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Inverse Optimal Robust Control of Singularly
Impulsive Dynamical Systems

Dr. Nataša A. Kablar and Vlada Kvrgić

Abstract— In this paper for the class of nonlinear uncertain
singularly impulsive dynamical systems we present optimal
robust control and inverse robust optimal control results. We
consider a control problem for nonlinear uncertain singularly
impulsive dynamical systems involving a notion of optimality
with respect to an auxiliary cost which guarantees a bound on
the worst-case value of a nonlinear-nonquadratic hybrid cost
criterion over a prescribed uncertainty set. Further we specialize
result to affine uncertain systems to obtain controllers predicated
on an inverse optimal hybrid control problem. In particular, to
avoid the complexity in solving the steady-state hybrid Hamilton-
Jacobi-Bellman equation we parameterize a family of stabiliz-
ing hybrid controllers that minimize some derived hybrid cost
functional that provides flexibility in specifying the control law.
The performance integrand is shown to explicitly depend on the
nonlinear singularly impulsive system dynamics, the Lyapunov
function of the closed-loop system, and the stabilizing hybrid
feedback control law wherein the coupling is introduced via
the hybrid Hamilton-Jacobi-Bellman equation. By varying the
parameters in the Lyapunov function and the performance
integrand, the proposed framework can be used to characterize
a class of globally stabilizing hybrid controllers that can meet
the closed-loop system response constraints. Obtained results
for nonlinear case are further specialized to linear singularly
impulsive dynamical systems with polynomial and multilinear
performance functional.

Index Terms— mathematical model, singularly impulsive dy-
namical systems, optimal robust control, inverse optimal robust
control

I. INTRODUCTION

For the class of nonlinear uncertain singularly impulsive
dynamical systems presented in [2], we have developed robust
stability results in [7]. In this paper we give optimal robust
control and inverse robust optimal control results. For that
purpose, we generalize results developed in [3]. We consider
a control problem for nonlinear uncertain singularly impulsive
dynamical systems involving a notion of optimality with
respect to an auxiliary cost which guarantees a bound on the
worst-case value of a nonlinear-nonquadratic hybrid cost crite-
rion over a prescribed uncertainty set. Further we specialize re-
sult to affine uncertain systems to obtain controllers predicated
on an inverse optimal hybrid control problem. In particular,
to avoid the complexity in solving the steady-state hybrid
Hamilton-Jacobi-Bellman equation we parameterize a family
of stabilizing hybrid controllers that minimize some derived
hybrid cost functional that provides flexibility in specifying
the control law. Obtained results for nonlinear case are further

Lola Institute, Kneza Viseslava 70a, Belgrade 11000, Serbia
nkablar.ae01@gtalumni.org

specialized to linear singularly impulsive dynamical systems
with polynomial and multilinear performance functional.

Finally, in this paper we use the following standard notation.
Let R denote the set of real numbers, let N denote the set of
nonnegative integers, let Rn denote the set of n×1 real column
vectors, let Rn×m denote the set of n × m real matrices,
let Sn denote the set of n × n symmetric matrices, and let
Nn (resp., Pn) denote the set of n × n nonnegative (resp.,
positive) definite matrices, and let In or I denote the n × n
identity matrix. Furthermore, A ≥ 0 (resp., A > 0) denotes the
fact that the Hermitian matrix is nonnegative (resp., positive)
definite and A ≥ B (resp., A > B) denotes the fact that
A−B ≥ 0 (resp., A−B > 0). In addition, we write V ′(x) for
the Fréchet derivative of V (·) at x. Finally, let C0 denote the
set of continuous functions and Cr denote the set of functions
with r continuous derivatives.

II. OPTIMAL ROBUST CONTROL FOR NONLINEAR
UNCERTAIN SINGULARLY IMPULSIVE DYNAMICAL

SYSTEMS

In this section we consider a control problem for nonlinear
uncertain singularly impulsive dynamical systems involving a
notion of optimality with respect to an auxiliary cost which
guarantees a bound on the worst-case value of a nonlinear-
nonquadratic hybrid cost criterion over a prescribed uncer-
tainty set. The optimal robust hybrid time-invariant feedback
controllers are derived as a direct consequence of Theorem
2.1 given in [7] and provide a generalization of the Hamilton-
Jacobi-Bellman conditions for state-dependent singularly im-
pulsive dynamical systems with optimality notions over the
infinite horizon with an infinite number of resetting times, for
addressing robust feedback controllers of nonlinear uncertain
singularly impulsive dynamical systems. To address robust
optimal control problem let D ⊂ Rn be an open set with 0 ∈
D, and let Cc ⊂ Rmc , Cd ⊂ Rmd , where 0 ∈ Cc and 0 ∈ Cd.
Furthermore, let Fc ⊂ {Fc : D × Cc → Rn : Fc(0, 0) = 0},
and Fd ⊂ {Fd : D×Cd → Rn : Fd(0, 0) = 0}. For simplicity
of exposition, we also define (Fc(·, ·), Fd(·, ·)) ∈ Fc × Fd ,
F . Next, consider the nonlinear uncertain singularly impulsive
controlled dynamical system

Ecẋ(t) = Fc(x(t), uc(t)), x(0) = 0, x(t) ̸∈ Zx,

uc(t) ∈ Uc, (II.1)
Ed∆x(t) = Fd(x(t), ud(t)), x(t) ∈ Zx,

ud(t) ∈ Ud, (II.2)

where t ≥ 0, x(t) ∈ D is the state vector, (uc(t), ud(tk)) ∈
Uc × Ud ⊂ Cc × Cd, k ∈ N , is the hybrid control input,
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where the control constraint sets Uc,Ud are given. We assume
(0, 0) ∈ Uc × Ud, Fc : D × Uc → Rn is Lipschitz continuous
and satisfies Fc(0, 0) = 0, Fd : D × Ud → Rn is continuous
and satisfies Fd(0, 0) = 0, and Zx ⊂ Rn. To address the robust
optimal nonlinear hybrid feedback control problem let ϕc :
D → Uc be such that ϕc(0) = 0 and let ϕd : D → Ud be such
that ϕd(0) = 0. If (uc(t), ud(t)) = (ϕc(Ecx(t)), ϕd(Edx(t))),
where x(t), t ≥ 0, satisfies (II.1), (II.2), then (uc(·), ud(·)) is
a hybrid feedback control. Given the hybrid feedback control
(uc(t), ud(t)) = (ϕc(Ecx(t)), ϕd(Edx(t))), the closed-loop
state-dependent singularly impulsive dynamical system has the
form

Ecẋ(t) = Fc(x(t), ϕc(Ecx(t))), x(0) = x0,

t ≥ 0, x(t) ̸∈ Zx, (II.3)
Ed∆x(t) = Fd(x(t), ϕd(Edx(t))),

x(t) ∈ Zx, (II.4)

for all (Fc(·, ·), Fd(·, ·)) ∈ F .
Next we present sufficient conditions for characterizing

robust nonlinear hybrid feedback controllers that guarantee
robust stability over a class of nonlinear uncertain singularly
impulsive dynamical systems and minimize an auxiliary hybrid
performance functional. For the statement of this result let
Lc : D × Uc → R, Ld : D × Ud → R and define the set of
asymptotically stabilizing controllers for the nominal nonlinear
singularly impulsive dynamical system (Fc0(·, ·), Fd0(·, ·)) by

C(x0),{(uc(·), ud(·)) : (uc(·), ud(·)) is admissible
and the zero solutionx(t) ≡ 0

to (II.1), (II.2)
is asymptotically stable with
(Fc(·, ·), Fd(·, ·))
= (Fc0(·, ·), Fd0(·, ·))}.

Consider the nonlinear uncertain singularly impulsive dy-
namical system (II.1), (II.2) with hybrid performance func-
tional

J(Ecx0, uc(·), ud(·)) =

∫ ∞

0

Lc(Ecx(t), u(t))dt

+
∑

k∈N[0,∞)

Ld(Edx(tk), ud(tk)),(II.5)

where (Fc(·, ·),Fd(·, ·)) ∈ F and (uc(·), ud(·)) is an admis-
sible control. Assume there exist functions V : D → R,
Γc : D×Uc → R, Γd : D×Ud → R, and a hybrid control law
ϕc : D → Uc and ϕd : D → Ud, where V (·) is a C1 function,
such that

V (0) = 0, (II.6)
V (Ecx) ≥ 0, x ∈ D, x ̸= 0, (II.7)
ϕc(0) = 0, (II.8)
ϕd(0) = 0, (II.9)

V ′(Ecx)Fc(x, ϕc(x)) ≤ V ′(Ecx)Fc0(x, ϕc(x))

+Γc(x, ϕc(x)), x ̸∈ Zx, Fc(·, ·) ∈ Fc, (II.10)
V ′(Ecx)Fc0(x, ϕc(x)) + Γc(x, ϕc(x)) < 0, x ̸∈ Zx, x ̸= 0,

(II.11)

V (Edx+ Fd(x, ϕd(x))) − V (Edx) ≤
V (Edx+ Fd0(x, ϕd(x)))− V (Edx)

+Γd(x, ϕd(x)), x ∈ Zx, Fd(·, ·) ∈ Fd, (II.12)
V (Edx+ Fd0(x, ϕd(x))) − V (Edx) + Γd(x, ϕd(x))

≤ 0, x ∈ Zx, (II.13)
Hc(Ecx, ϕc(x)) = 0, x ̸∈ Zx, (II.14)
Hc(Ecx, uc(x)) ≥ 0, x ̸∈ Zx, uc ∈ Uc,(II.15)

Hd(Edx, ϕd(Ecx)) = 0, x ∈ Zx, (II.16)
Hd(Edx, ud(x)) ≥ 0, x ∈ Zx, ud ∈ Ud,(II.17)

where (Fc0(·, ·), Fd0(·, ·)) ∈ F defines the nominal singularly
impulsive dynamical system and

Hc(Ecx, uc) , Lc(Ecx, uc)+V
′(Ecx)Fc0(x, uc)+Γc(x, uc),

(II.18)
Hd(Edx, ud) , Ld(Edx, ud)+ V (Edx+Fd0(x, ud))

−V (xEd)+Γd(x, ud). (II.19)

Then, with the hybrid feedback control (uc(·), ud(·)) =
(ϕc(Ecx(·)), ϕd(Edx(·))), there exists a neighborhood of the
origin D0 ⊂ D such that if x0 ∈ D0, the zero solution x(t) ≡ 0
of the closed-loop system (II.3), (II.4) is locally asymptotically
stable for all (Fc(·, ·), Fd(·, ·)) ∈ F . Furthermore,

sup
(Fc(·,·),Fd(·,·))∈F

J(Ecx0, ϕc(Ecx(·)), ϕd(Edx(·)))

≤ J (Ecx0, ϕc(·), ϕd(·))
= V (Ecx0), x0 ∈ D0, (II.20)

where

J (Ecx0, uc(·), ud(·)) ,∫ ∞

0

[Lc(Ecx(t), uc(t)) + Γc(x(t), uc(t))]dt

+
∑

k∈N[0,∞)

[Ld(Edx(tk), ud(tk)) + Γd(x(tk), ud(tk))],

(II.21)

and where (uc(·), ud(·)) is an admissible control
and x(t), t ≥ 0, is a solution of (II.1),
(II.2) with (Fc(x(t), uc(t)), Fd(x(t), ud(t))) =
(Fc0(x(t), uc(t)), Fd0(x(t), ud(t))). In addition, if x0 ∈ D0

then the hybrid feedback control (uc(·), ud(·)) = (ϕc(Ecx(·)),
ϕd(Edx(·))) minimizes J(Ecx0, uc(·), ud(·)) in the sense
that

J(Ecx0, ϕc(Ecx(·)), ϕd(Edx(·))) =
min(uc(·),ud(·))∈C(x0) J(Ecx0, uc(·), ud(·)). (II.22)

Finally, if D = Rn, and

V (Ec/dx) → ∞ as ∥x∥ → ∞, (II.23)

then the zero solution x(t) ≡ 0 of the closed-loop sys-
tem (II.3), (II.4) is globally asymptotically stable for all
(Fc(·, ·), Fd(·, ·)) ∈ F , [3] and [7].

Proof: Local and global asymptotic stability is a di-
rect consequence of (II.6)–(II.13) by applying Theorem 2.1
of [7] to the closed-loop system (II.3), (II.4). Next, let
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(uc(·), ud(·)) ∈ C(x0) and let x(·) be the solution of (II.1),
(II.2) with (Fc(·, ·), Fd(·, ·)) = (Fc0(·, ·), Fd0(·, ·)).

Then it follows that

0 = −V̇ (Ecx(t)) + V ′(Ecx(t))Fc(x(t), uc(t)), x(t) ̸∈ Zx,

(II.24)
0 = −∆V (Edx(t)) + V (Edx+ Fd(x(t), ud(t)))

−V (Edx(t)), x(t) ∈ Zx. (II.25)

Hence,

Lc(Ecx(t), uc(t)) + Γc(Ecx̃(t), uc(t)) =

−V̇ (Ecx(t)) + Lc(Ecx(t), uc(t))

+V ′(Ecx(t))Fc0(x(t), uc(t)) + Γc(Ecx̃(t), uc(t))

= −V̇ (Ecx(t)) +Hc(Ecx(t), uc(t)),

x(t) ̸∈ Zx. (II.26)

Similarly,

Ld(Edx(t), ud(t)) + Γd(x(t), ud(t)) =

−∆V (Edx(t)) + Ld(Edx(t), ud(t))

+∆V (Edx(t)) + Γd(x(t), ud(t))

= −∆V (Edx(t)) +Hd(Edx(t), ud(t)),

x(t) ∈ Zx. (II.27)

Now, over the interval [0, t) yields∫ t

0

[Lc(Ecx(t), uc(t)) + Γc(x̃(t), uc(t))]dt

+
∑

k∈N[0,t)

[Ld(Edx(tk), ud(tk)) + Γd(x(tk), ud(tk))]

=

∫ t

0

[−V̇ (Ecx(t)) +Hc(x(t), uc(t))]dt

+
∑

k∈N[0,t)

[−∆V (Edx(tk)) +Hd(Edx(tk), ud(tk))]

= −V (Ecx(t)) + V (Ecx0) +

∫ t

0

Hc(Ecx(t), uc(t))dt

+
∑

k∈N[0,t)

Hd(Edx(tk), ud(tk))

≥ V (Ecx0)

= J (Ecx0, ϕc(x(·)), ϕd(x(·))). (II.28)

Letting t → ∞ and noting that V (Ec/dx(t)) → 0 for all
x0 ∈ D0 yields (II.22). �

Next, we specialize Theorem II to linear uncertain singularly
impulsive dynamical systems. Specifically, in this case we
consider F , Fc × Fd to be the set of uncertain linear
singularly impulsive dynamical systems, where

Fc = {(Ac +∆Ac)x+Bcuc : x ∈ Rn, Ac ∈ Rn×n,

Bc ∈ Rn×mc ,∆Ac ∈ ∆Ac},
Fd = {(Ad +∆Ad − Ed)x+Bdud : x ∈ Rn, Ad ∈ Rn×n,

Bd ∈ Rn×md ,∆Ad ∈ ∆Ad
},

where ∆Ac ,∆Ad
⊂ Rn×n, are given bounded uncertainty

sets of uncertain perturbations ∆Ac,∆Ad of the nominal
system matrices Ac, Ad, such that 0 ∈ ∆Ac and 0 ∈ ∆Ad

.

For simplicity of exposition, we also define (∆Ac,∆Ad) ∈
∆Ac × ∆Ad , ∆. For the following result let Rc1 ∈ Pn,
Rc2 ∈ Pmc , Rd1 ∈ Nn, Rd2 ∈ Nmd be given.

Consider the linear state-dependent uncertain singularly
impulsive controlled dynamical system

Ecẋ(t) = (Ac +∆Ac)x(t) +Bcuc(t), x(0) = x0,

t ≥ 0, x(t) ̸∈ Z, (II.29)
Ed∆x(t) = (Ad +∆Ad − Ed)x(t) +Bdud(t), x(t) ∈ Z,

(II.30)

with performance functional

J∆Ac,∆Ad
(Ecx0, uc(·), ud(·)) ,∫ ∞

0

[xT(t)ET
c Rc1Ecx(t) + uTc (t)Rc2uc(t)]dt

+
∑

k∈N[0,∞)

[xT(tk)E
T
d Rd1Edx(tk) + uTd (tk)Rd2ud(tk)],

(II.31)

where (uc(·), ud(·)) is admissible, (∆Ac,∆Ad) ∈ ∆. Fur-
thermore, assume there exist P ∈ Pn, Ωc : Pn → Nn, Ωdxx :
Pn → Nn, Ωdxud

: Nn → Rn×md , and Ωdudud
: Nn → Nmd ,

such that

xT(∆AT
c E

T
c P + P∆AcEc)x ≤ xTET

c Ωc(P )Ecx,

x ̸∈ Z, ∆Ac ∈ ∆Ac, (II.32)
xT(∆AT

dPAd +AT
dP∆Ad −∆AdPBd(Rd2

+BT
d PBd +Ωdudud

(P ))−1

(BT
d PAd + ET

d Ωd
T
xud

(P )Ed)− (BT
d PAd

+Ωd
T
xud

(P ))T(Rd2 +BT
d PBd +Ωdudud

(P ))−1

BT
d P∆Ad +∆AT

dP∆Ad)x ≤xT(ET
d Ωdxx(P )E

T
d

−Ωdxud
(P )

(Rd2+B
T
d PBd +Ωdudud

(P ))−1

(BT
d PAd+Ωd

T
xud

(P ))

−(BT
d P+Ωd

T
xud

(P ))T(Rd2 +BT
d PBd +Ωdudud

(P ))−1

Ωd
T
xud

(P )

+(BT
d PAd +Ωd

T
xud

(P ))T(Rd2 +BT
d PBd+

Ωdudud
(P ))−1

·Ωdudud
(P )(Rd2 +BT

d PBd

+Ωdudud
(P ))−1(BT

d PAd +Ωd
T
xud

(P )))x,

x ∈ Z,
∆Ad ∈ ∆Ad. (II.33)

Furthermore, suppose there exists P ∈ Pn satisfying

0 = xT(AT
c PEc + ET

c PAc + ET
c Rc1Ec +Ωc(P )−

PBcRc
−1
2 BT

c P )Ecx, x ̸∈ Z, (II.34)
0 < Rd2 +BT

d PBd +Ωdudud
(P ), (II.35)

0 = xT(AT
dPA− ET

d PEd + ET
d Rd1Ed

+Ωdxx(P )− (BT
d PAd +Ωd

T
xud

(P ))T

(Rd2 +BT
d PBd +Ωdudud

(P ))−1

·(BT
d PAd +Ωd

T
xud

(P )))x,

x ∈ Z. (II.36)
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Then, with hybrid feedback control (uc, ud) =
(ϕc(x), ϕd(x)) = (−Rc

−1
2 BT

c PEcx, −(Rd2 + BT
d PBd +

Ωdudud
(P ))−1(BT

d PAd + Ωd
T
xud

(P ))x) the zero solution
x(t) ≡ 0 to (II.29), (II.30) is globally asymptotically stable
for all x0 ∈ Rn, (∆Ac,∆Ad) ∈ ∆Ac ×∆Ad and

sup
(∆c,∆d)∈∆

J(∆Ac,∆Ad)(Ecx0) ≤ J (Ecx0, ϕc(·), ϕd(·))

= xT0 E
T
c PEcx0, x0 ∈ Rn,

(II.37)

where

J (Ecx0, uc(·), ud(·)) ,
∫ ∞

0

[xT(t)ET
c Rc1Ecx(t)

+uTc (t)Rc2uc(t) + xT(t)Ωc(P )x(t)]dt

+
∑

k∈N[0,∞)

[xT(tk)E
T
d Rd1Edx(tk)

+uTd (tk)Rd2ud(tk) + xT(tk)Ωdxx(P )x(tk)

+2xT(tk)Ωdxud
(P )ud(tk) + uTd (tk)

·Ωdudud
(P )ud(tk)], (II.38)

(II.39)

and where (uc, ud) is admissible and x(t), t ≥ 0, is a solution
to (II.29), (II.30) with (∆Ac,∆Ad) = (0, 0). Furthermore,

J (Ecx0, ϕc(x(·)), ϕd(x(·))) =

min(uc(·),ud(·))∈C(x0)J (Ecx0, uc(·), ud(·)), (II.40)

where C(x0) is the set of asymptotically stabilizing hybrid
controllers for the nominal singularly impulsive dynamical
system and x0 ∈ Rn, [3] and [7].

Proof: The detailed proof is given in [7]. �

III. INVERSE OPTIMAL ROBUST CONTROL FOR
NONLINEAR AFFINE UNCERTAIN SINGULARLY IMPULSIVE

DYNAMICAL SYSTEMS

In this section we specialize Theorem II to affine uncertain
systems. The controllers obtained are predicated on an inverse
optimal hybrid control problem. In particular, to avoid the
complexity in solving the steady-state hybrid Hamilton-Jacobi-
Bellman equation we do not attempt to minimize a given
hybrid cost functional, but rather, we parametrize a family
of stabilizing hybrid controllers that minimize some derived
hybrid cost functional that provides flexibility in specifying the
control law. The performance integrand is shown to explicitly
depend on the nonlinear singularly impulsive system dynam-
ics, the Lyapunov function of the closed-loop system, and the
stabilizing hybrid feedback control law wherein the coupling is
introduced via the hybrid Hamilton-Jacobi-Bellman equation.
Hence, by varying the parameters in the Lyapunov function
and the performance integrand, the proposed framework can
be used to characterize a class of globally stabilizing hybrid
controllers that can meet the closed-loop system response
constraints.

Consider the state-dependent affine (in the control) uncertain
singularly impulsive dynamical system

Ecẋ(t) = fc(x(t)) + ∆fc(x(t)) +Gc(x(t))uc(t),

x(0) = x0, x(t) ̸∈ Zx, (III.41)
Ed∆x(t) = fd(x(t)) + ∆fd(x(t)) +Gd(x(t))ud(t),

x(t) ∈ Zx, (III.42)

where t ≥ 0, fc0, fd0 : D → Rn and satisfies fc0(0) =
0, fd0(0) = 0, D = Rn, Uc = Cc = Rmc , Ud = Cd = Rmd ,
and (∆fc,∆fd) ∈ Fc ×Fd , F , where

∆fc(·) ∈ Fc ⊂ {∆fc : Rn → Rn : ∆fc(0) = 0},
∆fd(·) ∈ Fd ⊂ {∆fd : Rn → Rn : ∆fd(0) = 0}.

In this section no explicit structure is assumed for the ele-
ments of F . Furthermore, we consider performance integrands
Lc(Ecx, uc) and Ld(Edx, ud) of the form

Lc(Ecx, uc) = Lc1(Ecx) + uTc Rc2(x)uc, x ̸∈ Z,(III.43)
Ld(Edx, ud) = Ld1(Edx) + uTdRd2(x)ud, x ∈ Z,(III.44)

where Lc1 : Rn → R and satisfies Lc1(Ecx) ≥ 0, x ∈ Rn,
Rc2 : Rn → Pmc , Ld1 : Rn → R and satisfies Ld1(Edx) ≥ 0,
x ∈ Rn, and Rd2 : Rn → Pmd so that (II.5) becomes

J(Ecx0, uc(·), ud(·)) =

∫ ∞

0

[Lc1(Ecx(t)) +

uTc (t)Rc2(x(t))uc(t)]dt+
∑

k∈N[0,∞)

[Ld1(Edx(tk))

+uTd (tk)Rd2(x(tk))ud(tk)]. (III.45)

Consider the nonlinear uncertain controlled affine singularly
impulsive system (III.41), (III.42) with performance functional
(III.45). Assume there exists a C1 function V : Rn → R, and
functions P12 : Rn → R1×md , P2 : Rn → Nmd , P1fd :
Rn → R1×n, P2fd : Rn → Nn×n, Pudfd : Rn → Rmd×n,
Γc : Rn → R, Γdxx : Rn → Rn, Γdxud

: Rn → R1×md , and
Γdudud

: Rn → Nmd such that

P12(0) = 0, (III.46)
P1fd(0) = 0, (III.47)
Γdxud

(0) = 0, (III.48)
V (0) = 0, (III.49)

V (Ecx) ≥ 0, x ∈ Rn, x ̸= 0, (III.50)

V ′(Ecx)∆fc(x) ≤ Γc(x), x ̸∈ Zx,

∆fc ∈ Fc, (III.51)
V ′(Ecx)[fc0(x)− 1

2Gc(x)R
−1
c2 (x)GT

c (x)V
′T(Ecx)]

+Γc(x) < 0,

x ̸∈ Zx, x ̸= 0, (III.52)
P1fd(x)∆fd(x) + ∆fTd (x)PT

1fd
(x)

+∆fTd (x)P2fd(x)∆fd(x) + ϕTd (Edx)Pudfd(x)∆fd(x)

+∆fTd (x)PT
udfd

(x)ϕd(x)

≤ Γdxx(x) + Γdxud
(x)ϕd(x) + ϕTd (x)Γdudud

(x)ϕd(x),

x ∈ Zx,∆fd(·) ∈ Fd, (III.53)
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(III.54)
V (Edx+ fd0(x))− V (Edx) + P12(x)ϕd(x)+

ϕd(x)
TP2(x)ϕd(x)

+Γdxx(x) + Γdxud
(x)ϕd(x)+

ϕTd (x)Γdudud
(x)ϕd(x) ≤ 0, x ∈ Zx, (III.55)

(III.56)
V (Edx+ fd0(x) +Gd(x)ud) = V (Edx+ fd0(x))

+P12(x)ud + uTdP2(x)ud, (III.57)
(III.58)

V (Edx+ fd0(x) + ∆fd(x) +Gd(x)ud)− V (Edx) =

V (Edx+ fd0(x) +Gd(x)ud)− V (Edx) + P1fd(x)∆fd(x)+

∆fTd (x)PT
1fd

(x) + ∆fTd (x)

·P2fd(x)∆fd(x) + uTdPudfd(x)∆fd(x)

+∆fTd (x)PT
udfd

(x)ud,

x ∈ Zx, ud ∈ Rmd ,∆fd(·) ∈ Fd, (III.59)
(III.60)

and
V (Ec/dx) → ∞ as ∥x∥ → ∞. (III.61)

Then the zero solution x(t) ≡ 0 to the closed-loop system

Ecẋ(t) = fc(x(t)) + ∆fc(x(t)) +Gc(x(t))ϕc(x(t)),

x(0) = x0, x(t) ̸∈ Zx, (III.62)
Ed∆x(t) = fd(x(t)) + ∆fd(x(t)) +Gd(x(t))ϕd(x(t)),

x(t) ∈ Zx, (III.63)

is globally asymptotically stable for all (∆fc,∆fd) ∈ F with
the hybrid feedback control law

ϕc(x) = − 1
2R

−1
c2 (x)GT

c (x)V
′T(Ecx), x ̸∈ Zx,(III.64)

ϕd(x) = − 1
2 (Rd2(x) + P2(x) + Γdudud

(x))−1

·(P12 + Γdxud(x))
T(x), x ∈ Zx, (III.65)

and performance functional (III.45), satisfies

J(Ecx0, ϕc(x(·)), ϕd(x(·))) =

min
(uc(·),ud(·))∈C(x0)

J(Ecx0, uc(·), ud(·)), x0 ∈ Rn,(III.66)

where

J (Ecx0, uc(·), ud(·)) ,
∫ ∞

0

[Lc(Ecx(t), uc(t))

+Γc(x̃(t), uc(t))]dt+
∑

k∈N[0,∞)

[Ld(x(tk), ud(tk)) +

Γd(x(tk), ud(tk))], (III.67)

and

Γc(x, uc) = Γcxx(x), x ̸∈ Zx, (III.68)
Γd(x, ud) = Γdxx(x) + Γdxud

(x)ud + uTdΓdudud
(x)ud,

x ∈ Zx, (III.69)

and where (uc(·), ud(·)) is an admissible control and x(t), t ≥
0, is a solution of (III.41), (III.42) with (∆fc,∆fd) = (0, 0).

In addition, the hybrid performance functional (III.67), with

Lc1(Ecx) = ϕTc (x)Rc2(x)ϕc(x)− V ′(Ecx)fc0(x)

−Γcxx(x), (III.70)
Ld1(Edx) = ϕTd (x)(Rd2(x) + P2(x) + Γdudud

(x))ϕd(x)

−V (Edx+ fd0(x)) + V (Edx)− Γdxx(x),

(III.71)

is minimized in the sense that

J (Ecx0, ϕc(Ecx(·)), ϕd(Edx(·))) =

min
(uc(·),ud(·))∈C(x0)

J (Ecx0, uc(·), ud(·)). (III.72)

[3] and [7].
Proof: The result is a direct consequence of Theorem

II with D = Rn, Uc = Rmc , Ud = Rmd , Fc(x, uc) =
fc0(x) +∆fc(x) +Gc(x)uc, Fc0(x, uc) = fc0(x) +Gc(x)uc,
Lc(Ecx, uc) given by (III.43), Γc(x, uc) given by (III.68),
for x ̸∈ Zx, Fd(x, ud) = fd0(x) + ∆fd(x) + Gd(x)ud,
Fd(x, ud) = fd0(x) + Gd(x)ud, Ld(Edx, ud) given by
(III.44), Γd(x, ud) given by (III.69), for x ∈ Z . Specifically,
with (III.41)–(III.44), (III.68), and (III.69), the Hamiltonian
have the form

Hc(Ecx, uc) = Lc1(Ecx) + uTc Rc2(x)uc

+V ′(Ecx)(fc0(x) +Gc(x)uc) + Γcxx(x),

x ̸∈ Zx, uc ∈ Uc,

(III.73)
Hd(Edx, ud) = Ld1(Edx) + uTdRd2(x)ud

+V (Edx+ fd0(x) +Gd(x)ud)− V (Edx)

+Γdxx(x) + Γdxud
(x)ud + uTdΓdudud

(x)ud,

x ∈ Zx, ud ∈ Ud. (III.74)

Now, the hybrid feedback control law (III.64), (III.65) is
obtained by setting ∂Hc

∂uc
= 0 and ∂Hd

∂ud
= 0. With (III.64) and

(III.65) it follows that (III.51)–(III.60) imply (II.10)–(II.13).
Next, since V (·) is C1 and x = 0 is a local minimum of V (·),
it follows that V ′(0) = 0, and hence, since by assumption
P12(0) = 0 and Γdxud

(0) = 0, it follows that ϕc(0) = 0 and
ϕd(0) = 0 which proves (II.8), (II.9). Next, with Lc1(Ecx)
and Ld1(Edx) given by (III.70) and (III.71), respectively, and
ϕc(x), ϕd(x) given by (III.64) and (III.65), (II.14) and (II.16)
hold. Finally, since

Hc(Ecx, uc) = Hc(Ecx, uc)−Hc(Ecx, ϕc(x))

= [uc − ϕc(x)]
TRc2(x)[uc − ϕc(x)], x ̸∈ Zx,(III.75)

Hd(Edx, ud) = Hd(Edx, ud)−Hd(Edx, ϕd(x))

= [ud − ϕd(x)]
T(Rd2(x)

+P2(x+ Γdudud
(x)))[ud − ϕd(x)],

x ∈ Zx, (III.76)

where Rc2(x) > 0, x ̸∈ Zx, and Rd2(x) + P2(x) +
Γdudud

(x) > 0, x ∈ Zx, conditions (II.15) and (II.17) hold.
The result now follows as a direct consequence of Theorem
II. �

423



6

IV. ROBUST NONLINEAR HYBRID CONTROL WITH
POLYNOMIAL PERFORMANCE FUNCTIONAL

In this section we specialize the results of Section IV
to linear singularly impulsive systems controlled by inverse
optimal nonlinear hybrid controllers that minimize a derived
polynomial cost functional. Specifically, assume F , Fc×Fd

to be the set of uncertain systems, where

Fc = {(Ac +∆Ac)x+Bcuc : x ∈ Rn,

Ac ∈ Rn×n, Bc ∈ Rn×mc ,∆Ac ∈ ∆Ac},(IV.77)
Fd = {(Ad +∆Ad)x : x ∈ Rn,

Ad ∈ Rn×n,∆Ad ∈ ∆Ad
}, (IV.78)

where ∆Ac ,∆Ad
⊂ Rn×n are given bounded uncertainty

sets of uncertain perturbations ∆Ac,∆Ad of the nominal
asymptotically stable system matrices Ac, Ad such that 0 ∈
∆Ac and 0 ∈ ∆Ad

. For simplicity of exposition, we also
define (∆Ac,∆Ad) ∈ ∆Ac × ∆Ad , ∆. For the results in
this section we assume ud(t) ≡ 0. Furthermore, let R1c ∈ Pn,
R1d ∈ Nn, R2c ∈ Pmc , R̂q,

ˆ̂
Rq ∈ Nn, q = 2, . . . , r, be given,

where r is a positive integer, and define Sc , BcR
−1
2c B

T
c .

Consider the linear uncertain controlled singularly impulsive
system

Ecẋ(t) = (Ac +∆Ac)x(t) +Bcuc(t), x(0) = x0,

x(t) ̸∈ Zx, (IV.79)
Ed∆x(t) = (Ad +∆Ad − Ed)x(t), x(t) ∈ Zx,

(IV.80)

where uc is admissible and (∆Ac,∆Ad) ∈ ∆. Let Ωc,Ωd :
NP ⊆ Sn → Nn, P ∈ NP, be such that

xT(∆AT
c PEc + ET

c P∆Ac)x ≤ xTΩc(P )x,

x ̸∈ Z, ∆Ac ∈ ∆Ac,

(IV.81)
xT(∆AT

dP∆Ad +∆AT
dPAd +∆AT

dP∆Ad)x

≤ xTΩd(P )x, x ∈ Z, ∆Ad ∈ ∆Ad.

(IV.82)

Assume there exist P ∈ Pn and Mq ∈ Nn, q = 2, . . . , r, such
that

0 = xT(AT
c PEc + ET

c PAc + ET
c R1cEc +Ωc(P )− PScP )x,

x ̸∈ Zx, (IV.83)
0 = xT[(Ac − ScP )

TMqEc + ET
c Mq(Ac − ScP ) + R̂q]x,

x ̸∈ Zx, q = 2, . . . , r, (IV.84)
0 = xT(AT

dPAd − ET
d PEd + ET

d R1dEd +Ωd(P ))x,

x ∈ Zx, (IV.85)

0 = xT(AT
dMqAd − ET

dMqEd +
ˆ̂
Rq)x,

x ∈ Zx, q = 2, . . . , r. (IV.86)

Then the zero solution x(t) ≡ 0 of the uncertain closed-loop

system

Ecẋ(t) = (Ac +∆Ac)x(t) +Bcϕc(x(t)), x(0) = x0,

x(t) ̸∈ Zx, (IV.87)
Ed∆x(t) = (Ad +∆Ad − Ed)x(t), x(t) ∈ Zx,

(IV.88)

is globally asymptotically stable with the feedback control law

ϕc(x) = −R−1
2c B

T
c (P +

r∑
q=2

(xTET
c MqEcx)

q−1Mq)Ecx,

x ̸∈ Zx, (IV.89)

and the performance functional (III.45) satisfies

sup
(∆Ac,∆Ad)∈∆

J∆Ac,∆Ad
(Ecx0, ϕc(x0))

≤ J (Ecx0, ϕc(x0))

= xT0 E
T
c PEcx0+

r∑
q=2

1

q
(xT0 E

T
c MqEcx0)

q, x0 ∈ Rn,

(IV.90)

where

J (Ecx0, uc(·)) ,
∫ ∞

0

[Lc(Ecx(t), uc(t)) + Γc(x̃(t), uc(t))]dt

+
∑

k∈N[0,∞)

[Ld(Edx(tk)) + Γd(x(tk))],(IV.91)

and where uc is admissible, and x(t), t ≥ 0, is a solution to
(IV.79), (IV.80) with (∆Ac,∆Ad) = (0, 0), and

Γc(x, uc) = xT(Ωc(P ) +

r∑
q=2

(xTET
c MqEcx)

q−1Ωc(Mq))Ecx,

x ̸∈ Zx (IV.92)

Γd(x) = xTΩd(P )x+
r∑

q=2

1

q
[(xT

ˆ̂
Rqx)

q∑
j=1

(xTET
dMqEdx)

j−1

·(xT(AT
dMqAd +Ωd(x))x)

q−j

−(xTAT
dMqAdx)

q−j ], x ∈ Zx, (IV.93)

where uc is admissible and (∆Ac,∆Ad) ∈ ∆. In addition,
the performance functional (III.45), with R2c(x) = R2c and

L1c(Ecx) = xT(ET
c R1cEc +

r∑
q=2

(xTET
c MqEcx)

q−1R̂q

+[
r∑

q=2

(xTET
c MqEcx)

q−1Mq]
TSc

[

r∑
q=2

(xTET
c MqEcx)

q−1Mq])x,

(IV.94)

L1d(Edx) = xTET
d R1dEdx+

r∑
q=2

1

q
[(xT

ˆ̂
Rqx)

q∑
j=1

(xTET
dMqEdx)

j−1

·(xTAT
dMqAdx)

q−j ], (IV.95)
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is minimized in the sense that J(Ecx0, ϕc(x(·))) =
minuc(·)∈C(x0) J(Ecx0, uc(·)), x0 ∈ Rn, (IV.95)where
C(x0) is the set of asymptotically stabilizing controllers for
the nominal system and x0 ∈ Rn, [3] and [7].

Proof: The result is a direct consequence of Corollary
III. �

V. ROBUST NONLINEAR HYBRID CONTROL WITH
MULTILINEAR PERFORMANCE FUNCTIONAL

Finally, we specialize the results of Section VI to linear
singularly impulsive systems controlled by inverse optimal
hybrid controllers that minimize a derived multilinear func-
tional. First, however, we give several definitions involving
multilinear forms. A scalar function ψ : Rn → R is q-
multilinear if q is a positive integer and ψ(x) is a linear
combination of terms of the form xi11 x

i2
2 . . . x

in
n , where ij is a

nonnegative integer for j = 1, . . . , n, and i1 + i2 + . . .+ in =
q. Furthermore, a q-multilinear function ψ(·) is nonnegative
definite (resp., positive definite) if ψ(x) ≥ 0 for all x ∈ Rn

(resp., ψ(x) > 0 for all nonzero x ∈ Rn). Note that if q
is odd then ψ(x) cannot be positive definite. If ψ(·) is a q-
multilinear function then ψ(·) can be represented by means of
Kronecker products, that is, ψ(x) is given by ψ(x) = Ψx[q],
where Ψ ∈ R1×nq

and x[q] , x ⊗ x ⊗ · · · × x (q times),
where ⊗ denotes Kronecker product. For the next result recall
the definition of Sc, let R1c ∈ Pn, R1d ∈ Pn, R2c ∈ Pmc ,
R̂2q,

ˆ̂
R2q ∈ N (2q,n), q = 2, . . . , r, be given, where N (2q,n) ,

{Ψ ∈ R1×n2q

: Ψx[2q] ≥ 0, x ∈ Rn}, and define the repeated

(q times) Kronecker sum as
q
⊕A , A⊕A⊕ · · · ⊕A.

Consider the linear controlled singularly impulsive system
(IV.79), (IV.80). Assume there exist P ∈ Pn and P̂q ∈
N (2q,n), q = 2, . . . , r, such that

0 = xT(AT
c PEc + ET

c PAc + ET
c R1cEc − PBcR

−1
2c B

T
c P )x,

x ̸∈ Zx, (V.96)

0 = xT(P̂q[
2q
⊕(ET

c Ac − ScP )] + R̂2q)x,

x ̸∈ Zx, q = 2, . . . , r, (V.97)
0 = xT(AT

dPAd − ET
d PEd + ET

d R1dEd)x,

x ∈ Zx, (V.98)

0 = xT(P̂q[A
[2q]
d − E

[2q]
d ] +

ˆ̂
R2q)x,

x ∈ Zx, q = 2, . . . , r. (V.99)

Then the zero solution x(t) ≡ 0 of the closed-loop system
(IV.79), (IV.80) is globally asymptotically stable with the
feedback control law

ϕc(x) = −R−1
2c B

T
c (PEcx+ 1

2g
′T(Ecx)),

x ̸∈ Zx, (V.100)

where g(x) ,
∑r

q=2 P̂qEcx
[2q], and the performance func-

tional (III.45), with R2c(x) = R2c and

L1c(Ecx) = xTEcR1cxEc +

r∑
q=2

R̂2qEcx
[2q]

+1
4g

′(Ecx)Scg
′T(Ecx), (V.101)

L1d(x) = xTET
d R1dEdx+

r∑
q=2

ˆ̂
R2qEdx

[2q],(V.102)

is minimized in the sense that

J(Ecx0, ϕc(x(·))) =

min
uc(·)∈C(x0)

J(Ecx0, uc(·)), x0 ∈ Rn. (V.103)

Finally,

J(Ecx0, ϕc(x(·))) = xT0 E
T
c PEcx0 +

r∑
q=2

P̂qEcx
[2q]
0 ,

x0 ∈ Rn. (V.104)

[3] and [7].
Proof: The result is a direct consequence of Theorem

II with fc(x) = Acx, fd(x) = (Ad − Ed)x, Gc(x) = Bc,
Gd(x) = 0, ud = 0, R2c(x) = R2c, R2d(x) = Imd

, and
V (Ec/dx) = xTET

c/dPEc/dx+
∑r

q=2 P̂qEcx
[2q]. Specifically,

for x ̸∈ Zx it follows from (IV.81), (V.97), and (V.100) that

V ′(Ecx)[fc(x) − 1
2Gc(x)R

−1
2c (x)G

T
c (x)V

′T(Ecx)] =

−xTET
c R1cEcx−

r∑
q=2

R̂2qEcx
[2q]

−ϕTc (x)R2cϕc(x)− 1
4g

′(Ecx)Scg
′T(x),

which implies (2.2.13). For x ∈ Zx it follows from (V.98) and
(V.99) that

∆V (Edx) = V (Edx+ fd(x))− V (Edx) =

−xTET
d R1dEdx−

r∑
q=2

ˆ̂
R2qx

[2q],

which implies (2.2.14) with Gd(x) = 0. Finally, with ud = 0,
condition is automatically satisfied so that all the conditions
of Corollary V are satisfied. �

VI. CONCLUSION

In this paper we have developed optimal robust control
and inverse optimal robust control results for the class of
nonlinear uncertain singularly impulsive dynamical systems
[5]. Results are based on Lyapunov and asymptotic stability
theorems developed in [6], and results presented in [7].

VII. FUTURE WORK

Further work will specialize results of this paper to time-
delay systems.
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