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Abstract --In this paper, an eigenstructure assignment fault 

detection approach to linear time invariant (LTI) systems is 

extended to Linear Parameter Varying (LPV) systems. Fault 

detection filter design algorithms using eigenstructure 

assignment have been widely studied for LTI systems. 

However, LPV strategies are very useful for systems which 

have no unique equilibrium and are difficult to linearize. The 

parametric eigenstructure assignment approach is used to 

design an observer as a residual generator by viewing the 

varying parameters as fixed parameters in the design 

procedure. The residual observer feedback structure is 

implemented using a measured scheduling parameter An 

example is given of actuator fault detection of a two-link 

manipulator system. 

Key words:  Fault detection; LPV systems; Eigenstructure 

assignment, Fault residual generation 

I. INTRODUCTION 

Safety and reliability are very important in control 
systems and these demanding requirements must be ensured 
at a reasonable level. Fault detection (FD) methodologies 
and techniques are important topics in systems engineering 
from the viewpoint of improving plant safety and reliability. 
The FD literature is vast and the topics addressed are 
essentially related to the different design methodologies 
proposed to tackle the FD problem [1-4]. Model-based FD 
techniques are the most popular and are receiving 
considerable attention. The ideas are to derive a 
mathematical model of the plant and to compute additional 
artificial signals that are checked, during the on-line 
operations, with the corresponding measured quantities. State 
observers are often considered as the role of on-line residual 
generation because of the fast detection rate [5].  

The eigenstructure assignment approach to robust FD 
was first demonstrated in [6]. It has been shown that a well-
defined residual signal can be completely de-coupled from 
the disturbance by assigning a suitable eigenstructure to an 
observer. In this way, robust fault detection is achieved. 
Parametric eigenstructure assignment approaches [7-14] 
opened a wide field to use the design freedom of eigenvalue 
placement to achieve other desired performance, such as 
structured disturbance decouple. Some optimization 
approaches were also considered in the FD  methods with 
pole placement [15-17]. 

Many real systems cannot be modeled by linear models, 
for example when no unique equilibria exist. A feasible 
approach to handle the nonlinearity of such systems is to use 
linear parameter-varying (LPV) models to approximate the 
dynamic nonlinearity. The LPV strategy was first introduced 
in [18, 19] and the big advantage of LPV modeling is that 
powerful linear design tools for stability and performance 
can be extended and applied [20, 21], LMI methods for 
multiple-model FD have been studied in [22, 23]. Traditional 
multi-model eigenstructure assignment approaches use 
iterative methods based on optimizing the worst case 
performance and the initial condition is calculated e.g. by a 
linear quadratic regulator (LQR) or by an H infinity method 
[24, 25].  

In this paper, a non-iterative robust fault detection 
approach is presented based on a state observer structure 
within the LPV framework. The LPV fault detection 
approach is an extension of the approach in LTI case. Using 
parametric eigenstructure assignment, the varying 
parameters are viewed as fixed parameters in the design 
procedure and the observer law is implemented with the 
varying parameters measured or estimated on line.  

The remainder of the paper is organized as follows: 
Section II recalls the parametric eigenstructure assignment 
approach to LPV systems and FD approach for LTI system. 
A design procedure for robust FD is also proposed in this 
Section; Section III demonstrates the usefulness of the 
proposed approach by a means of a two-link manipulator 
example. Conclusions are given in Section IV. 

II. PARAMETRIC EIGENSTRUCTURE ASSIGNMENT TO LPV 

SYSTEMS 

Consider a stable LPV system in the following form: 

                                                

                  

                               

where                            are the state 
vector, the input vector and measured output vector, 
respectively. And      and     are the fault vector and 
disturbance signal, respectively.    is a known constant 
matrix and                           are known 
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continuous functions of a time-varying parameter vector 
     which satisfies: 

                     
 
           

where   is a compact set. Hereafter, the subscript   is 
omitted without causing confusion. 

The observer dynamics used by the residual generator are 
described by: 

 
                                            

                                                                                          

                                                                                            

 



where      is the residual vector,    and    are state and 
output estimation vectors. The matrix           is the 
residual weighting factor.  

A. LPV Parameric Eigenstrucutruer assignent  

Observer design is dual of state feedback controller 
design. Left Eigenstructure assignment of observer is dual of 
the right Eigenstructure assignment of state feedback 
controller. That means if the desired left eigenvector matrix 

of                is      , then the desired right 

Eigenvector matrix of                  is     . That 

is to say the desired left Eigenvector of      
        can be assigned by assigning the right eigenvector 

of                 . By the definition, if the right 

eigenvector matrix of                  is        the 
eigenvalue matrix is     . It follows that: 

                                  

Let                , Equation (4) can be rewritten as 

                             

Hence, the problem to assign desired closed-loop 
eigenstructure to a system using a residual generator is to 
find a solution of (4). 

Now, without proof, a theorem of parametric solution of 
Sylvester equation is introduced, and the proof details can be 
found in [8, 9, 26]. 

Theorem 1 

Let             be controllable, and the matrix      be 
of full-column rank. If the desired closed-loop self-conjugate 
eigenvalue set be described as                     
                  The algebraic and geometric 
multiplicities of the eigenvalue    are denoted by   and    , 
respectively and                satisfy the relations: 

    
   
            

  
     

Then all the solutions of the Sylvester matrix equation [10]: 

                          

are given by:  

 
   
 

   
   

 
           

 

      

    

     
          

           
 

      

    

     
          

  

   
    

 
   
    

 

                                    

where the    
     are arbitrarily chosen from parameter 

vectors.           and           are right co-prime 

matrix polynomials satisfying: 

                                       

Then the observer gain can be calculated by:  

                

From the above theorem, it can be known that the desired 
eigenvectors and generalized eigenvectors can be 
parameterized by (6). By specially choosing the free 
parameters given in (6), solutions with desired properties can 
be obtained. 

B. LPV fault detection  

The FD design must ensure that the residuals are close to 
zero in the fault-free situation whilst suitably deviating from 
zero in the presence of faults. A necessary condition for 
achieving disturbance de-coupling design is [4, 14]. 

                 

If         , any residual weighting matrix can satisfy 
this necessary condition. 

The basic principle to assign the left eigenstructure for 
LTI case is given in [4, 12]. The theorem is introduced here. 

Theorem 2 

The sufficient conditions for satisfying the disturbance 
de-coupling requirement                       
are: 

(1)       

(2) All rows of the matrix      are left eigenvectors 
of        corresponding to any eigenvalues.  

A similar result for the LPV case is now given. 

Theorem 3 

The sufficient conditions for satisfying the disturbance de-
coupling requirements for the system.  

468



                                        

are: 

(1)             

(2) All rows of the matrix               are left 
eigenvectors of                corresponding 
to any eigenvalues.  

Noting that the above result is intuitively an extension of 
the LTI case, the proof is omitted here. 

C. Design procedure 

Following the previous arguments, a design procedure is 
proposed to design a robust residual generator to LPV 
system. 

Step 1: Select the desired eigenvalues for the observer 
which can be parametric to obtain more design freedoms. 

Step 2: Calculate the            and          using 

elementary transformation and the rational matrix 
factorization method. 

Step 3: Check             , choose a basis for 
           . 

Step 4: Check          , set the desired left eigenvectors 
with some of the eigenvectors in a parametric form to keep 
the design freedom. 

Step 5: Project the desired eigenvectors into the achievable 
subspace to get the achieved eigenvector matrix. 

Step 6: Calculate the observer gain by      
          . To simplify the structure, some parameters 
are chosen at this step.  

Step 7: Verify the achieved eigenvalues and eigenvectors, 
and chose the remaining parameters based on the 
performance specifications. 

III. AN EXAMPLE 

A two-link robotic manipulator is considered to rotate in 
the vertical plane, whose position can be described by a 2-
vector          

 of joint angles, and whose actuator 
inputs consist of a vector           

  of torques applied at 
the manipulator joints as shown in Fig. 1. Using the vectors 
   and    to denote the joint velocities and accelerations, 
respectively. The dynamics of this simple manipulator can be 
written in the more general form [27] as: 

                          

where:            is the manipulator inertia tensor matrix, 
            is the vector function containing the 
Centripetal and Carioles torques, i.e.                and 
       are the gravitational torques. The details of 
equations of motion and physical parameters as outlined in 
Table I are described in [23]. 

 
Figure 1.  Two-link manipulator structure 

TABLE I.  PARAMETER VALUES FOR THE TWO LINK MANIPULATOR 

SYSTEM 

Parameters                        g 

Values 0.833 0.417 1.0 0.5 0.5 10.0 5.0 9.80 

Units Kg*   Kg*   m m m Kg Kg m/   

A. LPV model of two link manipulator 

A polytopic LPV representation of this model system is 
used in this example. It is important to note that in this study 
the quadratic terms         are not considered because they 
are not bounded. As shown later by the Simulink result, it 
turns out that the two-link manipulator works well, even if 
these bounds are not known a priori. Considering this 
limitation the system dynamics can be described as: 

                 

where  

      
                

                
 

      
          
          

 

         
      

                 

                     
    

                              

The nonlinear term in Ξ(ϕ) is clearly a bounded 
function: 

                     

To facilitate a state-space formulation, the vector 
field        with     can bearranged in the form of 
      and function       can now be defined which is 
bounded, 

         
       

  
             

         
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Similarly,  

         
       

  

             

         

To define the two-link system state space representation, 
let: 

   

  
  
  
  

   

  
  

   
   

  and     

  
  
  
  

  

The LTV state space equation is  as follows: 

                     

where  

         
  

      
                

   
  
     

        
        
        

 

       
      
      

 

                           

Assume that only       and       are measurable, so 
that:  

        
    
    

 

Assume further that the system is disturbed by a zero-
mean Gaussian random disturbance      with variance 
magnitude and with disturbance distribution vector:  

         

The considered fault is an actuator fault acting on the 
second actuator, so that the fault distribution vector is  

          

The proof that Π is non-singular follows from     . As 
Π is block diagonal, its determinant is given by     . It is 
thus only required to show that              . 
        (by symmetry) and        since       and 
     , hence Π is non-singular. 

B. Observer based residual Generator Design  

Following the proposed procedure, the residual generator 
design is shown in this subsection. 

Step 1: The desired observer eigenvalues are set to be 
parametric to obtain more design freedom as: 

             

Step 2: Using elementary transformation and the rational 
matrix factorization method, the following are obtained: 

        

  
  
  
  

     

      

 

 
 
 
 
    

        

         
    

             

         
    

               

         
    

   
      

         
     

 
 
 
 

 

Step 3: Note that 

    
  
  

   

So     , and a basis for         may be taken as 

       

Hence         

Step 4:  Then noting that:  

          

one desired left eigenvector is        and other left 
eigenvectors can be chosen arbitrarily only to 
satisfy            . So, other parameters are given in a 
parametric way from: 

  
                   

Using the parametric eigenstructure assignment approach, 
the first desired eigenvector is projected into the allowable 
subspace by setting: 

  
               

         
     

 

 
  

  
   

  

Step 5: The achieved eigenvector matrix can be obtained 
by (6) as given in Theorem 1. 

Step 6: To simplify the calculation, some parameters are 
chosen at this step. If the parameters are chosen as: 

                  

                  

Using               . The observer gain is obtained 
as in (8). 
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

                
        

Step 7: The achieved closed-loop eigenvalues are: 

             

To stabilize the observer system, let               
       . The required transient response performance can 
be achieved by suitably choosing the parametric 
eigenvalues. 

The achieved transfer function matrix between the 
residual and disturbance is: 

           

It is apparent that the disturbance is completely de-
coupled because the transfer function matrix between the 
residual and disturbance is zero.  

The transfer function between the residuals and faults is: 

       
 

                


So, the steady-state gain matrix        

       
 

    


From the above it is easy to choose suitable values of 
          to achieve a desired transient response and set 
       to obtain good steady-state fault estimation. 

The above analysis shows that the disturbances are 
decoupled completely and the residual is sensitive to the 
fault. This implies that the proposed design approach has 
achieved the desired goals. In the next subsection, some 
Simulink results are given.  

C. Simulation result 

The open-loop two-link manipulator is unstable. 
Therefore, a constant controller is designed first using an 
observer state feedback structure while the estimated state is 
provided by the designed residual generator. The LPV 
system is simulated with a step and sinusoidal signals as 
shown in Figs. 2 & 3. Noting that the initial estimation is not 
good because both the two-link manipulator and observer 
systems are not in steady state and the state estimation error 
is large during the transient phase. The fault estimation is 
close to the real fault signal after 2 seconds as shown both in 
Figs. 2 & 3. The LPV fault estimator can provide good 
estimation performance when the real system is in a steady 
state. 

 
Figure 2.  Fault estimation result for step fault signal  

 

Figure 3.  Fault estimation result for sinusoidal signal 

IV. CONCLUSION 

This paper proposes an LPV fault detection approach 
using eigenstructure assignment which is robust in the sense 
of disturbance decoupling. The disturbances which can be 
considered to represent modeling uncertainty can be 
completely decoupled if the disturbance distribution and 
output matrix satisfy a rank condition. If this is not the case 
the disturbance can be decoupled as much as possible by 
suitable choice of design freedom. A two-link manipulator 
case is studied to show the usefulness of the proposed design 
procedure. The Simulink results show that for one fault case, 
the designed residual generator works well. Future studies 
will be concerned with multi-fault cases and how to use the 
detected fault information to accommodate faults and 
improve the system reliability. 
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