
Towards a Fully Autonomous Swarm of Unmanned
Aerial Vehicles

Jeremie Leonard
Cranfield University

Cranfield, MK430AL
Email: j.leonard@cranfield.ac.uk

Dr. Al Savvaris
Cranfield University

Cranfield, MK430AL
Email: a.savvaris@cranfield.ac.uk

Prof. Antonios Tsourdos
Cranfield University

Shrivenham, Swindon, SN6 8LA
Email: a.tsourdos@cranfield.ac.uk

Abstract—With advances in UAS technologies the quadrotor
was given a special interest for its manoeuvrability and payload
capacity. These assets are amplified when more of them are
deployed simultaneously in order to improve the situational
awareness over areas of interest. As the number of agents
operating in the same environment grows, a common intelligence
is needed to optimize their cooperation and ensure their safety
throughout the completion of the missions. This paper presents
the results of experiments conducted to demonstrate a set
of algorithms on a surveillance system employing a swarm
of quadrotor UAVs to track detected targets. It was initially
assumed that the UAV paths are generated at constant altitude
to replace the complicated quadrotor dynamics by ones of a
point mass entity. The system is then extended to the third
dimension to allow for a more complex guidance and navigation
scheme. Several simulations were performed under various
circumstances to validate the accuracy and robustness of the
system.

Keywords: Autonomous, swarm, UAV, quadrotor, control.

I. INTRODUCTION

Recent events have highlighted the ever-changing face of
modern warfare and the need for strategically urban battle
techniques to be developed and improved upon. The increase
in asymmetric warfare shows that the current forces have
particular weaknesses exploited by the enemy, due to an
increased knowledge of the urban battlespace, putting lives in
greater danger. With advances in UAV and UGV technologies
together with the improvements in sensor capabilities there is
a definite domain that allied forces can use to their advantage.
Covert operations, disposable resources and getting closer
to the enemy are all assets that these technologies carry on.
Using multiple platforms to detect and inspect targets in
regions of interest could provide precious information of the
surrounding urban area, paving safer corridors, increasing
the situational awareness. A thorough analysis of the data
gathered by the swarm would help mapping safer and more
effective missions. Ultimately, an on-board processing of
these information would enable the system to function in real
time applications to execute such recognition missions.

The state of the art in swarm behaviour has changed in
the past few years and an increasing number of teams focus
their research on formation flying and multi-agent control
[1][2]. However, most of their work is based on off-the-shelf

platforms modified to grab certain objects, land on a given
surface or fly alongside its pears in an ideal environment. Re-
source optimisation, conflict resolution and failure diagnostic
are still challenging fields of study to draw the need of human
interaction further back.

II. TWO DIMENSIONAL SIMULATION

A. The simplified model

Initially, the 3D environment is reduced to a two dimen-
sional space and the 6 Degrees of Freedom (DoF) quadrotor is
replaced by a 3 DoF entity. The simplified kinematics enables
the testing of the following algorithms in real time and in more
complex scenarios involving more units and several types of
targets. In order to match the behaviour of its flying counter-
part, the two dimensional model must be non-holonomic. For
bench testing purposes, the point mass replacement was based
on differential drive vehicle for which the user can easily
control the rotation speeds ωL and ωR of the left and right
wheels to direct the unit. This gives the unit’s kinematics the
advantage of being linear:

VL = Rwheel ωL
VR = Rwheel ωR

(1)

V = VR+VL
2

ω = VR−VL
d

(2)

Thanks to this linearity, ωL and ωR can be monitored by a
simple PI controller, easy to implement and computationally
quick. The emphasis will be put on individual guidance and
swarm cooperation.

B. Guidance and navigation

In mobile robotics, it is important that the environment
in which the vehicles will be driving is eciently converted
to a road map that the system can use to optimize the units
movements. Even if the map is only partially known or
uncertain, the conversion to a C-space representation needs
to be simple enough to run in real-time, but still precise
enough to guarantee the optimality of the calculated path.
Looking forward a little bit, the main application of the
system developed in this research would be a permanent
surveillance setup in a dense urban environment. In this
context, a cell decomposition coupled with an A* algorithm

286

UKACC International Conference on Control 2012
Cardiff, UK, 3-5 September 2012

978-1-4673-1558-6/12/$31.00 ©2012 IEEE

would guarantee a quick and easy way to find the shortest
path between two points separated by several obstacles.
Its computational lightness also makes it the most fitting
solution to be implemented on the on-board processor. The
A* algorithm is based on a step-by-step effort to minimize
the path [3]. The idea is very intuitive: at each step of the
way, it favours the solutions directly closer to the targets and
leaves the other cells on the side. Those unfit solutions can be
temporarily ignored but not deleted because there is no way
to be sure that a path is going to be the right one. They are
stored in a list of unexplored possibilities that the algorithm
can search later on if the previously chosen path leads to a
dead end. The path can then be cut down in the middle and
restarted from a point previously left aside.

Developing an algorithm capable of finding the optimal path
to a given point is essential to make the system intelligent. To
make it autonomous, the quadrotor would then have to reach
the goal point on its own by following the path allocated to
it. Once again we want to implement on-board the algorithm
in charge of guiding the quadrotor along its path. The pure
pursuit (or carrot following) method answers the simplicity
requirement and presents three additional assets.
• The guidance algorithm itself does not need to consider

the dynamics of the vehicle.
• The method generates a virtual point, called carrot, on the

path in front of the vehicle it wants to move which then
has to determine the sequence of commands in speed and
heading to stay at a look-ahead distance away from the
virtual point while permanently aiming towards it (Fig.1).
Since the point has no reality it can be created, deleted or
moved with ease and the quadrotor will always follow. An
appropriate control of the carrots behaviour could prove
to be very beneficial for the upcoming conflict detection
and resolution in 3D.

Fig. 1. Pure pursuit principle

• Though the A* generated path is made of straight seg-
ments, tracking the carrot leads the vehicle to cut the
corner resulting in a much smoother trajectory and an
even shorter trajectory. To avoid bumping into one of
the obstacles while cutting a corner, the map of the
environment is pre-processed to widen every obstacle.
The path generated by the A* will therefore have a bigger

clearance distance with the obstacles in the environment
to ensure the safety of the quadrotor throughout the
mission.

It is assumed that the vehicles have a relatively accurate
knowledge of their environment. The number of unexpected
obstacles should therefore be limited and a brute-force A*
replaner is sufficient to guarantee an optimized avoidance.
Once the system is aware of the threat, it adds the obstacle on
the map and runs the A* once again. The next commands sent
to the quadrotor will take the presence of the new obstacle into
account and avoid it.

C. Cooperation

To match the competences of their manned competitors,
automated vehicles need to be developed for numerous appli-
cations which require a larger range of action and long-term
possibilities. By increasing the number of units deployed, one
can also increase the systems capabilities. In the scope of this
work, the augmented number of agents widens the surveillance
area and enables the system to reach more targets in less time
[4]. Cooperative protocols are then implemented for versatility,
so that the system could guarantee an optimized assignment
of the quadrotors regardless of the number and types of the
detected targets.

1) Single fixed target: When a target is spotted in the
environment, the system attempts to send an agent to the
targets location as fast as possible. If only one vehicle is
deployed, it is automatically sent to any target that might
appear in the area. The path is planned using the A* algorithm
in order to reach the target with the shortest path possible.
Although if several agents are used simultaneously, the system
calculates the path of all the units to the target and only the
closest one is assigned to the target. The others can ignore the
assignment and focus on something else as shown in Fig.2.

Fig. 2. Single assignment

This assignment method assumes that a target can be
covered by a single unit. It would however be easy to imagine
scenarios where several agents need to rendezvous at the
target’s location (Fig.3). For that purpose, the pure pursuit
algorithm was modified to create a carrot for unit i of variable
speed VCi . Hence if we need all the vehicles to reach the target
at the exact same time, each VCi can be set to travel the path
of unit i in a given time τ . The travel time τ is fixed by the
central intelligence based on the kinematic limitations of the

287

slowest unit. It could also be possible to establish a hierarchy
within the vehicles forcing them to reach the target in a certain
order. VCi would then vary depending on the priority level of
unit i as well as its distance to the target.

Fig. 3. Multiple assignment

2) Multiple fixed targets: To complete the target tracking
protocols it is important to take into account a multi-target
assignment. If the number of targets is smaller than the number
of quarotors, the objective is to minimize the overall travelled
distance. Rather than treating each target individually as they
appear, the system tries to optimize the movements of the
entire swarm. Every time a new target is detected, it is added to
a list of previously detected targets and the allocation process
is reiterated. This way each assignment is coherent with the
rest of the system. To do so, the user has to deal with all
the possible combinations unit/target and when the numbers
increase, the optimal allocation quickly stops to be evident.
An auction algorithm is therefore implemented to deal with
this type of situations.

The Auction algorithm is a method used to solve classical
assignment problems and is very well suited for parallel
computation [5]. In the basic auction problem, there are n
people and n objects (quadrotors and targets respectively)
that have to be paired. Each combination person i - object
j is associated to a benefit aij so that the user will try and
maximize the total benefit. Mathematically, the aim is to
construct n pairs person-object {(1, j1), (2, j2), ..., (n, jn)},
where all the objects j1,...,jn are distinct, that maximizes the
total benefit Σni=1aiji . The basic algorithm is modified to
account for a higher number of vehicles than targets. The aim
of the algorithm remains the same but in order to optimize
the assignment it is capable of leaving agents out of it.

On the other hand if the number of targets becomes greater
than the number of quadrotors, these targets are no longer seen
as individual missions but rather as checkpoints (Fig 4). The
units have to find the optimal path going through all the targets
as quickly as possible. Since the number of quadrotors/targets
is not limited, the solution for that problem needs to be
versatile enough to answer any type of configuration. To meet
this requirement, it was decided to use a genetic algorithm to
handle the allocation of the targets.

Even though the method is largely based on the resolution of
the multiple Travelling Salesman Problem (mTSP), parts of the

method were modified to fit the overall system. In the original
Traveling Salesman Problem, the salesman is supposed to
come back to the initial location after visiting all the cities
thereby creating a looped path. It is also common for a mTSP
to fix a single point of origin for all the salesmen and a single
end point. This final point can sometimes even be the same as
the initial location. For the target-tracking application, each
unit has a different initial position and is not required to
terminate its path on the exact same node. Once again the
priority is given to a minimum time constraint.

Fig. 4. Targets as checkpoints

To calculate the paths, the Genetic algorithm needs the
number of targets ntargets, the number of quadrotors nquads,
and the initial positions of all of the above to create a list of
all the targets and generate an array of random break points
with (nquads − 1) elements. When applied to the target list,
these break points will divide the list into nquads sub-lists
representing the nquads paths travelled by the vehicles. The
algorithm then needs to evaluate the fitness of the solutions
and mutate the fittest genes to converge towards an optimal
solution. Similarly to the Auction process, the genetic algo-
rithm was modified so that it can choose to keep units out of
the assignment if necessary.

3) Maneuvering target: The next step was to introduce
moving targets (also called free-agents) in the environments
and have the quadrotors react to it. Here, the objective is
not to intercept the target anymore but rather to follow it
from a given distance. To avoid predictability, the targets
drive through the environment in random arcs and at variable
speeds. Since the units are only moving according to the
targets whereabouts, it is impossible for the system to plan
a collision-free path ahead. An obstacle avoidance scheme
based on the potential field method was therefore added to
the system to safely follow the free-agents without hitting its
surroundings (obstacles or other agents) [6].

To begin the pursuit, the user needs to fix a trailing distance
dtrail that the vehicle H needs to keep at all time with the
target. Depending on the distance D to the target, this unit
adapts its speed to keep up with it which is done by creating
a distance-to-the-target dependent component KHd to control
its speed. To follow a target moving at Vfree this component
would be:

KHd = Vfree + kHd × (D − dtrail) if D ≥ dtrail
KHd = Vfree × kHd × (D − dtrail) if D < dtrail

(3)

288

To keep the unit aiming at the target, the vehicle has to
maintain its heading aligned with the quad-to-target axis to
keep the orientation error eHo to zero. The term in Eq.4 is
added to correct the orientation:

KHφ = kHφ × eHo (4)

The potential field obstacle avoidance is a method that con-
verts the map known by the system into areas of attractive and
repulsive potentials. The attractive field is usually generated by
the target we are trying to reach but in our case, the vehicle
wants to keep a certain distance with the free agent so the
attractive force is excluded. The repulsive forces are generated
by the known threats in order to push the vehicle away from
them. Their magnitude decreases as the vehicle gets further
away from them until a vicinity distance d0 after which the
obstacle will have no repulsive effect.

Urepi(q) =

{
1
2γobsti

(
1

dobsti (q)
− 1

d0

)β
if dobsti(q) < d0

0 if dobsti(q) ≥ d0
(5)

Consider the quadrotor at the location q = (xrob, yrob) and
given the linear nature of the problem, the overall potential
results from the sum of the repulsive effects of all the
obstacles:

Urep(q) =
∑
i ∈obst

Urepi(q) = kq (6)

With that field in place, the vehicle is rejected as soon as it
approaches an obstacle but with the absence of an attractive
force from the target, the unit does not know in which direction
to avoid the obstacle. To overcome that issue, the repulsive
potentials from each obstacle are given an orientation to push
the vehicle in the right direction as illustrated in Fig.5.

Fig. 5. Directions of rejection around an obstacle

Once again the effect on the quadrotor is converted into a
new factor Kobst:

KHobst =
kobst×kq
αrep

with αrep = mod [θrob + π, 2π]− αq
(7)

The 2D point mass model used so far is controlled through
differential drive. For this particular case, the coefficients
presented would be used as follow:

VHL = KHd − (KHφ −Kobst)
VHR = KHd + (KHφ −Kobst)

(8)

kHd , kHφ and kobst were calibrated to ensure a smooth
path around the obstacles while constantly aiming at the target
(kHφ = R2D/5, kHd = 1 and kobst = 100).

4) Surveillance: Throughout this paper, the system has the
ability the pick which units to assign and which to keep out of
the assignment. The unassigned units can then divide the area
to survey amongst them to cover it faster and more efficiently.
When a new target is spotted (most likely a moving one for a
realistic scenario) the system can be set to react in 2 ways.
• The closest unassigned unit is sent to the target. The

remaining vehicles restart the division of the area to
include the part left out by the assigned unit. This unit
will follow the target wherever it goes.

• The unit whose surveillance zone includes the targets
location is assigned to it while the others stay on their
current path. When the target gets to another zone, the
chasing agent goes back to surveillance and the agent
whose zone has been entered starts chasing the target.
This solution becomes interesting when each quadrotor
is pre-assigned to a surveillance zone and cannot fly out
of it. The reason can be that the vehicle needs to stay
at all times close to a station (to charge or communicate
information) in its own area.

III. INITIAL RESULTS

All the methods introduced previously were then centralized
into a single coherent system accessible through a graphical
user interface (GUI). The user can change the number of
units deployed, add/remove fixed targets and free-agents,
modify the collaboration method to deal with manoeuvring
targets, and take control of a live vehicle. At this stage,
the algorithms were tested in 2D scenarios so the physical
platforms used for testing were ground robots.

A camera tracking device is installed to get the position
of every object in the surveillance area. That position is sent
to the central computer that can follow the movements of
the live vehicle in real-time while the computer simulates
the robot’s odometry on its own. By fusing both information
through a Kalman filter the system could accurately locate
the vehicles and correct potential errors in their paths via
the Kalman updates. For the implementation of the filter, it
is important to specify that the kinematics of the system are
linear and that each iteration of the filter will occur at fixed
discrete time intervals, meaning that the time evolution of the
state vector can be calculated by means of a state transition
matrix. The accuracy of the filter was tested on several types
of trajectories, from the simple straight line to a figure of 8,
and the physical vehicle was always kept on its path. But in
order to successfully extend to the quadrotor platform the filter
needs to be robust.

The first series of tests consisted in creating systematic
errors as would the IMU bias create on the quadrotor platform.

289

To simulate that, Fig.6 shows the path travelled by the robot
ROBreal with a wheel larger than the other (x1.5). The
original path of the simulated vehicle ROBsim is travelled
three times in a row to make sure the physical one returns to
its original position.

Fig. 6. Influence of a systematic error on a square path

Oscillations appear after the turns but they are rapidly
damped in the straight segment. The maximum deviation from
the original path was of 6cm representing only a third of the
platform’s width. This shows that the Kalman filter and on-
board controller can keep the agent on track and on time even
with sensor bias or physical damage.

To test the effects of non-systematic errors, the vehicle is
returned to its calibrated state to travel along the same path.
During a turn, one of the wheels is blocked to induce an error
in heading then the robot is manually moved in the middle of
its path to create a significant error in position. In both cases
the vehicle finds its way back to the original path.

The discrete Kalman filter proves to be robust enough to
overcome the effects of systematic and non-systematic errors.

IV. EXTENSION TO THE THIRD DIMENSION

Once the algorithms were extensively tested in their 2D
environment to prove their accuracy and robustness, they were
extended to the third dimension. The model of the vehicles was
switched back to a proper quadrotor helicopter [7][8] and the
previous methods were optimized for 3D applications towards
health management.

A. Quadrotor model

The quadrotor is very simply modelled as four rotors
equipped at each end of a cross. All the propellers axes are
parallel and fixed directly on the DC motors shaft. The blades
have a fixed pitch and push the air downwards. Fig.7 shows the
quadrotor structure in hover. Each propeller is defined by an
orientation of rotation (blue circular vector), a rotating speed
(Ω1,Ω2,Ω3,Ω4 for respectively the front, right, rear and left
rotor) and a velocity (blue vertical vector) representing the
amount of thrust created by the motor/propeller assembly. The
fixed-body B-frame, in red, is set up to be front / left / up so
that the altitude is measured positively as the quadrotor is
climbing.

To take advantage of the body symmetry and keep the inertia
matrix time-invariant, the equations of motion are formulated

Fig. 7. Simplified quadrotor in hover

in the B-frame hence two assumptions can easily be made to
simplify the model:
• The origin of the B-frame is coincident with the quadro-

tor’s centre of mass.
• The quadrotor’s axes of inertia coincide with the axes of

the B-frame.
Under these assumptions and following the Newton-Euler

formalism, the dynamics of a rigid body subject to external
forces applied to its centre of mass can be expressed in the
B-frame by Eq.9.[

mI3×3 0
0 I

] [
V̇
ω̇

]
+

[
ω.mV
ω.Iω

]
=

[
F
τ

]
(9)

To comply with real-time computation capabilities, the less
influent effects such as the hub forces, ground effect and
rolling moments were neglected and the thrust/drag coeffi-
cients were assumed constant. The matrix system (9) can then
be rewritten in a state-space form Ẋ = f(X,U) where U is
the input vector and X the state vector chosen as follows:

X = [φ φ̇ θ θ̇ ψ ψ̇ x ẋ y ẏ z ż]T

U = [U1 U2 U3 U4]T
(10)

with
U1 = b (Ω2

1 + Ω2
2 + Ω2

3 + Ω2
4)

U2 = l b (−Ω2
2 + Ω2

4)
U3 = l b − (Ω2

1 + Ω2
3)

U4 = d (−Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4)
Ω = −Ω1 + Ω2 − Ω3 + Ω4

(11)

From which we can derive the following equations of
motion:

φ̈ = θ̇ ψ̇
Iyy−Izz
Ixx

− θ̇ Ω JR
Ixx

+ U2
l
Ixx

θ̈ = φ̇ ψ̇ Izz−Ixx
Iyy

+ φ̇ Ω JR
Iyy

+ U3
l
Iy

ψ̈ = φ̇ θ̇
Ixx−Iyy
Izz

+ U4

Izz

ẍ = (sψ sφ + cψ sθ cφ) U1

m

ÿ = (−cψ sφ + sψ sθ cφ) U1

m

z̈ = −g + cθ cφ
U1

m

(12)

A PID controller was added to the model to stabilize the
model and then tested on the physical quadrotor. Without
feedback from the camera tracking device presented above,
the position controller was turned off for the first flights. The
objective was to see if by simply controlling the throttle the
attitude controller can stabilize the platform in hover. With
the exact same PID coefficient as in the simulation, the flight
was successful. A slight drift appeared on the X axis just
like the simulation of a lone attitude controller would suggest
but it was easily decreased by tuning the ESCs and the PID

290

coefficients (all less than 10% away from their simulation
value) and will be completely cancelled once the position
controller is in place.

B. Improvements on the 2D protocols
The A* path planner and the carrot following method

were both kept for the guidance of the quadrotor platform.
Compared to their previous centralized solution adopted for the
2D application, the decision-making is much more distributed.
The quadrotor offers more processing power to run more
complex algorithm so that both the path planning and tracking
techniques could be run on-board. Apart from increasing
the number of primitive movement at each iteration, the A*
process stayed the same. Fig.8 shows the 3D path generated
by the improved A* as well as the quadrotor following the
carrot point as it travels the path.

Fig. 8. Pure pursuit path following

On the other hand, significant changes were made to the
pure pursuit to take more control over the carrot and facilitate
the integration of a new Conflict Detection and Resolu-
tion scheme. The Distributed Reactive Collision Avoidance
(DRCA) algorithm [9] is being developed to guarantee a
conflict resolution scheme for n nonholonmic vehicles, based
on speed changes and lateral manoeuvres. It also distributes
the computation load among the different subsystems. Con-
sequently, the central computer can focus on a high-level
task management and would be able to handle more units.
Hence the overall system does not depend exclusively on
the centralized intelligence making it more robust to eventual
bugs.

Originally the DRCA takes into account the dynamic
limitations of the platform in the conflict resolution scheme.
Here the carrot is assumed to be a projection of quadrotor in
the near future so that the avoidance process can be applied
to the carrot instead of the vehicle. Since the carrot has
no reality, it has no dynamic limitations. It can be created,
moved and deleted freely to go around an obstacle or avoid
an incoming friendly agent. The dynamics of the quadrotor
will be handled by the controller and path tracking methods
already in place. This will enable the generation of new
avoidance trajectory and extend the effectiveness of the
DRCA to more complex scenarios.

The Auction algorithm was kept to deal with the target
assignment problems, and was improve to incorporate the
case of ntargets > nunits previously covered by the genetic
algorithm. Though it was giving good results, the genetic
algorithm is computationally heavy and does not fit the real
time expectations of this work. The new Auction algorithm
also has the ability to assign units as to optimize time rather
than energy. The 2D version tried to minimize the added length
of all the paths thus minimizing the power consumed by the
swarm. Now the algorithm can choose to minimize the length
of the longest path thus trying to optimize the time needed to
reach all the targets.

V. FURTHER WORK: TOWARDS FULL AUTONOMY

The quadrotor should be able to detect a faulty behaviour
from its sensors and actuators. Thus the on-board decision
making would be performed based on the current state of
the vehicle and its priority level could be changed depending
on the significance of the recorded problem. Once the central
computer is aware of the issue, it can reassign the other agents
to account for the vehicle in trouble.

The integrity of the swarm, the safety of its direct environ-
ment and the success of the mission will always prevail on
the individual. In case of a minor issue however, the central
intelligence can land the agent and warn the operator that it
needs to be fixed or replaced.

VI. CONCLUSION

In this paper we presented a set of algorithms grouped
into a single method in order to control the behaviour of a
multi-agent system. The work was first restricted to a two
dimensional scenario to focus on the versatility of the target
assignment and its real time capabilities. All the scenarios
implemented were successfully analysed by the task manager
and properly carried out by the vehicles. The algorithms
were then extended to the third dimension and optimized
to account for the unstable quadrotor dynamics. Significant
modifications on the pure pursuit method enabled a smooth
and safe trajectory in a dense environment. The path tracking
algorithm will be further improved to incorporate a DRCA-
inspired conflict resolution and avoidance protocols in partially
known environments.

REFERENCES

[1] E. Saad, J. Vian, G. J. Clark, and S. Bieniawski, Vehicle Swarm Rapid
Prototyping Testbed. The Boeing Company, Seattle, WA, 98124.

[2] G. M. Hoffmann, H. Huang, S. L. Waslander, C. J. Tomlin, Precision
Flight Control for A Multi-Vehicle Quadrotor Helicopter Testbed. 2011.

[3] Khayyam, Recherche de chemin par l’algorithme A*. 2008.
[4] A. Tsourdos, Cooperative Path, Planning of Unmanned Aerial Vehicles.

2011.
[5] D. P. Bertsekas, Auction algorithms for network flow problems. Com-

putational Optimization and Applications. 1992.
[6] M. Becker, C. Dantas and W. Macedo, Obstacle Avoidance Procedure for

Mobile Robots. Mechatronics, vol. 2. 2006.
[7] T. Bresciani, Modelling , Identification and Control of a Quadrotor

Helicopter. 2008.
[8] S. Bouabdallah, Design and Control of Quadrotors with Application to

Autonomous Flying. PhD thesis, 2007.
[9] E. Lalish, K. A. Morgansen, Distributed reactive collision avoidance.

Autonomous Robots, special issue, 2012.

291

