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Abstract—Tri-rotor UAVs are more efficient compared to
quadrotors in regard to the size and power requirement, yet,
tri-rotor UAVs are more challenging in terms of control and
stability. In this paper, we propose the design and control of a
novel tri-rotor UAV. The proposed platform is designed to achieve
six degree of freedom using a thrust vectoring technique with
the highest level of flexibility, manoeuvrability and minimum
requirement of power. The proposed tri-rotor has a triangular
shape of three arms where at the end of each arm, a fixed
pitch propeller is driven by a DC motor. A tilting mechanism
is employed to tilt the motor-propeller assembly and produce
thrust in the desired direction. The three propellers can be
tilted independently to achieve full authority of torque and force
vectoring. A feedback linearization associated with H∞ loop
shaping design is used to synthesize a controller for the system.
The results are verified via simulation.

I. BACKGROUND AND MOTIVATION

In recent decades, Unmanned Aerial Vehicles (UAVs) have

attracted growing attention in research due to their wide

applications and large potential [1]. Aiming for more efficiency

in term of size, autonomy, maneuverability and other factors,

various conventional and non-conventional structure designs

and configurations of UAV systems are proposed, see [2] and

the literature therein. One such design that attracts increasing

interest is the vertical-take-off-and-landing (VTOL) tri-rotor

configuration.

Tri-rotor vehicles are systems with a three rotors arrange-

ment. This configuration has been proposed as less-expensive

with more flexibility and great agility [3], [4]. Compared to

quadrotors, tri-rotor UAVs are smaller in size, less complex,

less costly and have longer flight time due to the reduction in

number of motors [5], which makes tri-rotor vehicles ideal for

deployment in various research projects and missions [6].

On another perspective, thrust vectoring has been used in

designs to maximize the capability of UAVs [7]. Thrust vector-

ing is of significant benefit in some applications to arbitrarily

orient the vehicle body with respect to the vehicle acceleration

vector [8]. In addition, thrust vectoring mechanism is used

to give UAVs the capability of taking-off and landing in

very narrow areas [9]. In small aircrafts and UAVs, a simple

technique of tilt-rotor mechanism can be used to obtain thrust

vectoring, where propulsion units are inclined in certain angles

using an additional control motor to get the desired thrust in

different directions. In general, tilt-rotor mechanism is used

in tri-rotor systems to control the horizontal forces and yaw

torque of the vehicle. Typically, one rotor only, referred to as

the tail rotor, has the ability to tilt to control the yaw moment,

see for example [6].

Dynamics of tri-rotor vehicles are highly coupled and

nonlinear, which makes the control design of these vehicles

the key for successful flight and operations [5]. Compared

to quadrotor systems, the yaw control of tri-rotor systems

is a further challenge due to the asymmetric configuration

of the system. For instance, the reactive yaw moments in

quadrotor systems is decoupled from pitch and roll moments

which simplifies the yaw control design in such systems. In

contrary, pitch, roll and yaw moments are highly coupled in

tri-rotor systems. Moreover, attitude control of these vehicles

is more challenging compared to quadrotor systems due to

gyroscopic and Coriolis terms. In [5], the authors propose a

tri-rotor system of which the control design is implemented

by four loops for attitude control and guidance. This control

design is complicated with coupling between attitude and

position control loops and high computation load. The authors

in [3] propose a tri rotor configuration in which all rotors

of the system tilt simultaneously to the same angle to attain

yaw control. The control design considers only the attitude

stabilization and neglects the trajectory tracking. The control

algorithm in [4] is based on nest saturation for decoupled

channels where the configuration of the vehicle makes the

separate control of attitude and position possible. The control

design of the tri-rotor UAV proposed in [10] discusses only

the hovering position. In [11], the attitude of the proposed tri-

rotor UAV is controlled by using differential thrust concept

between the rotors. The control system design in [12] controls

the yaw angle of the proposed tri-rotor UAV by differentially

tilting the two main rotors in the plane of symmetry while a

fixed up-right propeller is used at the tail to control the pitch

moment.

Few researchers have identified the structure of tri-rotor

UAV combined with full independent tilt-rotor capability.

In this paper, we propose a novel tri-rotor platform, herein

referred to as the Tri-rotor UAV, and then we discuss the design

and control of the proposed system. The proposed vehicle can

achieve full authority of torque and force vectoring by employ-

ing three rotors and three servos for tilt-rotor mechanism. This

structure gives the vehicle high level of maneuverability and
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flexibility for translational motion as well as attitude control.

The rest of the paper is organized as follows. In Section

II, a functional description of the vehicle and its design is

discussed. A mathematical model that captures the dynamics

of the UAV and govern the behaviour of the system is derived

in Section III. The control system design is presented in

Section IV and the simulation results is shown in Section V.

The paper ends by conclusion in Section VI.

II. SYSTEM STRUCTURE AND DESIGN

The structure of the proposed Tri-rotor UAV is depicted in

Figure 1. The vehicle has a triangular structure of three arms

and at the end of each arm, a force generating unit is mounted

to produce part of the required controlling force/torque. All

three arms are identical of length l and the three force generat-

ing units are also identical. Each force generating unit consists

of a fixed pitch propeller driven by a Brushless DC (BLDC)

motor to generate thrust. The three motors can be powered

by a single battery pack or three separate packs located at the

center of the body. The propeller-motor assembly is attached

l

Figure 1. The design of the Tri-rotor UAV (3D view).

to the body arm via a servo motor that can rotate in a vertical

plane to tilt the propeller-motor assembly with an angle αsi
in

the range −π
2

≤ αsi
≤ π

2
, i = 1,2,3 to produce a horizontal

component of the generated force, see Figure 2. All three

propellers can be tilted independently to give full authority

of thrust vectoring. The system has six degree of freedom

in which all movements can be achieved independently and

directly by changing the norm of the generated thrust and

the tilting angles. This configuration enables the vehicle body

to stay aligned in the required direction regardless of the

movement the UAV makes.

III. MATHEMATICAL MODELING

To develop the dynamic model of the UAV, we consider the

following right hand coordinate systems shown in Figure 3:

e: the generalized earth coordinate system of axes Xe, Ye, Ze.

b: the body fixed coordinate system in which the origin

coincides with the centre of mass of the UAV. The axes of

frame b are denoted by Xb, Yb, Zb. In addition, we choose

three right hand coordinate systems li of axes Xli , Yli , Zli

with i = 1,2,3. These coordinate systems are termed as local

coordinate systems and located at the locations of the three

propellers, see Figure 4. The origin of each local coordinate

i
s

- +

Figure 2. Front view of one arm.
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Figure 3. Coordinate systems used to develop the UAV dynamic model.
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Figure 4. Local coordinate systems at the three propulsion units.

system coincides with the joining point between the UAV arm

and the propulsion unit where Xli is extended outside the ith

arm of the UAV and Zli is along the BLDC motor shaft axis

when the tilting angle is zero.

The rotation matrices between the defined coordinate sys-

tems are denoted by:

RRRb
e : the rotational matrix from frame e to frame b.

RRRb
li
: the rotational matrix from coordinate system li to coordi-

nate system b, i = 1,2,3.

In the sequel, we use superscript b, e and li to denote
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the coordinate system in which vectors are expressed. The

subscript i refers to the ith BLDC motor, servo motor or

propeller as applies where i = 1,2,3.

In order to obtain the dynamic equations of the UAV, we

need to obtain forces and torques acting on the vehicle. We

assume very fast actuators and therefore the dynamics of the

actuators are neglected.

Forces

There are two main forces acting on the UAV which are the

propulsive force and the gravitational force.

The propulsive force: The total propulsive force FpΣ
is

equal to the algebraic sum of the three individual propulsive

forces generated from propellers. The individual propulsive

forces of the three propellers expressed in the local coordinate

systems can be written as [13]:

F li
pi
=





0

k f ω2
mi

sin(αsi
)

k f ω2
mi

cos(αsi
)



 , i = 1,2,3. (1)

where k f is the thrust to speed constant of the propeller and

it is identical for all three propellers, ωmi
is the rotational

speed of the ith BLDC motor (we assume direct driving of

the propeller, i.e., the rotational speed of the motor equals the

rotational speed of the propeller) and αsi
is the tilting angle

of the ith Servo motor.

In the body coordinate system, the individual propulsive

forces are given by:

Fb
pi
= RRRb

li
F

li
Pi
, i = 1,2,3. (2)

From Figure 4, we can obtain the rotation matrices from the
local coordinate systems l1, l2 and l3 to the body coordinate
system b as:

RRRb
l1
=





1 0 0
0 1 0
0 0 1



 ,RRRb
l2
=







− 1
2 −

√
3

2 0√
3

2 − 1
2 0

0 0 1






,RRRb

l3
=







− 1
2

√
3

2 0
−
√

3
2 − 1

2 0
0 0 1






.

(3)

Using Eq.(3), the total propulsive force is:

Fb
pΣ

= Fb
p1
+Fb

p2
+Fb

p3
(4)

= k f HHH f ρ. (5)

where

HHH f =





0 −
√

3
2

√
3

2 0 0 0

1 − 1
2 − 1

2 0 0 0
0 0 0 1 1 1



 ,ρ =

















ω2
m1

sin(αs1
)

ω2
m2

sin(αs2
)

ω2
m3

sin(αs3
)

ω2
m1

cos(αs1
)

ω2
m2

cos(αs2
)

ω2
m3

cos(αs3
)

















. (6)

The gravity force: The gravitational force in the gener-

alized earth coordinate system is given as:

Fe
g =





0

0

−gMtot



 . (7)

where g is the gravitational acceleration and Mtot is the total

mass of the UAV.

In the body coordinate system, we have:

Fb
g = RRRb

eFe
g . (8)

Using the general notation of rotation angles for the UAV

attitude: Roll φv, Pitch θv and Yaw ψv around the axes Xe, Ye

and Ze respectively, the gravity force in the body system is

given by:

Fb
g = gMtotHg (9)

where

Hg =





sin(θv)
−sin(φv)cos(θv)
−cos(φv)cos(θv)



 . (10)

Now, the total force acting on the UAV and expressed in

the body coordinate system is:

Fb = Fb
pΣ
+Fb

g (11)

= k f HHH f ρ +gMtotHg. (12)

Torques

The two main torques acting on the UAV are the propulsive

torque and the drag torque.

The propulsive torque: The propulsive torque is the

torque resulting from the generated propulsive force around

the center of mass of the vehicle. For the case of the Tri-rotor

UAV, we have three identical arms and then the components

of the propulsive torque are:

τb
pi
= l̄b

i ×Fb
pi
, i = 1,2,3. (13)

where l̄b
i is the vector of the ith arm between the center of

mass of the UAV and the propulsion unit expressed in the

body coordinate system. Fb
bi

is obtained from Eq. (2).

Now, the total propulsive torque expressed in the body

coordinate system is:

τb
pΣ

= τb
p1
+ τb

p2
+ τb

p3
(14)

= k f HHHtρ (15)

where

HHHt = l





0 0 0 0
√

3
2

−
√

3
2

0 0 0 −1 1
2

1
2

1 1 1 0 0 0



 , (16)

l is the length of the vehicle’s arm measured between the

center of mass of the UAV and the propulsion unit (identical

for the three arms) and ρ is defined in Eq. (6).

The drag torque: The drag torque is defined as the torque

resulting from the aerodynamic drag forces exerted by the

ambient fluid (air) on the propeller. Drag torque is in the

opposite direction to the direction of rotation. In our case, the

resulting drag torque on the ith propeller can be approximated

by τdi
= −ktω

2
mi

[14], where kt is the drag torque to speed

constant resulting from the rotation of the propeller and ωmi

is the rotational speed of the motor (we consider the BLDC

motors drives the propeller directly). In the local coordinate

systems li, the drag torque can be written as:
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τ li
di
=





0

−ktω
2
mi

sin(αsi
)

−ktω
2
mi

cos(αsi
)



 , i = 1,2,3. (17)

In the body coordinate system, the individual drag torques

can be represented as:

τb
di
= RRRb

li
τ li

di
, (18)

Using definitions (3), the total drag torque in the body

system is given by:

τb
dΣ

= τb
d1
+ τb

d2
+ τb

d3
(19)

=−ktHHH f ρ, (20)

where HHH f and ρ are defined in (6).

Now, the total torque acting on the Tri-rotor and expressed

in the body coordinate system is:

τb = τb
pΣ
+ τb

dΣ
(21)

=
(

k f HHHt − ktHHH f

)

ρ. (22)

Dynamic Model: Assuming that the Tri-rotor UAV is a rigid

body of fixed mass, the vehicle’s motion can be described by

the Newton-Euler second’s law in the body coordinate system

as:

for translational motion: Fb = Mtot

(

υ̇b
v +SSS(ωb

v )υ
b
v

)

,

for rotational motion: τb = IIIb
vω̇b

v +SSS(ωb
v )III

b
vωb

v ,

where υb
v is the translational velocity of the UAV, ωb

v is the

angular velocity of the UAV, SSS(ωb) is the skew matrix of

the vector ωb
v and IIIb

v is the inertia matrix of the UAV all

with respect to the fixed body coordinate system. Assuming

no mass change over time, IIIb
v is fixed.

Now, Substituting Fb and τb from (12) and (22) gives:

k f HHH f ρ +gMtotHg = Mtot

(

υ̇b
v +SSS(ωb

v )υ
b
v

)

(23)

(k f HHHt − ktHHH f )ρ = IIIb
vω̇b

v +SSS(ωb
v )III

b
vωb

v (24)

Let ηv and λ e
v be the attitude vector and the position vector

of the UAV related to the earth coordinate system and defined

as:

ηv =
[

φv θv ψv

]T
, λ e

v =
[

xv yv zv

]T
.

To fully describe the dynamic equations of the UAV, we

have the following relations from [15]:

η̇v = ΨΨΨωb
v , λ̇ e

v = (RRRb
e)

−1υb
v

where ΨΨΨ is the rotational matrix between the angular velocity

expressed in the body coordinate system ωb
v and the angular

velocity in the earth coordinate system η̇v. ΨΨΨ is given in [15]

as:

ΨΨΨ =





1 sin(φv) tan(θv) cos(φv) tan(θv)
0 cos(φv) −sin(φv)
0 sin(φv)sec(θv) cos(φv)sec(θv)



 ,
−π

2
< θv <

π

2
.

(25)

From the properties of the rotation matrix we have (RRRb
e)

−1 =
RRRe

b, where RRRe
b is the rotation matrix from the body coordinate

system b to the earth coordinate system e.

Finally, the dynamic model of the UAV can be written as:

υ̇b
v = gHg −SSS(ωb

v )υ
b
v +

k f

Mtot

HHH f ρ (26)

ω̇b
v =−(IIIb

v)
−1SSS(ωb

v )III
b
vωb

v +(IIIb
v)

−1(k f HHHt − ktHHH f )ρ (27)

η̇v = ΨΨΨωb
v (28)

λ̇ e
v = RRRe

bυb
v (29)

This model of the UAV is written in the compact form in

which every state variable is a vector of three components,

i.e., x ∈ R
12, where:

υb
v =





u

v

w



 , ωb
v =





p

q

r



 , ηv =





φv

θv

ψv



 , λ e
v =





xv

yv

zv



 .

Equations (26) - (29) show a nonlinear model with cou-

pling between the translational and rotational dynamics of

the UAV. Moreover, there is coupling between inputs and

output channels in which all inputs act on all outputs. The

system coupling along with the nonlinearity of the system

makes the control design of the proposed Tri-rotor UAV a

real challenge compared with other UAV configurations. On

the other hand, if we consider the control problem of the UAV

to be position tracking with attitude regulating, then the system

is square in which we have six actuators (three BLDC motor

speeds and three servo angles) and six outputs (3D position

and three attitude angles). This highlights the positive aspect

of the proposed configuration in terms of controller design

compared to other UAV systems that are in general under-

actuated systems such as quadrotors.

IV. CONTROL SYSTEM DESIGN

In this section we consider the control design for the pro-

posed Tri-rotor UAV using input-output feedback linearisation

and H∞ Loop Shaping Design Procedure (LSDP). The control

design of the system can be seen as a tracking problem for

the position and attitude of the vehicle via the speed of the

BLDC motors and the angles of the servo motors. In this case,

the system is fully actuated having six outputs and six inputs.

The proposed control algorithm is a centralized H∞ controller

that stabilizes and tracks simultaneously all outputs, i.e., 3D

position and three attitude angles. The motivation behind such

a centralized control design is to synthesize a robust controller

that can compensate for any unmodeled coupling between

channels and attenuate cross-coupling noises and disturbances.

Moreover, the implementation of such a design is simple via

a single feedback loop structure.

In the sequel and for simplicity of expression, the super-

script b and e as well as the subscript v are not written unless

it is necessary to avoid ambiguity. We consider the vector ρ
as the input vector for the UAV system, i.e., u = ρ , and we

have the output as y =
[

η λ
]T

To implement input-output feedback linearization, we have:

ẏ = y(1) =

[

η̇

λ̇

]

=

[

ΨΨΨω
RRRe

bυv

]

(30)
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and

ÿ = y(2) =

[

Ψ̇ΨΨω +ΨΨΨω̇
˙(RRRe
b)υ +RRRe

bυ̇

]

(31)

From the general properties of the rotation matrix, we have

ṘRRe
b = RRRe

bSSS(ωb) [16], and then we write:

y(2) =

[

Ψ̇ΨΨω +ΨΨΨ(−III−1SSS(ω)IIIω + III−1(k f Ht − ktHHH f )ρ)

RRRe
bSSS(ω)υ +RRRe

b(gHg −SSS(ω)υ +
k f

Mtot
HHH f ρ)

]

=

[(

Ψ̇ΨΨ−ΨΨΨIII−1SSS(ω)III
)

ω
gRRRe

bHg

]

+

[

ΨΨΨIII−1
(

k f HHHt − ktHHH f

)

k f

Mtot
RRRe

bHHH f

]

ρ

(32)

where

Ψ̇ΨΨ =
∂ΨΨΨ

∂φv

φ̇v +
∂ΨΨΨ

∂θv

θ̇v (33)

and φ̇v, θ̇v are obtained from Eq. (28) as: η̇ = ΨΨΨωb.

We define the decoupling matrix βββ (x) as:

βββ (x) =

[

ΨΨΨIII−1
(

k f Ht − ktHHH f

)

k f

Mtot
RRRe

bHHH f

]

(34)

We have det[βββ (x)] 6= 0 and the inverse βββ
−1(x) exists always1

for all x ∈ R
12 where x represents the states of the system.

The relative degree of the system in the compact form is r =
r1 + r2 = 2+2 = 4 which is equal to the number of states in

the compact form of the dynamic equations, and there is no

zero dynamics.

To linearize the system, we choose a new control input ϑ =
[

ϑ1

ϑ2

]

, and we write our desired linearized dynamics as: y(2) =

ϑ .

From Eq. (32) we can write the feedback linearisation law

as:

u = βββ
−1

(

ϑ −
[(

Ψ̇ΨΨ−ΨΨΨIII−1SSS(ω)III
)

ω
gRRRe

bHg

])

. (35)

The centralized input-output feedback linearization handles

the coupling without the need for strict assumption on operat-

ing point to decouple the system. The linearized model in the

compact form is given as:

ζ̇ =









0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0









ζ +









0 0

1 0

0 0

0 1









ϑ (36)

y =

[

1 0 0 0

0 0 1 0

]

ζ (37)

where

ζ =









η
η̇
λ

λ̇









∈ R
12, y =

[

η
λ

]

∈ R
6, ϑ =

[

ϑ1

ϑ2

]

∈ R
6.

The linearized plant is a double integrator representing

single degree of freedom for transitional and rotational motion.

1It is always assumed that −π/2 < θv < π/2.

To control the linearized system, the H∞ loop-shaping

design is invoked to synthesize a controller for the linearized

system. An algorithm proposed in [17] is invoked to simulta-

neously optimize the synthesis of loop-shaping weights and

a stabilizing controller. This algorithm captures the design

specification in a systematic manner while trying to maximize

the robust stability margin of the closed-loop system. We

fix the pre-compensator weight to a low-pass filter on all

channels and use the algorithm to optimize an identical post-

compensator weights for all channels. The optimized post-

compensator for each channel is w2 = 105(s+ 0.6)/(s+ 8)2.

The achieved robust stability margin is 0.51 which means a

tolerance of approximately 51% of coprime factor uncertainty.

V. SIMULATION RESULTS

To demonstrate numerical results, we simulate the Tri-rotor

UAV along with the designed controller in Simulink. Figure 5

depicts the block digram for the simulation where
[

ηr λr

]T

is the desired reference attitude and position respectively.

Tri-rotor 

UAV

Feedback

Linearization 

Law

H Loop

Shaping

Controller

v

v+

r

r u

-

,
v v

Figure 5. Simulation block diagram for the control design of the Tri-rotor
UAV.

Figure 6 shows the singular values of the linearized plant,

the shaped plant and the synthesized controller.
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Figure 6. Singular value plots for the linearized system, the shaped system
and the controller.

Figure 7 depicts the performance of the UAV for a scenario

of horizontal hovering at height of 5 m where the vehicle

was at a non-zero initial position and attitude as shown. The

speed of the BLDC motors and the angles of the servo motors

to stabilize the vehicle and track the references are shown

in Figure 8. The controller shows good performance with

tracking in all channels. The controller succeeds to maintain

the stability of the vehicle and follow the reference trajectory

for all initial conditions of the vehicle. The settling time
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of the system is about 3 s which is acceptable taking into

considering the slow dynamics of the vehicle. The servos

and BLDC motors are not saturated and operate within their

physical limits of ±90◦ for the servos and 12000 rpm for the

BLDC motors, where these limits come from the technical

specifications of the real actuators used in the Tri-rotor UAV.
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Figure 7. Simulation plots of the UAV position and attitude using the
synthesized controller of H∞ loop shaping control associated with classical
feedback linearization.
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Figure 8. The performance of the actuators (servos and BLDC motors) to
track the specified reference input of (0,0,0) deg for attitude, and (0,0,5) m
for position coming from non-zero initial point.

VI. CONCLUSION

In this paper, a novel tri-rotor UAV is proposed. The

proposed UAV has six actuators with full authority of thrust

and torque vectoring. The mathematical model of the pro-

posed design is non-linear and it indicates coupling between

translational and rotational motion. The nonlinear model of

the UAV is linearized by a centralized input-output feedback

linearization. This procedure cancels the nonlinearity of all

channels simultaneously without further conditions for specific

operating point which is the case when we handle channels

individually. The linearized plant is a double integrator that

is controlled using H∞ loop-design procedure. The result is

verified via simulations. More complex feedback linearization

techniques (such as robust feedback linearization in [18]) can

be used in the same manner to avoid linearizing the system to

a double integrator.
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