be such that Mx > rTx,ix−q
x
i , ∀i,

for all x reachable in up to N̄ steps from the terminal set with

null control. Mu > 0 is a scalar large enough to render the

control constraints inactive for all admissible values of u.
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Therefore the problem is defined with a fixed horizon N̄
and a linear cost involving real and integer variables subject

to linear constraints. Thus, algorithms for MILP can be used

to obtain the optimal control sequence.

B. Obstacle avoidance

In problems involving the guidance of vehicles, the presence

of obstacles is usual, such as buildings, hills, dangerous areas

to avoid, among others. In the presence of such obstacles the

set of admissible states will no longer be convex. In [7], a

form of dealing with polygonal obstacles through the use of

MILP was proposed.

The constraint that the trajectory in space does not cross the

obstacle can be written as r = Crx /∈ Z , in which matrix Cr

extracts the position information from the state vector and Z =
{r|P or ≤ qo} defines an obstacle in the form of a polygon

with Nf sides. It is therefore required that the position r is

not in the set Z at each sampling time, which is equivalent to

imposing that the set I = {i ∈ {1, . . . , Nf} : P
o
i r > qoi } 6= ∅

where Pi is the i-th row of P o and qi, the i-th element of qo.

To this end, binary variables can be used as follows:

− P o
i r(k + j) ≤ −qoi +Mo[1− boi (k + j)]− ǫ

Nf
∑

i=1

boi (k + j) ≥ 1, boi ∈ {0, 1}, 1 ≤ j ≤ N

Thus, when boi (k + j) = 1, the constraint is effectively

enforced. If boi (k+j) = 0, with a large enough scalar Mo > 0,

the constraint becomes inactive. The condition
∑Nf

i=1 b
o
i (k +

j) ≥ 1 requires that at least one of the constraints is active at

every sampling time, ensuring that the position r is “outside”

the obstacle. ǫ > 0 is chosen arbitrarily small so that the

inequality “≤” becomes “<”, thus removing the border of the

obstacle from the set of allowed positions.

III. PROPOSED MULTITASK TRAJECTORY PLANNING

TECHNIQUE

The contribution of the present paper is the proposition of

a novel method to enhance the capability of the trajectory

planning technique proposed in [4] to visit Nts ≥ 1 target

sets Q1,Q2, . . .QNts
. This inclusion is in accordance with

real-world mission demands, which usually require that the

autonomous vehicle visits more than one target. In this context,

one alternative is to arrange all target sets in a sequence to be

visited. This arrangement may be performed by considering

some optimization criteria, such as minimal distance from

the starting position of the vehicle to define the first set and

then, minimal distance between sets, choosing the next set

to be visited as the closest to the last visited one, until all

sets have been included in the sequence. With this sequence

at hand, one can divide the problem in Nts single-target

trajectory planning problems and solve each of them using the

framework proposed in [4]. Upon reaching the target set for the

current problem, it is replaced with the subsequent one in the

pre-established order. This procedure is repeated until the final

target set is reached. However, this may not yield the minimum

time or minimum fuel solution, since the criteria employed

to order the list of target sets do not consider the dynamics

of the vehicle and constraints over the variables. Therefore,

a framework which is capable of considering multiple target

sets within the solution of the Predictive Control trajectory

planning problem may bring about interesting results regarding

the optimal solution to the trajectory planning problem.

It is assumed that the Nts target sets are defined as in Eq.

(3), in terms of linear inequalities:

Qh = {x : pTh,ix ≤ qh,i, i = 1, . . . , NQh
},

ph,i ∈ Rn, qh,i ∈ R, i = 1, . . . , NQh
,

h = 1, . . . , Nts

(10)

in which Qh is the h-th target set and NQh
is the number of

inequalities used to describe it.

Since the vehicle only needs to visit each target set at one

sample time, the constraints can be rewritten as:

pTh,ix̂(k + j + 1|k) ≤ qh,i +M [1− bh(j)],

i = 1, . . . , NQh
, h = 1, . . . , Nts.

(11)

where M > 0 is a constant and bh(j) is a binary decision

variable defined as

bh(j) =

{

1, if j = Nh,
0, if j 6= Nh

(12)

in which Nh is the number of sample times that the vehicle

takes to reach the h-th target set from the current position. For

example, if the vehicle takes 2 sample times to reach the first

target set from the starting position and 3 more to go from the

first target set to the second, then N1 = 2 and N2 = 5.

An auxiliary variable has to be introduced in order to

consider the minimization of the horizon to visit all of the

target sets. This variable in be defined as:

Nf = max (Nh), h = 1, . . . ,Nts (13)

Through the introduction of a new sequence of binary

variables {bf (j), j = 1, . . . ,N̄}, it is possible to penalize this

horizon Nf to visit all of the target sets by rewriting the cost

function in Eq. (6) as:

J(k) =

N̄
∑

j=0

(jbf (j) + γ ‖û(k + j|k)‖1) (14)

with

bf (j) =

{

1, if j = Nf ,
0, if j 6= Nf

(15)

subject to additional constraints

N̄
∑

j=0

bh(j) = 1, h = 1, . . . ,Nts (16)

N̄
∑

j=0

bf (j) = 1, (17)

bf (j) ≤

∑Nts

h=1

∑j

i=0 bh(i)

Nts

(18)
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The constraint in Eq. (16) ensures that each target set is

visited at least once, whereas the ones in Eqs. (17) and (18)

make sure that the definitions of Eqs. (13) and (15) are applied.

The only step left is to remove the state and control

constraints after Nf . This is performed by replacing b(m) in

Eq. (9) by bf (m):

rTi,xx̂(k + j|k) ≤ qxi +Mx

j−1
∑

m=1

bf (m), i = 1, . . . , Nx

rTl,uû(k + j − 1|k) ≤ qul +Mu

j−1
∑

m=1

bf (m), l = 1, . . . , Nu

(19)

The formulation presented in this section allows for plan-

ning a trajectory which visits all the sets while minimizing

the cost function penalizing the overall time taken to perform

the mission and the amount of fuel spent. However, when

receding horizon feedback control has to be implemented, it

is important to have a logic which removes a set that has

already been visited, in order to avoid visiting the same sets

over and over. The algorithm described bellow is proposed to

circumvent this issue. This algorithm has to be run at every

sampling time before calculating the control sequence:

Algorithm 1: Remove a set from the list after visiting it

1: for i = 1→ Nts do

2: if x(k) ∈ SetList(i) then

3: SetList← SetList\SetList(i)
4: Nts ← Nts − 1
5: end if

6: end for

�

in which the list of sets to be visited is given by SetList.
The ♦\♠ operator removes a set ♠ from a set list ♦. After

removing a set from the list, the number of binary variables

can be reduced, since there are less sets to visit, which in turn

means less constraints to be imposed.

IV. MINIMUM-DISTANCE TRAJECTORY PLANNING

ALGORITHM

In this Section a trajectory planning algorithm which divides

the mission in several tasks is presented. This algorithm will

be used for comparison with the technique proposed in Section

III. It is basically composed of two parts:

1) Order the list of sets to visit according to the distance,

i. e., the first set to be visited is the closest to the initial

position, the second is the closest to the first, and so on.

2) Apply the formulation presented in [4] with the terminal

set as the next to be visited in the ordered list, starting

by the first and changing to the next subsequently after

the current target is reached.

In the following, the first part will be detailed, as it is the

most cumbersome one, since the second involves only a test

of pertinence of a point to a set and an update to the list of

target sets.

The first part can be divided into two main algorithms,

requiring only a list of the Nts target sets (SetList) in

arbitrary order. In the first algorithm (Algorithm 2), x0 is the

initial state and Cr, a matrix that extracts position information

from the state vector, thus Crx0 is the initial position of

the vehicle. dist(α,Ω) is a function that returns the minimal

distance between a point α and a set Ω (employing 2-norm):

dist(α,Ω) = minα,β ‖α− β‖2
s.t. β ∈ Ω

(20)

If Ω is a convex polygon, dist(α,Ω) can be evaluated by

using a quadratic programming solver.

Algorithm 2: Determine the closest set to the initial position

1: d←∞
2: for i = 1→ Nts do

3: if d ≥ dist(Crx0,SetList(i)) then

4: d← dist(Crx0,SetList(i))
5: ClosestSet← i
6: end if

7: end for

8: OrdList(1)← SetList(ClosestSet)
9: SetList← SetList\SetList(ClosestSet)

�

In the second algorithm (Algorithm 3), Nelem(♦) returns

the number of target sets in the list ♦ and dist(Γ,Ω) is a

function that returns the minimal distance (employing the 2-

norm) between two sets Γ and Ω (notice that the use of

dist(·,·) in the previous algorithm is a particular case in which

the point α is the only element of the set Γ).

dist(Γ,Ω) = minα,β ‖α− β‖2
s.t. α ∈ Γ, β ∈ Ω

(21)

If Γ and Ω are convex polygons, dist(Γ,Ω) can be again

evaluated by using a quadratic programming solver.

Figure 2 shows two examples of the use of dist(·,·) to

calculate the minimal distance between a point and a set (a)

and between two sets (b).
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Fig. 2. Illustration of function dist(·,·) involving (a) a point α and a set Ω
and (b) two sets Γ and Ω.

Algorithm 3: Order the sets from the first to the last, based

on smallest distance between them

1: No ← 1
2: while Nelem(SetList) 6= 0 do

3: d←∞
4: for i = 1→ Nelem(SetList) do

5: if d ≥ dist(OrdList(No),SetList(i)) then

6: d← dist(OrdList(No),SetList(i))
7: ClosestSet← i
8: end if

9: end for

10: OrdList(No + 1)← SetList(ClosestSet)
11: SetList← SetList\SetList(ClosestSet)
12: No ← No + 1
13: end while

�

By employing Algorithms 2 and 3, the result is an ordered

list of the target sets OrdList containing the set which is

the closest to the initial position of the vehicle as its first

element and the set that is the closest to the i-th set as the

(i + 1)-th element, for i = 1, . . . ,Nts − 1. This list may

be used to provide the terminal target set for the trajectory

planner formulation presented in [4]. An algorithm similar to

Algorithm 1 may then be used to update the ordered list of

sets to be visited (OrdList).

V. RESULTS

This Section contains two subsections: the simulation sce-

nario is described in Subsection V-A and the simulation results

are presented and discussed in Subsection V-B.

A. Simulation Scenario

A kinematic model describing the movement of a vehicle in

two dimensions was employed for simulation. The continuous-

time model equations are:

ṙx = vx, v̇x = ax, ṙy = vy, v̇y = ay (22)

where rx and ry define the position of the vehicle in a

horizontal plane with respect to an arbitrary origin. This

equation can be recast in state-space form (ẋ = Acx + Bcu)

by defining the state and control vectors as

x = [rx vx ry vy]
T
, u = [ax ay]

T
(23)

For use in the proposed MPC approach with trajectory

planning, a discrete-time model of the form x(k + 1) =
Ax(k) +Bu(k) was obtained with

A =









1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1









, B =









0.5T 2 0
T 0
0 0.5T 2

0 T









(24)

in which T is the sampling period. For the simulations in this

paper T was normalized to one time unit.

The dynamical constraints imposed on the velocities were

−1 ≤ x2, x4 ≤ 1. As for the accelerations, the imposed limits

were −5 ≤ u1, u2 ≤ 5.

Constraints 0 ≤ x1, x3 ≤ 2 were also imposed on the

position in order to limit it to the known terrain, over which

information was assumed to be available.

The initial state of the vehicle was arbitrarily set to xT
0 =

[0 0 0 0]T , i. e., it started at rest. The obstacle region was

represented as a rectangle with 0.6 ≤ x1, x3 ≤ 1. It is

worth noting that, since only the discrete-time predictions of

the position are considered in the inequalities, this does not

avoid stretches of the continuous-time trajectory crossing the

obstacle. One alternative to handle this issue is proposed in [8],

which involves incorporating restrictions on the transition of

the vehicle to each region of the space defined by obstacle in-

equalities. However, it entails the introduction of more binary

variables, increasing the complexity of the MILP problem. As

an alternative, in this work, the length and width of the obstacle

were expanded. To this end, an amount determined through the

maximal admissible absolute value of the velocity in each axis

was used to expand the borders of the obstacle. Therefore, the

adopted avoidance constraints were constructed based on the

following expanded obstacle: 0.5 ≤ x1, x3 ≤ 1.1.
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The weight γ of the fuel in the cost function was set to

0.1. The maximal horizon was set to N̄ = 35. Two missions

were simulated, each containing Nts = 3 rectangular target

sets. The inequalities describing the target sets are presented

in Table I.

TABLE I
TARGET SETS OF THE TWO SIMULATED EXAMPLES

Target set
Example

1 2

1
0.2 ≤ x1 ≤ 0.3 1.2 ≤ x1 ≤ 1.3
0.9 ≤ x3 ≤ 1.0 0.8 ≤ x3 ≤ 0.9

2
0.5 ≤ x1 ≤ 0.6 0.8 ≤ x1 ≤ 0.9
0.2 ≤ x3 ≤ 0.3 1.7 ≤ x3 ≤ 1.8

3
1.2 ≤ x1 ≤ 1.3 0.2 ≤ x1 ≤ 0.3
0.9 ≤ x3 ≤ 1.0 0.7 ≤ x3 ≤ 0.8

All simulations were carried out in a personal computer

equipped with a Pentium R© Dual-Core E5400 processor with

2.7GHz clock. For solution of the MILP, the CPLEX toolbox

from IBM ILOG was used in Matlab environment, under an

academic license. The MPT toolbox [9] was employed to

evaluate the dist(·,·) function in Algorithms 2 and 3.

B. Simulation Results

Figure 3 shows the trajectory in the horizontal plane ob-

tained by employing the multitask planning technique with

the target sets of Example 1 in Table I. It can be seen that

all targets were visited once and the obstacle region was not

crossed. It is worth remarking that the expanded obstacle

region is crossed, but not the original obstacle, in agreement

with the policy of expanding the obstacle in order to avoid

collisions. From Table I, it is possible to note that the first

visited target was target set number 2, the second was number

1 and the last, number 3. This shows that the order in which the

targets are visited does not depend on the order that they are

informed to the planner, because it chooses the visiting order

in terms of the solution which provides the minimum cost as

a compromise between the overall mission accomplishment

time and the fuel spent. Moreover, as shown in Fig. 4, the

accelerations ax and ay (which correspond to the controls u1

and u2, respectively) remained within the ±5 bounds.

The target sets were reached at times: k = 7, k = 13 and

k = 23. The fuel cost was 62.50 and the overall cost, 29.25.

For comparison, Fig. 5 shows the trajectory in the horizontal

plane generated by the minimum-distance trajectory planning

algorithm described in Section IV. It can be seen that the

minimum-distance choice for ordering the sets to be visited

resulted in the same order as that of the multitask receding

horizon planning and control shown in Fig. 3. However,

the vehicle is now required to make a sharper turn after

reaching the first target set and passes closer to the obstacle as

compared to the first case, which is a result of the fact that the

optimization is not global in this case, since the presence of

0 0.5 1 1.5 2
0
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0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
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ry TS1
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Target sets (TS)

Expanded obstacle

Obstacle

Initial position

Path

Fig. 3. Trajectory resulting from the use of the proposed multitask planning
and control for Example 1.
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Fig. 4. Control action resulting from the use of the proposed multitask
planning and control for Example 1.

a second target set is only informed for the planner/controller

at the time the vehicle reaches the first target set. Again, as

shown in Fig. 6, the accelerations ax and ay remained within

the ±5 bounds.

The target sets were reached at times k = 6, k = 14 and

k = 26. As can be seen, the overall time to accomplish the

mission (26 sampling times) was three sampling times larger

than the one observed with the multitask planning and control

technique (23 sampling times). The fuel cost was 65.47 and

the overall cost was 32.55, both larger than the corresponding

values obtained with the multitask planning.

Figure 7 shows the trajectory in the horizontal plane ob-

tained by using the multitask planning technique in Example

2. Again, the obstacle was not crossed and all targets were

visited once. The first visited target was target set number 3,

the second was number 2 and the last, number 1. It can be

seen in Fig. 8 that the accelerations ax and ay remained within
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Fig. 5. Trajectory resulting from the use of the minimum-distance target
ordering for Example 1.
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Fig. 6. Control action resulting from the use of the minimum-distance target
ordering for Example 1.

the ±5 bounds.

The target sets were reached at times k = 8, k = 19
and k = 28. The fuel cost was 34.55, which is smaller than

the corresponding value obtained in Example 1. This can be

explained by the fact that the resulting trajectory in this case

is composed of two straight lines connected by a curve. The

straight lines are more economic regarding the sum of the

absolute values of the control signals, since no increment is

necessary in these signals in order to travel along straight lines.

The overall cost was 31.46, larger than the one obtained in

Example 1 due to the larger time necessary to accomplish the

maneuver in this case.

For comparison, Fig. 9 depicts the trajectory in the horizon-

tal plane resulting of the employment of the minimum-distance

trajectory planning algorithm described in Section IV. It can

be seen that the minimum-distance choice for ordering the

sets to be visited resulted in a different order as that of the
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Fig. 7. Trajectory resulting from the use of the proposed multitask planning
and control for Example 2.
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Fig. 8. Control action resulting from the use of the proposed multitask
planning and control for Example 2.

multitask receding horizon planning and control shown in Fig.

7. The first visited target was target set number 3, the second

was number 1 and the last, number 2. Figure 10 shows the

accelerations ax and ay , which once again remained within

the bounds ±5.

The target sets were reached at times k = 8, k = 19
and k = 31 sampling times, which gives an overall time to

accomplish the mission three sampling times larger than the

one observed with the multitask receding horizon planning

and control. The fuel cost was 73.26 and the overall cost was

38.33, both larger than the ones obtained with the multitask

planning. It is interesting to note that the trajectory in this

case involves more curves than the one in Fig. 7, and even

a reversion in the direction after reaching the target set

number 1. This explains the larger fuel cost obtained with

the minimum-distance order algorithm (73.26) as compared

to the one obtained with the multitask algorithm (34.55).
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Fig. 9. Trajectory resulting from the use of the minimum-distance target
ordering for Example 2.

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3

−5

−4

−3

−2

−1

0

1

2

3

4

5

t[s]

u(t)

 

 
ax

ay

Fig. 10. Control action resulting from the use of the minimum-distance target
ordering for Example 2.

VI. CONCLUSIONS

This work proposed a novel formulation of a Predictive

Control framework which builds upon the one presented in

[4] in order to include multiple target sets in the optimization

problem. In the context of autonomous vehicles, this is impor-

tant due to the fact that some missions require the vehicle to

visit a number of target sets.

Simulations were employed to validate the proposed tech-

nique. Another approach that first orders the list of sets to

be visited based on a minimum-distance criterion and then

uses each of them as a terminal target set in the formulation

presented in [4] was used for comparison. The approach

proposed in the present work outperformed the last one in

terms of overall cost of the resulting trajectory.

Future works could include robustness regarding an un-

known but limited disturbance to this multitask framework by

using an adequate constraint tightening approach, as in [4].
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