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Abstract— The key feature of Networked Control Systems (NCSs) 
is that the information is exchanged through a network among 
control system components. Transmitting control signals through 
shared networks induces time delays and data losses which may 
destabilize the system. This time delay may be constant periodic 
or random. The random time delay can be modeled using 
Markov Chains and the NCS can be modeled as Markovian jump 
system. The stochastic stability of the system has the form of 
Bilinear Matrix Inequality (BMI). The V-K iteration algorithm is 
used to solve the BMI and hence to design the stabilizing 
controller. A modified V-K iteration algorithm is presented in 
this paper where the decay rate is maximized in both the V- and 
K-loops. The V-K algorithm method is applied to the cart and 
inverted pendulum problem which shows that the decay rate is 
improved with the modified algorithm.  

Keywords-component; networked control system, time delay, 
Markov , random time delay, jump, stability 

I.  INTRODUCTION 

The advances in communication and network technology, 
and the availability of high speed computers have resulted in 
an increasing interest in NCSs. This type of control systems 
can be defined as a control system where the control loop is 
closed through a real-time communication network [1]. In 
NCSs the reference input, plant output and control input are 
exchanged through a real-time communication network as 
shown in Figure 1. The main advantages of NCSs are 
modularity, simplified wiring, low cost, reduced weight, 
decentralization of control, integrated diagnosis, simple 
installation, quick and easy for maintenance [2], flexible 
expandability with low cost. NCSs are able to easily fuse 
global information to make intelligent decisions over large 
physical spaces. 

As the control loop is closed through a communication 
network the time delay and data dropout are unavoidable. This 
may degrade the performance of NCSs or even destabilize the 
system. In general, the control systems with time delays can 
be classified into time delay independent where the stability is 
not affected by the time delay and time delay dependent where 
the time delay affects the stability [3]. Time delay, no doubt, 
increases the complexity in the analysis and the design of 
NCSs. There are many methods in the literature for studying 

the stability of NCS, see for example [4]-[5]. Among these 
methods is the Markovian jump system approach which is 
mostly used to study the stability and stabilization of system 
with abrupt changes due to the variations in the system 
structure or partly system failure. In this way the system will 
have a number of models or modes and jumps from one mode 
to another in a random fashion and in many cases the jump 
parameter can be modeled using Markov Chains. In NCS the 
time delay can be random and because there is a correlation 
between the previous, current and next time delay, the time 
delay can be modeled as a Markov Chain. 

 

 

 

 

Figure 1.  A Typical networked control system 

The application of the discrete-time jump system in NCSs 
has been addressed in many papers, see for example [6-9]. In 
[6-8] the discrete-time model is augmented and the generated 
output feedback problem is formulated as BMI which is 
solved using the V-K iteration algorithm. In this paper we 
adopt the algorithm in [8] with some modification to the V-K 
iteration loop. The method in [8] is limited to time delays 
which are less than the sampling period and in [6][7] the 
method is extended to time delays larger than the sampling 
period. From control engineering point of view when the time 
delay larger than the sampling time the system performance is 
not acceptable. In [10] the authors use the discrete model for 
the plant and both the time delay between the sensor to 
controller and from the controller to the actuator are 
considered. The discrete mode dependent Lyapunov function 
has been used to derive a stabilizing switching controller. In [9] 
the authors concentrate on the problem of the random data 
drop outs and the sufficient conditions for the mean square 
stability are derived. The stability analysis and controller 
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design with two random time delays are studied in [10-13]. In 
[12][13] the NCS is modeled where both the time delays are 
considered. The controller depends on the current sensor to 
controller time delay and the previous controller to actuator 
time delay and hence the controller depends on the three 
random variables, k , kd , 

1 kkd  , which are interdependent. 

The resulting system cannot be regarded as the standard 
Discrete-Time Markovian Jump Linear System (DTMJLS). 
The derived theorem is in a set of LMI with nonlinear LMI 
constraint which are non-convex and can be solved by 
iterative algorithm such as the Cone Complementary 
Linearization (CCL). The optimal stochastic control is studied 
in [14] where the optimal stochastic controller is derived when 
the time delay is random. The use of the model predictive 
control in NCS has been studied in [15-17] where both the 
sensor to controller and controller to actuator time delays are 
considered. 

The paper starts from the model of the NCS as DTMJLS is 
presented where the time delay is modeled as Markov Chain. 
Then the stability of the system is formulated as BMIs. The V-
K algorithm is explained to solve the BMIs and it is tested on 
the cart and inverted pendulum problem.  

II. MATHEMATICAL MODELLING OF NCS WITH TIME 

DELAY 

A. NCS Systems with State Feedback Controller 

The model of a single loop networked control system is 
shown in Figure 2. The measured plant signals are transmitted 
through the network and they will suffer random time delays 
and some of them may be lost. The random time delay makes 
the system to have the nature of a stochastic hybrid system. 
The discrete time-invariant plant model is given by: 

)()()1( kkk dd uBxAx     (1) 

where nk )(x  the system state vector, mk )(u   the 

system control input, and the matrices Ad and Bd  are given by: 

h

d e AA    
h

sh

d dse
0

)( BB A    (2) 

 

Figure 2.  The networked control system. 

In the model shown in Figure 2 the time delays are lumped 
together between the sensor and the controller. In many of the 
published work in the literature the time delay between the 

controller and the actuator is neglected. For the following 
analysis the following assumptions are required and are made: 

Assumption 1: 
 The sensors are clock driven. The actuator and the 

controller are event driven; which means that the 
sensors sample the plant states periodically and the 
actuators and the controllers use the data as soon as 
they arrive. 

 The data are sent as a single packet. 
 The data are received in chronological order which 

means that old data are disregarded. 

The mode-dependent switching state feedback control law is 
given by: 

))(())(()( krkkrk ss  xKu    (3)  

where hkrk s  )()( , h is the sampling period and )(krs  is  a 

bounded random integer sequence governed by Markov Chains 
with  ss dkr )(0 , and ds is the finite delay bound. By 

augmenting the state variable: 

 TT

s

TT dkkkk )()1()()(  xxxx    

where ndsRk )1()( x , applying the controller (3) into (1) the 

closed-loop system becomes: 

)()))(())((()1( kkrkrk ss xCKBAx    (4) 

where; 
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 00I00C ))(( krs  

))(( krsC  incorporates the time delay into the model and has all 

elements being zero except for the rs(k)th block being an 
identity matrix. The closed-loop system (4) can be rewritten as; 

)())(()1( kkrk scl xAx     (5) 

B. NCS with Dynamic Output Feedback Controller 

Stabilizing the plant (1) with a dynamic controller as shown in 
Figure 3, the dynamic controller model is given by: 

)()()1( kkk GyFzz   

)()()( kkk JyHzv      (6) 
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In the case of the dynamic controller, both the time delay from 
the sensors to the controller and from the controller to the 
actuators are considered. Augmenting the controller states as; 

 TT

ca

TT dkkkk )()()()(  vvzz   

The controller model with the augmenting states is then given 
by: 

)()()1( kkk yGzFz   

)())(()())(()( kkrkkrk caca yKzHu    (7) 

where; 
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Figure 3.  Networked control system with both time delays from sensor to 
controller and from controller to actuator are taking into account 

When the time stamping is used, F , G , H  and J  are replaced 
by )( scF , )( scG , )( scH , and )( scJ . The augmented plant 

model with output feedback can be described by: 

)(
~

)(~~
)1(~ kkk uBxAx        

)(~))((
~

)( kkrk sc xCCy      (8) 

Augmenting both the plant states and controller states as: 

 TTT kkk )(~)(~)( zxx  . The closed loop system with the 

plant (8) and the controller (7) becomes; 

)()))(())((()1( kkrkrk scca xCKBAx    (9) 

where; 














00

0A
A

~














0I

0B
B

~
 










0CC

0
C

))((
~))((

kr

I
kr

sc

sc  














))((
~

))((
~

~~
))((

krkr
kr

caca

ca
KH

GF
K  

Equation (9) can be written as; 

)())(()())(),(()1( kkrkkrkrk sclcasccl xAxAx           (10)  

The two time delays are random and bounded, τscm ≥ τsc ≥ 0 and 
τcam ≥ τca ≥ 0. These can be modelled as two homogeneous 
Markov Chains and they jump from mode to mode according 
to their transition probabilities Psc and Pca respectively. The 
random variable τsc  and τca  can be converted to single random 
variable, r(k) where the transition probability, P, is given by 
Kronecker product of the Psc and Pca  as; 

casc PPP       (11)  

For simplicity (10) can be written as: 

)())(()1( kkrk xAx      (12) 

Equations (5) and (10) are standard DTMJLS. Equation (5) is a 
jump system with one mode which is the sensor to the 
controller time delay while the system in (10) has  two modes 
which are the sensor to the controller and the controller to the 
actuator time delays. The system matrix will be 
Acl(r(k))�{Acl(0),…,Acl(d)} according to the jump parameter 
r(k)�θ = {0,…,d}. In order to stabilize the system with mode-
independent or mode-dependent controller the mean square 
stability must be established. 

C. The model of the random time delay as Markov Chain 

The random time delay is modelled as a finite state Markov 
process with the following properties: 
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where sd  is the number of modes and )(krs  is the Markovian 

process. The general transition probability matrix is given by: 
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The constraint (13) means the summation of the probabilities in 
every row is one. The assumption made is that the old data are 
discarded. Suppose that at instant k we received x(k), at k+1 if 
there is no new data then the old data will be used by the 
controller, but if we receive x(k -1) at k +1  then it will be older 
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than x(k) and hence x(k -1) must be discarded, this can be 
interpreted as; 

 0}1)()1({  krkrp ss    (15) 

From (15) the time delay can increase only at one step but it 
can decrease as many steps as can be seen from (14). The 
diagonal elements in (14) represent the probability of 
successive equal time delays or in other words the probability 
that the network remain in the same state. The upper diagonal 
elements represent the possibility of receiving longer delays or 
increasing the network load. The zero elements represent the 
discard of the old data. 

III. THE STABILITY OF THE DISCRETE-TIME MARKOVIAN 

JUMP LINEAR SYSTEM (DTMJLS) 

The Mean Square stability of the Markovian Jump Systems is 
equivalent to the Asymptotic Wide Sense Stationary Stability 
(AWSS) [18]. For the jump system the stochastic stability, 
mean square stability and the exponential mean square stability 
are all equivalent and every condition implies the almost sure 
(asymptotic) stability.   

Definition 1: [6] 

The system (12) is mean square stable if for every initial 
condition state, ),( 00 rx , 

  0)(lim
2
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k

k
x      (16) 

Definition 2: [6] 

The system (12) is mean square stable with decay rate    [19] 

if for every initial condition state, ),( 00 rx , 
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k
x   1   (17) 

The necessary and sufficient conditions for mean square 
stability for jump system are given in the following theorem. 

Theorem 1 [18]: The mean square stability of system (12) is 
equivalent to the existence of symmetric positive definite 
matrices Q0, . . .,Qd satisfying any one of the following 4 
conditions: 
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Where i=0,…,d represents the number of the modes. The 
conditions 1-4 are equivalent for studying the stability of the 
DTMJLS but for the controller design each condition will lead 
to a different controller. Choosing condition (4) in Theorem 1 
and replacing Qi by αQi (where the decay rate or Lyapunov 
Exponent,  /1  and 0)(lim 


kMk

k
 ) on the right hand 

side, the closed-loop system becomes: 
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The coupled equations (18) are BMIS which are non convex 
and finding a global optimal solution is very difficult. However 
many control problems are formulated as BMIs, there are a few 
methods for solving the BMIs. For example the path-following 
linearization method reported in [20] can be used where each 
matrix is perturbed and the higher order terms are neglected. 
The most widely used techniques for the solution is by iteration 
methods such the D-K, G-K and V-K iteration algorithms [21]. 
If we fix  Ki (i=0,…,d) then we have a Generalized Eigenvalue 
Problem (GEVP) and if we fix Qi ( i=0,…,d) then we have 
Eigenvalue Problem (EVP) [8]. Both of these problems can be 
solved very efficiently using the Matlab LMI toolbox. Using 
Schur complement to (18) then we have: 
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IV. THE V-K ITERATION ALGORITHM 

In the V-K algorithm the BMI is divided into two LMI's and by 
solving these two LMI's a local optimal solution can be found. 
The problem solution process is divided to three basic 
problems which are: FP (Feasibility Problem), EVP, and 
GEVP that can be solved using the Matlab LMI toolbox. In the 
V-K algorithm, the problem is iterated between the EVP and 
the GEVP. The proof of the algorithm convergence is given in 
[21]. The detailed algorithm is shown in the flowchart in 
Figure 4. The algorithm starts with the initialization, then if the 
solution is feasible the EVP and GEVP are iterated until the 
desired transition matrix is reached. In this improved algorithm 
the decay rate is maximized in both the EVP and GEVP. The 
initial transition probability matrix is: 
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Initialize the controller, 
use LQR for static 

controller (K) or LQG for 
dynamic controller (F, G, 

H and J). 
Initialize the probability 
transition matrix PE = P0 

Set α =1 and K0=K, . . . Kn=K, (static 
controller) or (F0=F, . . . Fn=F, G0=G, . . . 
Gn=G, H0=H, . . . Hn=H, J0=J, . . . Jn=J 

(for dynamic controller). 
Solve the feasibility problem (20) 

Is the problem 
feasible 

Modify the 
controller or the 
initial transition 

probability 

Minimize α1 
Solve the Eigenvalue Problem 

Is Δα < eTH 

Minimize α1 
Solve the Generalized 
Eigenvalue Problem 

Perturb PE; PE = P0 + ΔP 

with α=αm 
Solve the Eigenvalue Problem 

Minimize α1 
Solve the Generalized Eigenvalue 

Problem

Is Δα < eTH 

END 

Initialization
Loop 

V-K Iteration 
Loop 

The 
Perturbation 

Loop 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  The V-K iteration algorithm 

It should be noted that the initial controller is designed for the 
free delay system. To get an initial feasible solution we have to 
start from small time delays and perturb the transition 
probability matrix toward higher time delays. The perturbation 
  should be very small positive number in the order of 0.005. 
An example of the perturbation matrix is: 
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As can be seen the sum of the perturbation through any row is 
zero. More aggressive initial transition probability matrix can 
be used. In [7][8] the perturbation is around 0.01 but even with 
this small perturbation sometimes the problem is divergent and 
we need to use smaller perturbation, for example around 0.005. 

Also for the two modes, the two probability matrices are 
perturbed at the same time while in our algorithm they are 
perturbed separately. 

Example 1 

The pendulum mass is denoted by m and the cart mass is M, the 
length of the pendulum rod is L. The open loop system is 
unstable. The states are defined as xx 1 , xx 2 , 3x , 

4x . The linearized model can be given as: 
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The parameters used are: M =1 kg, m = 0.4 kg, L = 0.7 m. The 
sampling time is 1.0h  s. The time delay is bounded by 2: 

}2,1,0{)( krs . The initial condition is x = 0 and θ = 0.1. After 

sampling the system with 0.1 s sampling rate, the system 
matrices are given by: 
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The required transition probability is given by: 
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Using the LQR matlab function with Q=I and R=1. The 
controller is given by: 

 6.784928.73211.47450.5943LQRK  

with the required transition probability and the LQR controller 
does not stabilize the system with the time delay because the 
solution is infeasible, the initial transition probability and the 
perturbation matrix are chosen as: 


















1.05.00.4

1.05.00.4

002.00.4990.499

0P


















0005.00.005-

0005.00.005-

000

iP  

After 20 iterations the desired transition matrix is reached and 
the stabilizing controller is given as: 
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 5.465421.20580.79720.3181K  

Note that the process can be started with any P  and LQRK  as 

long as they give feasible solution. Using Theorem 1 [22] the 
MADB using the LQR controller is 0.1210 s. With the 
stabilizing controller that takes the random time delay into 
consideration, Theorem 1 [22] gives 0.1420 s which shows an 
improvement in the stability margin with the new controller. 
The V-K iteration loop took 4-iterations and the perturbation 
loop took 20 iterations, the minimum decay rate is 0.8837. By 
changing the EVP loop by making an inner loop for 
minimizing α, the minimum attained decay rate is 0.8645 and 
the delay margin increased to 0.1563 s. The system response is 
shown in Figure 5. In the simulation the nonlinear dynamics is 
used. The stabilizing controller with the improved algorithm is: 

 4.971420.52270.70500.2823K  

 

Figure 5.  (a) The random time delay, (b) The response with the LQR 
controller, (c) The response with the controller generated by the improved V-

K algorithm   

V. CONCLUSION 

In this paper, the NCS is modeled as discrete-time 
Markovian linear jump system where the time delay is 
modeled as Markov chain. Using the mean square stability the 
system stability as formulated as BMIs. The V-K iteration 
algorithm is used to solve the BMIs. We used an improved V-
K iteration algorithm where the decay rate is improved in both 
the EVP and the GEVP loops. The method is tested on the cart 
and the inverted pendulum and we found that the decay rate is 
improved.  
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