UKACC International Conference on Control 2012
Cardiff, UK, 3-5 September 2012

Development of an autopilot system for rapid
prototyping of high level control algorithms

Matthew Coombes, Owen McAree, Wen-Hua Chen, Peter Render
Department of Automotive and Aeronautical engineering
Loughborough University
Loughborough, LE11 3TQ UK
Email: {ttmjc2@lboro.ac.uk, ttom@Iboro.ac.uk, w.chen@lboro.ac.uk, p.m.render@lboro.ac.uk}

Abstract—This paper describes the development of a system
for the rapid prototyping of high level control algorithms using
an Arduino based commercial off the shelf autopilot called
ArduPilot. It is capable of controlling multiple vehicle types,
including fixed, and rotary wing aircraft as well as ground
vehicles. The inner loop control is performed by ArduPilot, so
the high level control can be rapidly prototyped and tested in
Simulink, or an embedded system. The ability to conduct tests
in software and hardware in the loop has also be developed,
to enable safe testing of algorithms, which will speed up the
development process. To show its functionality and ability to
assist with the development process of algorithms, ArduPilot is
used with a remote controlled aircraft in simulation and in real
world testing to verify newly developed high level algorithms for
UAVs.

Index Terms—Autopilot; rapid prototyping; algorithm devel-
opment; hardware in the loop; software in the loop.

I. INTRODUCTION

It is important to be able to test high level algorithms, in
simulation first, and then eventually in the real world. To
be able to test high level control, a system needs to be in
place for this to be tested on. The advantage of performing
Software In the Loop (SIL) and then Hardware In the Loop
(HIL) testing before performing real world testing is widely
recognized as much cheaper, less time consuming, and safer
[1]. A system that allows a seamless transition from one stage
to the next without reprogramming, or reconfiguring any part
of the system would hugely reduce the time from conception to
the final design. This paper describes a system for developing
high level autonomous control functions of UAVs.

Developing a full autopilot system from scratch is difficult,
as specialist knowledge is needed in electronic engineering,
systems integration, and software engineering. By purchasing
an open source Commercial Off The Shelf (COTS) autopilot
system much time and effort was saved. ArduPilot [2] is a
hobbyist “do-it-yourself” autopilot meant for use on remote
controlled aircraft. It is capable of flying simple waypoints, or
more importantly taking roll (¢), pitch (), rudder, and throttle
commands from an external source. By using a communication
protocol called MAVLink [3], any device, or system can
give ArduPilot these commands over a number of different
connection types. As the low level control is performed by
this autopilot, it leaves the user the freedom to concentrate on
the high level control.

978-1-4673-1558-6/12/$31.00 ©2012 IEEE

This paper describes the ArduPilot autopilot, and the system
developed to control it. SIL, and HIL testing is discussed,
as well as the X-Plane simulation environment used in this
testing. The use of Simulink, and embedded systems to per-
form high level control is described. An example is given to
illustrate the full development cycle from SIL to HIL to real
world testing, where a simple PID waypoint tracking algorithm
is developed and tested safely and easily.

II. ARDUPILOT

ArduPilot is a Arduino [4] based autopilot designed for the
use by remote controlled aircraft hobbyists. It is designed to
control fixed wing aircraft, and various rotary wing platforms,
including single, tri, quad, hexa, and octa copters. The software
is written in C++, and is completely open source with an active
development community. The system enables the user to fly
a series of predefined waypoints using a simple cross track
error trajectory following algorithm. Or the user can fly the
aircraft on a Fly by Wire (FBW) mode, where pitch and roll
angles are commanded over the transmitter using ArduPilots
inner loop instead of directly commanding servos. ArduPilot
can communicate with a ground control station, where data
can be gathered, waypoints, or even control gains can be
updated. It communicates over a wireless serial connection,
using a communication protocol called MAVLink [?], which
was designed specifically for Micro Aerial Vehicles (MAVs).

The system hardware consists of two circuit boards shown
in Fig. 1. The lower board has an ATmega2560 processor
which runs the software, a failsafe multiplexer (that means
there is always a hardware override if the processor fails) and
all servo and receiver connections. The upper board houses the
sensors, and telemetry ports. The sensors include a triple axis
accelerometer, a dual and single axis gyro, barometric pressure
sensor, triple axis magnetometer, also an externally connected
GPS module. It is also capable of having an external pitot
static sensor, for airspeed measurements. The full system on
an aircraft set up for flight testing is shown in Fig. 2.

The ATmega2560 processor is relatively slow and only
capable of executing 256 Kb of code. The autopilot software
is written in C++ which is not that accessible a programming
language. In its default state it is not an effective system for
research.

292

2
)
ol
‘o
©
()
(=)
o
()
©
_©
(&)

Fig. 1. Left: ArduPilot ATmega2560 processor board Right: IMU board
r—— - - - - - - —_ — — — — — — l
Aircraft T ardupilot 7 |
! | !
| | Sensors | [
l Mode select cH 7 | |
l Receiver d Arduino, N Servos !
| 1 FS mux | |
A Input channels
I ; - I
| f |
Lo e = = - == g
2.4Ghz DSM2 !

1 2.4Ghz Wireless serial
v 1 MAVLink protocal

Transmitter

| |

Computer with
| SIMULINK or
Mission Planner

Fig. 2. Flow diagram for ArduPliot on and aircraft ready for flight testing

There are many examples of autopilot systems developed by
research organisations, to assist with their research goals. They
are often made in house at considerable expense, and many
run on embedded systems making for high development times
[1], [5], [6], and [7]. There are other autopilots available, like
Paparazzi [8], or MicroPilot [9]. These systems are expensive,
they are not easy to manipulate and interface with, and by no
means as cross platform compatible. Paparrazi has no standard
hardware as the schematics are open source [10], requiring
one to be specially ordered, or made in house. MicroPilot is a
very small open architecture autopilot, which has an integrated
Inertial Measurement Unit (IMU) and GPS. Although all the
parameters and control gains can be altered, the code is closed
source and can not be altered. An autopilot system meant for
hobbyists is Attopilot [11], this system is quite expensive and
is quite dated. AttoPilot uses thermopiles for attitude control
in instead of the much more accurate and reliable IMU [12].

III. SYSTEM CONFIGURATION

ArduPilot has a number of different operating modes. The
outer loop waypoint following mode (auto), the inner loop
pitch, and roll angle hold (FBW), and manual override. If roll

Predefined

waypoints
Outer control
loop (ArduPilot)

Controlin uts‘ ‘
i) Sensors/Simulated
Ocom Bcom > A/C Dynamics H|sensors
Tcom
FBW modef

Outer control
loop (SIMULINK/
Embedded system)

©,6,V,lat, long

Fig. 3.

Flow diagram of the control structure on the whole system

and pitch commands are sent to ArduPilot from an external
source while in FBW mode, the higher level control loop
can be performed on any platform of the users choice that
is able to communicate over a serial connection. This gives
huge flexibility to the user. As the ATmega2560 is simply not
fast enough, and does not have enough storage, an external
system to run more advance, more demanding code is needed.

The external system that this system has been primarily de-
signed for is Simulink. A program that is used and understood
by many engineers. It enables rapid prototyping of algorithms,
and has an accessibility that is simply not offered when doing
the same on an embedded system where the user must be
familiar with C or C++.

The layout of the control system is shown in Fig. 3. ArduPi-
lot’s Attitude Heading Refrence System (AHRS) conducts
sensor fusion and transmits the data over its serial telemetry
port encoded in MAVLink format. A Simulink block has been
developed for communication over MAVLink, it receives and
decodes MAVLink messages, Simulink conducts high level
control on the block outputs, to give pitch, roll angle, and
throttle commands. The block then encodes these commands
and resends them over the same serial connection. To enable
wireless serial communication for flight tests, XBee wireless
modules are used. As data and control signals are being
transmitted wirelessly, this system relies on the wireless link
to have high data integrity and low latency.

An embedded system can be used in place of Simulink if the
wireless data link is a concern. By simply using the MAVLink
wrapper discussed in Section V an embedded system can do
exactly the same job as Simulink by directly connecting its
serial port to that of ArduPilot’s. This enables all the control
to be performed on board the aircraft but over two components,
mitigating XBee signal issues, also enabling a higher data rate.

IV. SOFTWARE AND HARDWARE IN THE LOOP

Before performing real world testing, it is important to
verify code functionality, which is commonly done through
SIL, and then HIL testing. Putting algorithms through the
full development cycle of SIL, HIL, and then flight testing
is a good systematic debugging method, which significantly
reduces risk. This process can be shown in Fig. 4. SIL
enables any bugs in the software, to be ironed out, then HIL
brings to light bugs which come about due to the software’s
interaction with the hardware, and the wireless communication

293

Algorithm Devlopment

v

Numerical Simulation in MATLAB/
SIMULINK Enviroment

v

Software in Loop

—» Hardware in Loop

h’

Flight Test

Fig. 4. The development cycle for high level control for UAS

r N A r—-—- - - — — - "
| CO”\:VPUtsr,\: iW'n?(OWS) Computer 2 (Linux)

Ired Networ P l Control surface | |
| X-Plane | commands | ArduPilot |
| | Zin:ulated sensor | Desktop build [

ata
| | S
I l ®Ocom Bcom, Tcom

SIMULINK
| B /

L - - - - — — - Sensor data I
r ——————— L1
| C/C++ code l ®com Bcom, Tcom

| Embedded computer
AdHoc Wireless Network J'

All Comunication over TCP/IP

Fig. 5. Flow diagram for ArduPliots SIL testing, use with Simulink or and
embedded system

system. Finally fight testing shows the functionality of the
communications system at range, and issues the system has in
the real environment, like wind.

The SIL system is shown in Fig. 5. The open source ArduPi-
lot code has a desktop build, which means that, instead of the
code being compiled on the Arduino on the ArduPilot, it is
complied on a normal desktop computer running LINUX. This
simulated ArduPilot communicates with a simulated aircraft
in the X-Plane flight simulator using a plugin that enables
communication over a TCP/IP network connection using the
MAVLink Protocol. The X-Plane aircraft model is controlled
by the desktop build of ArduPilot, and in turn ArduPilot is
controlled by an external system like Simulink or an embedded
system running the users high level control algorithms. This
SIL method enables development to be undertaken without
any ArduPilot hardware.

HIL (shown in Fig. 6) is much the same, but the actual
ArduPliot hardware is used and sensor data is faked. The
communication between X-Plane and ArduPilot is now done
over a virtual serial connection, provided by the USB to

Computer 1 (windows)
I Direct USB Link

|
I X-Plane | Control inputs ArduPilot
| I and sensor data With HIL Build
| | i
| |

SIMULINK e[¥gee} -,
| o XBee oo ;
L D — — — — = 1 [<« e
I a ®Ocom Bcom, Tcom. Sensor data
| C/C++code o] xBee | -oommmmrmmnnnincni
| | Wireless XBee link

Embedded computer

Fig. 6. Flow diagram for ArduPliots HIL testing, use with Simulink or and
embedded system

serial chip. ArduPilot is now controlled over its telemetry
port connected to Simulink, or a ground station using a XBee
wireless serial transmitter, or to an embedded system directly.

When it comes time to conduct actual flight tests there is
no need for reconfiguration of software hardware or commu-
nications, apart from ArduPilot needs to be mounted to the
aircraft, and wired to the receiver and servos. As ArduPilot
and MAVLink have been abstracted to such a high level,
throughout the whole development cycle none of the ArduPilot
code, or high level control ran externally needs to change at
all to move to the next stage. All that changes is if the aircraft
is real or simulated, where ArduPilot software is ran, and how
the components of the system physically communicate with
one another.

V. COMMUNICATION

As has been mentioned previously, the communications
between all components of the system use a protocol called
MAVLink. MAVLink is a very lightweight, header-only mes-
sage marshalling library for MAVs, in C/C++. It encodes data
structures into high efficiency data packets which use binary
instead of ASCII encoding, yielding faster data transfer and
higher data integrity. Any device that can communicate in
MAVLink can talk to ArduPilot. A C++ wrapper has been
developed that abstracts MAVLink so it can communicate over
any physical transport layer, currently available is communi-
cation over serial, TCP/IP, UDP, and Write to file. This has
facilitated the seamless transition in the testing phase from
SIL through HIL to flight testing, by simply having each
component change the physical means of sending MAVLink
encoded data.

XBee converts a serial stream to wireless using a protocol
called Zigbee. A large outdoor 15 dB omni directional 2.4Ghz
antenna is used on the ground, and a striped down 8 dB
antenna on the aircraft. This means that the small 60 mW
power of the XBee can communicate with an aircraft a mile
away in any direction and orientation. The series 2.5 XBees
used are point to multi point in a communication mesh. A
master module is attached to the ground station receiving data
from as many as 255 other XBees. Due to the high gain

294

Fig. 7.

WOT4 testing aircraft

antennas, and the meshing ability of XBee 2.5 multi vehicle
test are possible.

VI. EXPERIMENTAL STUDIES

The platform chosen for the initial experiments is a WOT4
model aircraft. The WOT4 is an inexpensive option for the
initial flight tests. This aircraft has been chosen as it is large
enough to carry Ardupilot but small enough to keep risk at an
acceptable level during the initial flight testing. It is made from
Expanded Poly Olefin (EPO) foam with is extremely strong,
durable, and very light. The WOT4 is capable of carrying
of 500g payload, so would be capable of carrying a camera
and video transmitter equipment. Ardupilot is easily able to
fit inside the fuselage, close to the center of gravity of the
aircraft, and out of the airflow to minimise drag. A pitot static
probe, and sensor is mounted half way along the wing out of
prop wash, to measure the airspeed of the aircraft. The WOT4
is shown in Fig. 7.

For SIL and HIL, an X-Plane model of the WOT4 has been
developed, so algorithms could be tested on a representative
model. The model was developed using X-Plane’s plane
maker, using the aircrafts dimensions, power, and wing cross
section, to give an approximate representation of the aircraft.
A graphical representation of the model can be seen in Fig. 8.

To test the functionality of the full system from SIL to
real world testing, step tests are performed as well as tests
on speed hold, and altitude hold controllers. Finally a simple
PID waypoint tracking algorithm is performed.

Using the MAVLink Simulink block aircraft state informa-
tion can be read, and roll, pitch angle, rudder and throttle
commands sent to and from ArduPilot. The speed, altitude
hold, and waypoint tracking are also programed in Simulink.

Illustrated in Fig. 9 is the step response of the WOT4 in
roll, in SIL, HIL, and real world. From flying straight and
level a 60° roll angle is commanded, then a -60 ° angle is
commanded. The response in SIL and HIL were of course
similar as they use the same model in X-Plane, the real world
response only differed slightly. This simple test shows the
fundamentals of the system functioning, including Ardupilots

Fig. 8. X-Plane RC Plane model of WOT4

Real world
- = = - Rollangle command
SiL R
HIL P e

angle (deg)

Roll

'
Jo- -

Time (s)

Fig. 9.
world

Step response for roll angle for the WOT4, in SIL, HIL, and real

inner loop control, MAVLink, and communications downlink
functionality.

To demonstrate the ability of Simulink to perform outer loop
control, both speed hold, and heading hold control are tested.
Also they are needed for more advanced outer loop control.
Both are based on simple PID controllers, where speed is
controlled with pitch angle, and heading is controlled with roll
angle. Once again this was put through the whole development
cycle. Fig. 10 shows the aircraft responding to step commands
in airspeed. Fig. 11 shows the aircraft responding to step
commands in heading. As good data integrity, and speed is
important in off board control, these tests show that Xbee,
and Simulink are capable of this. As wireless communication
is the weak link in this system and as simple off board control
functions perfectly, there is no reason that the system could
not now perform more complex control algorithms.

A simple PID waypoint tracking algorithm was imple-
mented in Simulink, to make an aircraft fly around user defined
waypoints. It uses the haversign formula [13] to calculate the
heading between the aircraft’s, and waypoint’s latitude and

295

280 T

—siL
260 - Real world b
——HIL

= = = Heading Command

200

Heading (deg)

Fig. 10. Step response for heading hold controller for the WOT4, in SIL,
HIL, and real world

T T 1 1

o HIL

20 Al =Sl
| Real World

= = = Airspeed Command

Airspeed (m/s)

Fig. 11. Step response for speed hold controller for the WOT4, in SIL, HIL,
and real world

longitude. Eq. (1), and Eq. (2) shows how the bearing (#)
and the distance (d) between two points on the earth surface
defined by latitude and longitude can be calculated.

a = s2(28) 4 c(laty)c(latz)s?(222)

c= 2arctan(\/‘1/%) 0
d= Rcc
0 = arctan(s(dlng)c(latz) @

c(laty)s(laty) — s(laty)c(lata)c(dlng)

Where cos and sin are abbreviated to ¢ and s respectively.
Where R, is the radius of the earth which is 6378.1 Km,
and dlat, and dlng is difference between the aircraft’s latitude
and longitude and that of the origin or the waypoint the
distance and heading is to be measured. lats, and Ing, are
the latitude, and longitude of the aircraft, and lat;, and Ing;
are the latitude, and longitude of the next waypoint.

This bearing is then used as the heading command to make
the aircraft fly directly at the next waypoint. The aircraft is
flown around a sqaure circuit at 200 m height above ground,
and at 15 m/s. Fig. 12 shows the 2D path flown by the WOT4

40+ ° HIL 4
R Real World

= = = Sqaure path

North (m)

20|

Il
-50 0 50 100 150 200 250
East (m)

Fig. 12. Simple PID waypoint tracking algorithm tracking a 100x200m
square path, in SIL, HIL, and real world

in SIL HIL, and in real world testing. It is in this flight test
that the greatest difference between the simulated WOT4 and
the real WOT4 is observed, but the simulated tests proved that
the algorithms worked successfully.

VII. CONCLUSION

A system has been developed that enables research in the
field of UAS to quickly develop and test high level control al-
gorithms. By using a COTS autopilot, the full system is cheap
and easy to integrate into a range of vehicles. As ArduPilot
is a well developed system it is extremely reliable, and robust
which makes flight testing swift and safe. The results from
SIL, HIL testing have with relative accuracy, predicted the
performance of the WOT4 in real world tests. The control
system developed in Simulink needed no modification between
simulation and real world tests. These show that this is a good
technique for safely testing algorithms in simulation before
moving the to actual vehicles. As the high level control was
carried out off board, on a ground control station, and relied
on a wireless data link occasionally there were a few data
packets drops. The aircraft never got further than 300m away
so if operating at further distances, or at higher data rates,
an embedded system can be used to conduct the high level
control with the same ease.

REFERENCES

[1] G. Cai, B. M. Chen, T. H. Lee, and M. Dong, “Design and implemen-
tation of a hardware-in-the-loop simulation system for small-scale uav
helicopters,” Mechatronics, vol. 19, no. 7, pp. 1057 — 1066, 2009.

[2] [Online]. Available: http://diydrones.com/notes/ArduPilot

[3] [Online]. Available: http://qgroundcontrol.org/mavlink/start

[4] [Online]. Available: http://www.arduino.cc/

[5] D. Kingston, R. Beard, A. Beard, T. McLain, M. Larsen, and W. Ren,
“Autonomous vehicle technologies for small fixed wing uavs,” in AIAA
Journal of Aerospace Computing, Information, and Communication,
2003, pp. 2003-6559.

[6] Y.C.Paw and G. J. Balas, “Development and application of an integrated
framework for small uvav flight control development,” Mechatronics,
vol. 21, pp. 789 — 802, 2011.

[7]1 A. Mehta and K. Pister, “Warpwing: A complete open source control
platform for miniature robots,” in Intelligent Robots and Systems (IROS),
2010 IEEE/RSJ International Conference on, oct. 2010, pp. 5169 -5174.

[8] [Online]. Available: http://paparazzi.enac.fr/wiki

[9] [Online]. Available: http://www.micropilot.com/

296

[10] M. G. P-S. H. Pascal Brisset, Antoine Drouin and J. Tyler. (2006,
October) The paparazzi solution. ENAC.

[11] [Online]. Available: http://www.attopilotinternational.com/

[12] M. A. O. Simes, “Development of an aerial robot for inspection and
surveillance,” in Mestrado em Engenharia Mecnica. Universidade de
Aveiro, 2009.

[13] R. W. Sinnott, “Virtues of the haversine,” in Sky and Telescope, vol. 68,
Dec 1987, p. 158.

297

