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Abstract—In this paper the stabilisation of multi-input nonlin-
ear systems is studied using the associated angular approach. In
this method, a nonlinear system is converted into two associated
subsystems, the so-called radial and spherical subsystems. For
a single input nonlinear system, the control is designed using
the one dimensional radial system to stabilise the radial and
consequently the original nonlinear system. For multi-input sys-
tems, the control is also designed based on the radial subsystem,
however, the method is not straightforward in comparison with
single input systems. The control law includes a weighting
function which is determined based on the system performance
and control action. Some examples are presented to illustrate the
effect of various scenarios of using the proposed method.

I. INTRODUCTION

In recent years, various methods have been developed to de-
sign a control for many classes of nonlinear systems including
linearisation [1], optimal control [2], [3], H∞ control [4], [5],
sliding mode control (SMC) [6] using quantised feedback [7]
and adaptive control [8]-[9]. Output feedback control design
is also a method for stabilisation of a broad class of nonlinear
systems which has been studied in the last two decades. This
method is mainly used when the system output is measurable
and some states are not available or they are very difficult to
measure [1]. Full state-feedback control design methods are
utilized to stabilise a nonlinear system globally, particularly,
when the states are measurable. These methods include sliding
mode control [10], backstepping [11], zero dynamics based
on high gain [12] and neural network [13]. However many
established methods only guarantee the local stability [1] or
ultimate boundedness of the states [14]. Sangelaji and Banks
[15]-[16] have proposed associated angular approach for the
global stabilisation of a general class of single-input nonlinear
systems by using the angular form. In this method, the system
is converted into two nonlinear subsystems. The trajectories of
a subsystem which move on a sphere is termed the spherical
subsystem and the other, a scalar nonlinear system is called
the radial subsystem. The method straightforwardly yields a
controller when there is no singularity except the origin in
the input map function. For single-input systems, the control
law is generally simple for many cases and the method is
applicable to a large class of nonlinear systems. Whenever the
input map of the radial subsystem is zero, the radial control is
not definable. In this case, some mild conditions are proposed
to guarantee the system stability [17] or the radial control

or control design method should be modified such that the
designed control is definable everywhere within the operating
region and also stabilises the system. The radial control can
be continuous or discontinuous depending on the structure
of the input map. The method was originally established for
single input nonlinear systems [15], [16]. In this paper the
method is extended to multi-input nonlinear systems which
are not straightforward, because the control can not be driven
using the associated angular subsystems as proposed for single
input systems. The proposed control stablises the multi-input
nonlinear system. The presented method can be applied to
any nonlinear system while most of the existing methods
are applicable to particular classes of nonlinear systems. The
drawback of the angular method is the singularity points
in which the control is not definable. Similar methods as
established for single input nonlinear systems are required to
remove the singularities.

This paper is organised as follows: In Section II the associ-
ated angular method is studied. In Section III the multi-input
system is presented. In Section IV, the special cases of the
design weighting matrix, are considered. Examples illustrating
the control design process are presented in Section V. Finally
conclusions are presented in Section VI.

II. ASSOCIATED ANGULAR METHOD FOR SINGLE INPUT
NONLINEAR SYSTEMS

Consider the nonlinear system:

ẋ = A(x) +B(x)u (1)

where x ∈ Rn is the state, u is the scalar control, A(x) ∈ Rn

and B(x) ∈ Rn.

Let Sn ⊆ Rn be the unit n-ball, i.e. Sn = {z ∈ Rn : ∥z∥ = 1}
and R+ be the set of positive real numbers. The map

φ : Rn − {0} → R+ × Sn

x →
(
∥x∥, x

∥x∥
)

is a diffeomorphism from Rn − {0} onto R+ × Sn. Note that
even as x tends to zero,

x

∥x∥
(= z) is on the unit ball. The

origin is removed from the domain of the function φ; otherwise
the origin corresponds to infinity pair (0, z) where z is any
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point in Sn. This obstacle can be removed if a unique pair
say (0, z0) with z0 = (1, . . . , 0) corresponds to the origin.
Using diffeomorphism φ the system (1) is converted into the
associated radial and spherical subsystems as presented in the
following Lemma.

Lemma 1. The system (1) can be written in the form

ṙ = λA + λBu (2)

ż =
1

r

(
Ā(r, z) + B̄(r, z)u

)
(3)

from which the following control is obtained

u = −λA + αr

λB
(4)

where
Ā(r, z) = A(r, z)− zTA(r, z)z

B̄(r, z) = B(r, z)− zTB(r, z)z

Also λA = zTA(r, z), λB = zTB(r, z), r = ∥x∥, z =
x

∥x∥
and α > 0 is a constant real number. Moreover, the control
(4) stabilises the system (1).

Proof: Since r = ∥x∥ and r2 = xTx,

2rṙ = 2xT ẋ (5)

Therefore
rṙ = xT

(
A(x) +B(x)u

)
(6)

and

ṙ =
xT (A(x) +B(x)u)

r
(7)

Substituting x = rz into (7) yields

ṙ = zT (A(r, z) +B(r, z)u)

= λA + λBu (8)

On the other hand, using z =
x

r
and (6) one can obtain

ż =
1

r
ẋ− ṙ

r2
x

=
1

r

(
A(r, z)+B(r, z)u

)
− 1

r3
(
xTA(r, z)+xTB(r, z)u

)
x

=
1

r

(
Ā(r, z) + B̄(r, z)u

)
(9)

with
Ā(r, z) = A(r, z)− zTA(r, z)z

B̄(r, z) = B(r, z)− zTB(r, z)z

Select the control
u = −λA + αr

λB
(10)

where α > 0 is a real number. Then from (6)

rṙ = −αr2 (11)

So ṙ = −αr which guarantees the stability of the subsystem
(2) and therefore, the system (1).

Note that the z-subsystem operates on the unit ball and
r-subsystem is scalar. The real positive number α is a design
parameter and only affects the degree of the stability of
the system. In other words, for large values of α the state
settling time is shorter in comparison with small values of α.
One way to ensure the accessibility of the control (10) is to
consider some specific constrains on α.

III. MULTI-INPUT SYSTEMS

The control design and stabilisation problem using the
angular approach, which has been studied in section II is only
applicable to single-input nonlinear systems and its extension
to a general class of nonlinear system is not straightforward.
The degree of nonlinearity in the system is not an important
issue for using this method, while the most existing methods
are applicable for specific nonlinear classes of nonlinear
system in which the structure and the nature of nonlinearities
affect the process of the control design. In this section, the
angular method is extended to design an appropriate control
for multi-input nonlinear systems and the stabilisation criteria
are also presented.

Consider the multi-input nonlinear affine system

ẋ = A(x) +B(x)u (12)

where A(x) ∈ Rn×n, B(x) ∈ Rn×m, u ∈ Rm and x ∈ Rn.
Let r = ∥x∥ and z = x

∥x∥ then

rṙ = xT ẋ

= xTA(x) + xTB(x)u

Therefore

ṙ =
1

r
(λA(x) + (λB(x)u) (13)

ż =
1

r

[(
A− zTAz

)
+
(
B − zTBz

)
u

]
(14)

where λA = xTA(x), λB = xTB(x) ∈ R1×m and u ∈ Rm×1.
Suppose that there is an α > 0 such that ṙ = −αr. The
condition ṙ = −αr is a sufficient condition for stability of the
system. Therefore the equation (13) implies

λBu = −λA(x)− αr2 (15)

Since the r-subsystem is a one-dimensional system, the vector
control input u should be selected such that (15) is satisfied.
Select the control

u = − (xTA(x) + αr2)RBT (x)x

xTB(x)RBT (x)x
(16)

where the weighting matrix R is nonsingular. Substituting
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control (16) in (13) yields

ṙ =
1

r
(xTA(x) + xTB(x)u)

=
1

r

[
xTA(x) + xTB(x)

(−xTA(x)− αr2)RBT (x)x

xTB(x)RBT (x)x

]
=

1

r
(xTA(x) +

(−xTA(x)− αr2)xTB(x)RBT (x)x

xTB(x)RBT (x)x
)

=
1

r
(xTA(x)− xTA(x)− αr2)

= −αr

Therefore, if xTBRBTx ̸= 0 the control (16) stabilises the
system (12). When xTBRBTx = 0 the control (16) should be
modified. The methods in [16] for removing the singularities,
i.e. for points belong to the set

Π = {x ∈ Rn : xTBRBTx = 0}

may straightforwardly be extended to the nonlinear system
(12).

Remark 1. When m = 1, the system (12) is a single input
system. In this case, BT (x)x ∈ R and R ∈ R. If BT (x)x ̸= 0
the control (16) coincides with the control 10

u = −xTA(x) + αr2

xTB(x)

IV. SELECTION OF THE WEIGHTING MATRIX R

The control (16) depends on the weighting matrix R and
can be selected based on desired system performance and
control action. Various selection of the weighting matrix R
in (16) yields various alternative controls. However, for any
selection of R, the control (16) stabilises the system. Consider
the following cases:
(i) Let R = βIm ∈ Rm×m where β > 0. Then

u = − (λA(x) + αr2)BT (x)x

xTB(x)BT (x)x
(17)

or

u = −xT (A(x) + αx)BT (x)x

xTB(x)BT (x)x

Therefore, for any β > 0 the selection of R = βI does
not yield different control law. In fact, any β result in the
same control as is given by (17).

(ii) Assume that B is full rank. Select R = (BTB)−1. The
control (16) is now in the following form

u = − (λA(x) + αr2)(BTB)−1BTx

xTB(BTB)−1BTx
(18)

or

u = −xT (A+ αx)(BTB)−1BTx

xTB(BTB)−1BTx

Note that usually R is considered a symmetric positive-
definite matrix. However, the weighting matrix R may
be considered only as a nonsingular matrix. Control (18)
when R is nonsingular matrix guarantees the stability of
the multi-input system (12).
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Fig. 1. Responses of the multi-input system using the radial control (16)

V. EXAMPLES

In this section two examples are presented to show the
various scenarios of design of an angular controller. In the
first example, the control is straightforwardly obtained as there
is no singularities (except the origin), if the parameters are
appropriately selected. The second example indicates the case
when there are singularities. In this case a suitable condition
is required.

A. Example 1

Consider the system

ẋ1 = (−1 + x1)x1 + x1u2

ẋ2 = 4x1 + 3x2 + x2u1

The state space representation of the nonlinear system is

ẋ =

(
−1 + x1 0

4 3

)(
x1

x2

)
+

(
0 x1

x2 0

)(
u1

u2

)
(19)

For this system, xTAx and BTx are given by

xTAx = x2
1(−1 + x1) + 4x1x2 + 3x2

2

BTx =

(
x2
2

x2
1

)
The control (17) with R = I2 is

u =

[
u1

u2

]
= −x2

1(−1 + x1) + 4x1x2 + 3x2
2 + α(x2

1 + x2
2)

x4
2 + x4

1

[
x2
2

x2
1

]
The simulation results are shown in Figure 2 for α = 0.3.

Now consider

R =

(
γ 0
0 β

)
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Fig. 2. Responses of the multi-input system using the radial control (17).

where γ ̸= β are positive numbers. Then

RBTx =

(
γx2

2

βx2
1

)
The control (16) is now in the following form

u =

(
u1

u2

)
= −x2

1(−1 + x1) + 4x1x2 + 3x2
2 + α(x2

1 + x2
2)

γx4
2 + βx4

1

(
γx2

2

βx2
1

)
If the weighting matrix R is selected such that αβ < 0.
Then the control (20) is not defined for all x satisfying
γx4

2 + βx4
1 = 0 and therefore the number of singular points

are infinite, whilst if αβ > 0 the control (20) is definable for
all x ∈ Rn − {0}. Thus, the selection of R is significantly
important for designing multi-input nonlinear systems. This
example shows that a suitable selection of R is a way for
removing the singularities. The simulation results are depicted
in Figure 1. The values for α = 0.3, γ = 6, β = 0.3 and
initial conditions x0 = [5, 0.1] are considered for simulation.

In this example, B is full rank for all x1 ̸= 0 and
x2 ̸= 0. Therefore, R can be selected as R = (BTB)−1.
Therefore,

BTB =

(
x2
2 0
0 x2

1

)
, (BTB)−1 =

(
1
x2
2

0

0 1
x2
1

)
and

xTAx = x2
1(−1 + x1) + 4x1x2 + 3x2

2

xTB(BTB)−1BTx = x2
2 + x2

1

Since for (x1, x2) ̸= (0, 0), xTB(BTB)−1BTx ̸= 0, the
control is defined for all (x1, x2) ̸= 0 and in this case both
control laws u1 and u2 are the same

u1 = u2 = −x2
1(−1 + x1) + 4x1x2 + 3x2

2 + α(x2
1 + x2

2)

x2
1 + x2

2
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Fig. 3. Responses of the multi-input system using the radial control (18).
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Fig. 4. Responses of the multi-input system using the radial control (20)
and α = 0.4.

Figure 3 shows the simulation results for α = 0.3. This
example illustrates that different selections of R yield various
controls. When R = (BTB)−1 the two control inputs u1 and
u2 are the same, whilst other choice of R presents a con-
trol vector with different components. Therefore, based upon
the desired system performance and response, the weighting
function may be selected.

B. Example 2

Consider the system

ẋ1 = x2 + x1u1 − x2u2

ẋ2 = x1x2 − x2u1 + x1u2

The system can be written as

ẋ=

(
0 1
x2 0

)(
x1

x2

)
+

(
x1 −x2

−x2 x1

)(
u1

u2

)

488



For this example

BTx =

(
x2
1 − x2

2

0

)
BTB =

(
x2
1 + x2

2 −2x1x2

−2x1x2 x2
1 + x2

2

)
and

(BTB)−1 =
1

(x2
1 − x2

2)
2

(
x2
1 + x2

2 2x1x2

2x1x2 x2
1 + x2

2

)
Therefore,

xTAx = x1x
2
2 + x1x2

(BTB)−1BTx =
1

x2
1 − x2

2

(
x2
1 + x2

2

2x1x2

)
xTB(BTB)−1BTx = x2

1 + x2
2

Assume that for all nonzero x1 and x2, x1 ̸= x2. Then the
control is

u = −x1x
2
2 + x1x2 + α(x2

1 + x2
2)

x2
1 − x2

2

 1
2x1x2

x2
1 + x2

2

 (20)

The simulation results are shown in Figure 4.
Note that all angular methods proposed for single input sys-

tems can straightforwardly be extended to multi-input systems.

VI. CONCLUSIONS

In this paper the control design using the angular approach
for multi-input nonlinear systems have been addressed. The
radial control law includes a nonsingular weighting matrix
which yield various control laws whenever it is not selected as
a multiplication of an identity matrix. The weighting matrix
does not necessarily have to be a positive-definite, however it
only needs to be a nonsingular matrix. A suitable selection of
weighting matrix can prevent any singularities in the radial
control law. The control (16) has been designed such that
when the system is single-input, this control coincides with
the control (10). In single-input case, the weighing matrix is
not required. In fact, in this case the weighting matrix is only
a number.

All methods for single input systems for removing the
singularities which have been presented in [15] and [16] are
required to be extended to the multi-input nonlinear systems.
In particular, similar methods as that presented in [16] should
be established for removing the singularities including mod-
ifying the control, imposing a sufficient condition on design
parameters, using the weighting norm and dynamical radial
method.
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