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Abstract—This study proposes an optimal resource allocation
algorithm of multiple UAVs with cooperative path planning using
a geometric approach. The focus of the resource allocation
is on mission and task completion, also known as feasibility
whilst coping with operational and physical constraints of UAVs.
Therefore, this study first introduces a geometric path plan-
ning algorithm based on Pythagorean Hodgraphs (PH). Using
Bernstein Bzier polynomials, the path planning algorithm can
generate feasible and safe (obstacle and inter-collision free)
paths which can also meet position and orientation constraints
of UAVs. We then optimise the resource allocation based on
Evolutionary Game Particle Swarm Optimisation (EGPSO) and
paths generated by the geometric planning. The input parameter
of the optimal allocation problem is the allocation policy and the
performance index is chosen to be the total flight time of the
UAVs. Here the flight time is computed from the path produced
by the path planning algorithm. The optimal allocation algorithm
changes the allocation policy and finds the best allocation policy
which minimise the performance index. The performance of
the proposed algorithm is investigated by numerical examples
simulated under realistic scenarios.

I. INTRODUCTION

Inexpensive unmanned aerial vehicles (UAVs) have consid-
erable potential for use in remote sensing operations. They
are cheaper and more versatile than manned vehicles, and
are ideally suited for dangerous, long and/or monotonous
missions that would be inadvisable or impossible for a human
pilot. Groups of UAVs are of special interest due to their
ability to coordinate simultaneous coverage of large areas,
or cooperate to achieve common goals. Specific applications
under consideration for groups of co-operating UAVs include,
but not limited, border patrol, search and rescue, surveillance,
mapping and environmental monitoring. In these applications,
the group of UAVs becomes a mobile resource/sensor and con-
sequently routes and tasks for each UAV need to be properly
and optimally assigned in order to cooperatively achieve their
mission. Therefore, this study addresses the vehicle routing
problem of of multiple UAVs.

The vehicle routing problem, has been mainly handled in
the operational research area ([1], [2], [3], [4]) and can be
generally classified by two categories: one is the Traveling
Salesman Problem (TSP) which finds a shortest circular trip
through a given number of cities, and the other is the Chinese
Postman Problem (CPP) finding the shortest path with consid-
ering path constraints on an entire network of road. The TSP

using multiple UAVs can be considered as a task assignment
problem to minimise the cost of time or energy for a certain
mission by assigning each target to an UAV, for which binary
linear programming ([5]), iterative network flow ([6]), tabu
search algorithm ([7]) and receding horizon control ([8]) have
been proposed. Recently, [9] proposed a route optimisation
algorithm for multiple searchers to detect one or more prob-
abilistically moving targets incorporating other factor such as
environmental and platform-specific effects. Meanwhile, the
CPP is normally used for ground vehicle applications such as
road maintenance, snow disposal ([10]), boundary coverage
([11]), and graph searching and sweeping ([12], [13]). Since
the general vehicle routing algorithms approximate their path
to a straight line shape to reduce computational load, the
physical constraints imposed on the vehicle are not to be
addressed.

In order to mitigate this issue, this study divides the routing
problem into two parts: the first part is to design cooperative
path planning and the second one is to find the optimal
resource allocation policy based on the paths obtained in the
first part. Cooperative path planning algorithm is designed us-
ing the differential geometry concepts, especially Pythagorean
Hodographs (PH) curves, which was proposed in our previous
study [14]. Path planning algorithms based on differential ge-
ometry examine the evolution of guidance geometry over time
to derive curvature satisfying the guidance goals. Guidance
command such as a manoeuvre profile can be then computed
using the derived curvature of the guidance geometry. One
of main advantages of this approach is that the number of
design parameters can be significantly reduced whilst main-
taining the guidance performance. Therefore, this approach
will enable us not only to design fast and more lightweight
algorithms, but also to generate safe and feasible paths for
multiple UAVs. This would be preferred for integration of
path planning with the optimal resource allocation. Since
reaching targets at the same instant with specific orientations
could improve the overall effectiveness and survivability of
the UAVs, simultaneous arrivals with predefined orientations
are considered as constraints with the physical ones such as
obstacle avoidance and the maximum turning rate of of the
UAVs.

The performance index for the optimal resource allocation
problem is the total flight time of the multiple UAVs since
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this is necessary to have a manageable task in the available
time. The total flight time for each candidate allocation is
computed by using the velocity profile and paths generated by
cooperative path planning and this is used to find the optimal
allocation policy. The optimisation method implemented in
this paper is Evolutionary Game Particle Swarm Optimisation
(EGPSO) which is proposed in our previous study [15].
The proposed EGPSO algorithm integrates the Evolutionary
Game Theory (EGT) concepts with those of Particle Swarm
Optimisation to find the optimal weight of the coefficients
considering the entire swarm fitness. Moreover, it is shown
that this algorithm efficiently works in the general allocation
problem [15].

The overall structure of this paper is given as: Section II
briefly introduces a target tracking filter design, trajectory
classification to model the behaviour of ground vehicles, and
behaviour recognition algorithm using string matching theory.
Section III introduces rule-based decision making algorithm to
find suspicious or anomalous behaviour based on a fuzzy logic.
Section IV presents numerical simulation results of behaviour
monitoring for both military and civilian traffic scenario using
realistic ground vehicle trajectory data. Lastly, conclusions and
future works are addressed in Section V.

II. PROBLEM FORMULATION

A. Scenario

The scenario considered in this study is similar to that in our
previous paper [14]. In the scenario, it is assumed that a group
of N UAVs leaves from a base and they have to reach the target
area at the same time with predetermined orientations. The
individual start and finish points for each UAV are represented
by position coordinates (x, y) and orientation by angle θ.
These are assumed to be known a priori. The UAVs are
assumed to be of same type and are flying at same the speed
at constant altitude. Each UAV has the same maximum bound
on its curvature and the environment has static obstacles. The
UAVs are required to avoid collision with other UAVs and with
other objects in the air-space, as well as avoiding the static
obstacles. The allocation of the UAVs needs to be optimised.

B. Optimal Allocation Problem

Let us first consider a path between a single UAV from the
base to the target position with no constraints. The starting
point Ps is at the base position and the finishing point Pf

is at the target position. The path connecting the poses is
represented by the label r. The path planner produces a path
connecting the start pose Ps(xs, ys, θs) and the finish pose
Pf (xf , yf , θf ).

Ps(xs, ys, θs)
r(t)−−→ Pf (xf , yf , θf ) (1)

where t is a path length parameter.
Extending equation (1) to account for a group of N UAVs

gives:

Psi(xsi, ysi, θsi)
ri(t)−−−→ Pfi(xfi, yfi, θfi), (2)

max |κi| < κmax,
∐
safe

,
∐

length

, i = 1 . . . N, (3)

where κ is the path curvature, κmax is the maximum curvature
bound obtained from the maximum turning rate, and

∐
safe

and
∐

length are the constraints on safety and path length
respectively.

The safety constraints are described as:∐
length

: d(Pi(t), Pj(t)) > dsep,

d(Pi(t), Ok(t)) > dsep

i 6= j = 1 . . . N, k = 1, . . . , no (4)

where Pi(t) and Ok(t) are the positions of the ith UAV and
the kth obstacle, no the number of obstacles, and dsep the
minimum separation distance. To enable simultaneous arrivals,
the constraint on length is given as:∐

length

: si(tfi) = scm, i = 1 . . . N

si(tfi) =

∫ tfi

tsi

√
ẋi(t)2 + ẏi(t)2dt, (5)

where scm is a common path length which is automatically
obtained regarding to the allocation.

The optimal allocation problem is then formulated as:
minimising the following performance index

J = ΣN
1

∫ tfi

tsi

dt (6)

subject to equation (2) and (3).

III. COOPERATIVE PATH PLANNING USING
PYTHAGOREAN HODOGRAPHS CURVES

One of well known path planning approaches based on the
differential geometry concepts is Dubins path planning [14],
[16]. The Dubins trajectory ([17]) is the shortest path connect-
ing two configurations represented by position and pose under
the constraints of a bound on curvature or turning radius. The
Dubins path is a composite curve of both lines and circles
and is easy to produce. However, it lacks a smooth variation
of curvature. Mathematically, the Dubins path provides only
tangent continuity, C1. The curvature continuity is important as
the curvature is proportional to the lateral acceleration of the
UAV. Therefore, curvature discontinuity results in an abrupt
maneouvre of the UAV. A smooth motion needs curvature
continuity C2. Therefore, it is necessary to seek for an alternate
path with curvature continuity. The equation of curvature is:

κ(t) =
ṙ× r̈

|ṙ|3
, ṙ =

dr

dt
, r̈ =

d2r

dt2
(7)

From the equation (7), the curvature is a function of first
two derivatives of a curve, r(t), so the path needs to be at
least twice continuously differentiable, that is C2 continuity.
There are many polynomial curves which can provide C2

continuity. However, we choose Pythagorean Hodograph (PH)
curve known for its rational properties.
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A smoother curve can be produced by using techniques such
as PH, where basis curves are used to piece together using
Bernstein Bézier polynomials. For a planar parametric curve,
r(t) = {x(t), y(t)}, the hodographs are ẋ(t) and ẏ(t) so the
velocity vectors of a curve are its hodograph. The path-length
of the curve r(t) is:

s =

∫ t2

t1

√
ẋ2 + ẏ2dt =

∫ t2

t1

|ṙ(t)|dt (8)

where s is the path-length, t is a parameter such that t ∈ [t1, t2]
and ẋ = dx

dt , ẏ = dy
dt , and ṙ = dr

dt . The term inside the square
root in equation (8) is the sum of the square of the hodographs
of the curve, r(t). For the PH path the path-length is an integral
of a polynomial σ(t) such that:

σ(t) =
√
ẋ2 + ẏ2

s =

∫ t2

t1

|σ(t)|dt (9)

The PH curve can be produced by selecting two Bernstein
polynomials u(t) and v(t) such that:

ẋ(t) = u2(t)− v2(t) (10)
ẏ(t) = 2u(t)v(t) (11)

(12)

This gives:

|σ(t)| = u2(t) + v2(t) (13)

Note that the PH path thus provides exact calculation of
path length and it’s curvature, as well as the orders of the
two polynomials, u(t) and v(t), determine the order of PH
curves. In this research, we use a fifth order PH curve as this
is the lowest order curve which has inflexion points which
can provide sufficient flexibility [?]. For a fifth order PH
curve, u(t) and v(t) can be approximated as second order
polynomials:

u(t) =
2∑

ku=0

uk

(
2

ku

)
(1− t)(2−ku)tku ; (14)

v(t) =
2∑

kv=0

bk

(
2

kv

)
(1− t)(2−kv)tkv ; (15)

Hence the curve, r(t), is given by Berstein form:

r(t) =
5∑

k=0

Pk

(
5

k

)
(1− t)(5−k)tk; (16)

where Pk(xk, yk), k = 0, 1, 2, 3, 4, 5 are control points. Note
that these control points determine the curve r(t) and can be

Fig. 1. PH paths

derived as:

P1 = P0 +
1

5

(
u20 − v20
2u0v0

)
(17a)

P2 = P1 +
1

5

(
u0u1 − v0v1
u0v1 + u1v0

)
(17b)

P3 = P2 +
1

5

(
u21 − v21
2u1v1

)
+

1

15

(
u0u2 − v0v2
u0v2 + u2v0

)
(17c)

P4 = P3 +
1

5

(
u1u2 − v1v2
u1v2 + u2v1

)
(17d)

P5 = P4 +
1

5

(
u22 − v22
2u2v2

)
(17e)

When the initial and final configurations (pose and heading)
for each vehicles are known, Pk(xk, yk), k = 0, 1, 2, 3, 4, 5
can be specified. From the configurations, P0, P1, P4, P5 are
directly obtained as:

P0 = (xs, ys) (18a)
P5 = (xf , yf ) (18b)
P1 = P0 + (1/5) ∗ d0 (18c)
P4 = P5 − (1/5) ∗ d5 (18d)

where

d0 = c0(cos(θs), sin(θs)) (19)
d5 = c5(cos(θf ), sin(θf )) (20)

where c0 ∈ (0,∞] and c5 ∈ (0,∞]. Note that when c0 and
c5 are specified, the control points (P0, P1, P4, P5) in (18) are
fixed by configuration. Moreover, ui and vi for i = 1, 2, 3 are
also uniquely derived from equation (17), which implies that
P2 and P3 are also fixed. Therefore, the number of control
parameters reduces to two of c0 and c5 whilst maintaining
the continuity of the curve. Increasing the values of c0 and
c5 will increase the length of tangent vectors P0 = |P0P1|
and P5 = |P5P4| and in turn P2 and P3 get shifted to meet
the PH condition (17). This is shown in figure 1. As shown
in this figure, varying the two control parameters controls the
curvature, which in turn will determine the space curve.
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Fig. 2. PH paths, all equal in length and avoiding obstacles

For simultaneous arrival, the paths are required to be made
equal in path if UAV speeds are constant and same. The
variable speed UAVs can have difference in path lengths. This
is achieved by increasing the shorter paths to that of the
longest one. The path lengths of the flyable and safe paths
are calculated using (8). For N number of UAVs, with the
length of each path si, the set of path lengths Σ is:

Σ = {si}, i = 1, . . . , N (21)

The longest of the safe flyable path is the reference path. That
is the maximum of Σ. The path lengths of (N − 1) UAVs are
increased to that of the reference path. Lengths of the PH path
is increased by changing the control parameters of c0 and c5:

Find c0 and c5, such that si−max si = 0, i = 1, . . . N−1
(22)

Obstacles as well as collisions can be also avoided by using
the parametric freedom of c0 and c5. Such a set of paths (equal
length and collision free) is shown in figure 2

IV. RESOURCE ALLOCATION USING EGPSO

The approach, which is used to solve the allocation of the
tasks to the UAVs in this paper, is a Discrete Particle Swarm
Optimisation (DPSO) combined to Evolutionary Game Theory
(EGT). One of the main implementation issues of DPSO is the
choice of inertial, individual and social coefficients. In order to
resolve this problem, those coefficients are optimised by using
a dynamical approach based on EGT. The strategies are either
to keep going with only inertia, or only with individual, or only
with social coefficients. Since the optimal strategy is usually
a mixture of the three coefficients, the fitness of the swarm
can be maximized when an optimal rate for each coefficient
is obtained. This algorithm is described in our previous study
[15]. In this method, all the particles X = (ti)i∈[1...T ] are
considered as a vector of feasible solution, where the ti denote
the tasks i ∈ [1 . . . T ] and T is the number of tasks to achieve.
The index of the vector represents the id of the UAV. Moreover,
permuting the elements of X in this representation gives all
the possible solutions so it could enable to deal with high
dimensional problems. The single constraint of assigning one

UAV to one task does not enable us to deal with the common
DPSO algorithm described by Eberhart and Kennedy in [18].
Due to the context and the application, it was required to adapt
the form of the particles according to the problem.

A. Swarm organisation

In the PSO algorithm, the establishment of the networks is a
key point to maximise the exploration and the global efficiency
of the algorithm to solve a problem. In this paper, in order to
assigned the tasks to the UAVs, three different swarms are
used. Each of them has its own features. One will adopt only
inertial behaviour (c1 6= 0 and c2 = c3 = 0). One will adopt
only selfish behaviour (c2 6= 0 and c1 = c3 = 0). One will
adopt only social behaviour (c3 6= 0 and c1 = c2 = 0). Then
the last one is following the common behaviour of the PSO
with the coefficients determined by the result of EGT and the
four previous swarms. The coefficients are chosen dynamically
according to the current state of all the other swarms.

B. Particle movement

Using the common process of the PSO, the probability of
movement toward another solution is introduced. To guarantee
that the particles are moving on the feasible solution space
and won’t need to be repaired, we use an a priori method. In
fact, the particles are built in such a way that the solution
space is obtained by permuting feasible solutions. One of
the key issue when it is required to convert the PSO into
DPSO, is the computation of the velocity. Indeed, in discrete
space, the velocity does not really makes sense and it was
essential to adapt it to discrete case. The main approach used
in [18], [19], [20], [21] is the sigmoid function which enables
to convert a velocity into a probability. The proposed method
is based on that principle, and set the sigmoid function as
s(vtid) = 1− 2

1+ev
t
id

, (∀vtid ∈ R+) (stid ∈ [0, 1]). Once all the
probabilities of change for a particle are obtained, the final step
is to draw a random number and compare it to each coefficient
of probability. All the coefficients greater than the random
number are selected as potential candidate for a permutation.
Then we draw randomly two particle coefficients and permute
them. (In case we obtain a random number greater than only
one coefficient, we consider the particle won’t move).

C. Principle of EGT in the determination of the DPSO coef-
ficients

In order to improve the convergence speed of the DPSO, it
is proposed to combine it with EGT. If this way has already
been investigated by Miranda and Fonseca in [22] to improve
the local exploration of the particles, then by Di Chio in [23]
and Liu and Wang [24]. The proposed approach is considering
the global swarm’s welfare instead of the particle’s welfare.
Thus, like described in IV-A, there are 3 available strategies to
play: inertial, individual, or social. Each swarm will play one
pure strategy and will provide its welfare to the others. Then,
the EGT process, which is based on the replicator dynamic
[15], find the equilibrium strategy which enables to the main
swarm to improve or keep its mean welfare.
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Fig. 3. Overview of the proposed method

D. Scheme of the process

The figure 3 shows how is designed the algorithm.

V. NUMERICAL SIMULATIONS

In numerical simulations, a swarm of four UAVs is con-
sidered for mission deployment. All the UAVs will start from
certain starting point at the same time and will reach the goal
point at the same time. The goal points of each UAV will be
determined from the optimal allocation. During their flights
from starting position to finishing position all the UAVs will
avoid inter-collisions and collisions with known obstacles. The
proposed path planning algorithm will plan safe and flyable
flight paths for all the UAVs in the group. For this simulation,
the initial poses, the curvature constraints and the safety radii
of all the UAVs are summarised in table I. The final poses,

TABLE I
NUMERICAL SIMULATION CONDITIONS

UAVs Position (m) Heading (deg) κ (m) Safety Radius
UAV1 (8, 6) 130 -1/13, +1/3 1
UAV2 (14, 6) 124 -1/13, +1/3 1
UAV3 (18, 6) 3 -1/13, +1/3 1
UAV4 (25, 6) 20 -1/13, +1/3 1

which represent targets, are given in table II. All the known
static obstacles are given in the terrain database. For simplicity,
all the obstacles are assumed to be of rectangular shape in this
simulation. The locations of the obstacle are described by the
coordinates of their vertices. The vertices of the obstacle1,

TABLE II
FINAL POSES

No. Position (m) Heading (deg)
1 (22, 40) 24
2 (17, 40) 120
3 (26, 40) 113
4 (10, 40) 40

Fig. 4. Optimal PH paths, all equal in length and avoiding obstacles

obstacle2 and obstacle 3 are given table III. The optimal

TABLE III
LOCATION OF THE KNOWN OBSTACLES

Obstacles Vertex1 Vertex2 Vertex3 Vertex4
Obstacle1 (5, 20) (5,22) (8.5, 22) (8.5, 20)
Obstacle2 (12.5, 13) (12.5, 15) (17, 15) (17, 13)
Obstacle3 (24, 11) (24, 13) (27, 13) (27, 11)

allocation obtained is [2, 1, 4, 3] which represent the first UAV
is allocated to the 2nd target, the 2nd UAV is assigned to
the 1st target, and so on. The optimal paths of the UAVs are
shown in figure 4. As shown in the figure, there is neither
inter-collision between UAVs, nor collision with obstacles.
The curvature constraint is also satisfied. The length of all the
paths are made equal to the longest path by further change of
curvature of each path. In this simulation the lengths of each
path comes out to be [36.8, 37.3, 39.7, 36.2] meters.

In order to examine the performance of the optimal resource
allocation, the optimal result is compared to an arbitrary allo-
cation, [3, 4, 2, 1]. The paths for the allocation are shown figure
5. The performance improvement of the optimal allocation
compare to the arbitrary allocation is 12.12%.

VI. CONCLUSIONS

In this paper, optimal resource allocation with 2D path
planning algorithm (2D Path Planner) is proposed. In order
to consider operational and physical constraints of the UAVs
in the resource allocation design procedure, the proposed
algorithm consists of two parts: cooperative path planning
based on Pythagorean Hodograph quintic and optimal resource
allocation using Evolutionary Game Particle Swarm Optimi-
sation (EGPSO). The algorithm successfully calculated safe
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Fig. 5. PH paths for an arbitrary allocation, all equal in length and avoiding
obstacles

and flyable paths (feasible paths) for all the UAVs in the
group and optimally allocated the UAVs to a group of targets.
The performance of the proposed algorithm is evaluated using
numerical simulations.
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