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Abstract— Glass container forming processes have attracted 
more attention over the past years due to the problem of lacking 
process information and correlation for key variables within the 
processes. In this paper an approach to develop process modeling 
and intelligent software sensing is presented for application 
based on multivariate statistical process control methods. The 
intelligent software sensors are able to provide real time 
estimation of key variables, and Partial Least Squares (PLS) 
techniques have allowed for forward prediction of final product 
quality variables. An application of software sensors used for 
container forming blank temperature is presented along with 
PLS being applied to predict the wall and base dimensions of 
glass container products. Initial results show that these methods 
are very promising in providing a significant improvement within 
this area which is usually unmonitored and is susceptible to long 
time delays between forming and quality inspection. 
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I.  INTRODUCTION 

The Glass container manufacturing industry is a huge 
global sector of package manufacturing which produces 
products for various industrial sectors such as cosmetics, 
pharmaceutical and the food and beverage industry. Glass 
containers are produced by the melting of raw materials mainly 
sand, soda ash and limestone in a gas or electric fired furnace at 
temperatures above 1200 °C. The glass once molten is then 
distributed away from the furnace along channels known as 
fore-hearths which are at set controlled temperatures to the 
relevant glass forming machines, where upon arrival the 
molten glass is allowed to drain through an orifice. The molten 
glass is then cut as it leaves the orifice at a precise set rate to 
allow for enough molten material for the particular product 
being formed. This ‘cut’ molten glass is then delivered to the 
glass forming machine, typically in double or triple cavities. 

At this stage high capacity, high volume production 

machinery is used to mould the molten glass into the various 
batches of containers that one manufacturing facility may 

produce. It is this part of the Glass Container Forming 
Processes which have been a difficult challenge to engineers. 
Difficulties with the harsh nature of the environment and 
obtaining accurate information relating to its process make it 
extremely challenging. The lack of on-line sensing for process 
variables has been a serious obstruction and has left the process 
to somewhat a ‘black art’ over the years. Now with higher 
expectations and demands from customers this process has 
never been as important to monitor and refine. At present 
almost all control methods and policies applied are based on 
off line information for the process operators and supervision, 
this compromises quality as the delays between product 
formation and inspection is so large that abnormalities can go 
undetected for a while. It is also relatively unknown at this 
stage as to the actual limits and constraints that exist on the 
variables within this part of the process or as to the actual 
combined contribution that each of these variables actually has 
upon the final product being made. 

Multivariate Statistical process control methods based upon 
linear projection have attracted interest and have been are 
proven method for producing empirical models for Industrial 
processes. Principle Component Analysis (PCA) and Partial 
Least Squares (PLS) techniques have been applied to many 
practical regression problems to estimate quality related 
variables. Zhang and Lennox [1] applied these techniques to 
batch fed fermentation processes with the focus on the 
adoption and application of PLS and PCA techniques for 
sensor failure detection and prediction. Other promising results 
were achieved within batch fermentation processes with 
various publications made [2][3][4][5], applications have also 
been deployed within the steel industries and used for 
advanced monitoring of plant functions to determine the 
relationship between process variables and production quality 
[6]. 

The applications of the above-mentioned PLS and PCA 
techniques have proved successful in providing soft-sensing 
techniques and linear regression model prediction for process 
variables. 
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This paper aims to develop software sensors and also linear 
regression model prediction of glass container forming quality 
related variables using PLS techniques. Also the paper will 
demonstrate the ability of PCA to provide abnormal condition 
detection and isolation within glass container forming 
processes. 

II. STATISTICAL MODELLING AND SOFT-SENSING USING 

MULTIVARIATE STATISTICAL PROCESS CONTROL TECHNIQUES 

A. Principle Component Analysis 

Principle Component analysis (PCA) is a multivariate 
statistical method for identifying patterns within data sets by 
highlighting similarities and differences within the data 
presented. PCA attempts to find combinations of factors or 
variables that describe trends within the data, after data 
assembly PCA mathematically it is a method of writing a 
matrix of X variables of rank R as the sum of R matrices of 
rank 1 initially assuming the data are mean cantered [7]. 

X = M1 + M2 + ... + M3 + ... + Mr  (1) 

Each matrix with m rows and n columns, and each variable 
being a column and each sample a row 

PCA decomposes the matrix X as the sum of r ti and pi 
pairs where r is the rank of the matrix X 

rrkk2211 pTt...pTt...pTtpT t X +++++=  (2) 

The ti, pi pairs are ordered by the amount of variance 
captured. The ti vectors are known as scores and contain 
information on how the samples relate to each other. The pi 
vectors are known as loadings and contain information on how 
the variables relate to each other. Mathematically, PCA relies 
upon an eigenvector decomposition of the covariance or 
correlation matrix of the process variables. For a given data 
matrix X with m rows and n columns, the covariance matrix of 
X is  

1

X
  cov(X)

T

−
=

m

X
   (3) 

provided that the columns of X have been “mean-cantered" by 
subtracting off the original mean of each column.  

In the PCA decomposition, the pi vectors are eigenvectors 
of the covariance matrix;  

iii p  cov(X)p λ=     (4) 

where λi is the eigenvalue associated with the eigenvector pi. 
The score vector ti is the linear combination of the original X 
variables defined by pi.  

Another way to look at this is that the ti are the projections 
of X onto the pi. The ti, pi pairs are arranged in descending 
order according to the associated λi. The λi are a measure of 
the amount of variance described by the ti, pi pair. The first 
pair captures the largest amount of information in the 
decomposition and each subsequent pair captures the greatest 
possible amount of variance remaining after subtracting tipi 
from X. 

B. Partial Least Squares 

PLS is a system identification tool that is capable of 
identifying the relationships between input (X) and output (Y) 
variables. The advantage that this approach offers over more 
traditional identification techniques, such as ordinary least 
squares, is that it is able to extract robust models even in 
applications involving large numbers of highly correlated and 
noisy process variable measurements. 

The approach works by selecting factors of cause variables 
in a sequence that successively maximizes the explained 
covariance between the cause and effect variables. Given a 
matrix of cause data, X, and effect data, Y, a factor of the 
cause data, tk, and effect data, uk, is evaluated, such that: 

EptX
nxnp

k

T

kk += ∑
<

=1
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and 
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nxnp

k

T

kk += ∑
<
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    (6) 

where E and F are residual matrices, np is the number of inner 
components that are used in the model and nx is the number of 
causal variables. pk and qk are referred to as loading vectors. 

These equations are referred to as the outer relationships. 
The vectors tk are mutually orthogonal. These vectors and uk 
are selected so as to maximise the covariance between each 
pair, (tk, uk). Linear regression is performed between the tk and 
the uk vectors to produce the inner relationship, such that: 

kkkk tbu ε+=    (7) 

where bk is a regression coefficient, and εk refers to the 
prediction error. The PLS method provides the potential for a 
regularised model through selecting an appropriate number of 
latent variables, uk in the model (np). The number of latent 
variables is typically generated through the use of cross 
validation. 

III. ADVANCED MONITORING TECHNIQUES USING PCA 

A. PCA Arrangement 

PCA does not attempt to resolve any relationship between 
input and output data but it identifies patterns within data, as 
the glass container forming process is constant, by analysing 
the data present at one condition would give a suitable set of 
data to train a PCA model for identification of process 
changes. The data was constructed into a Matrix (X), where 
each column was a variable and each row a sample of the 
variables at a specific point in time. 
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B. Implementation Of Advanced Monitoring Using PCA 

A PCA Model was generated which consisted of 4 
principle components which described 95% of the entire 
variation within the data sets , this model was then used to test 
against known faulty conditions which occurred within the 
glass container forming process. 

Figure 1 shows the impact of the erroneous data upon the 
first two principle components. It depicts the new loaded data 
to exist well outside that of known good limits, this breach 
alone could be used to detect process abnormality. There are 
other components of further interest when performing 
Principle Component Analysis these are that of the Q residuals 
and Hoitelling T2 charts. The Q residuals give an indication of 
the measure of difference ‘or residual’ between a sample of 
data and its projection onto the components retained in the 
original model and the Hoi telling T2 contributions describe 
how much variation is within each sample to that retained 
within the  model. Figure 2 shows this information. 

 

 

Figure 1 First two PC’s loaded against Model Data 

 

 

Figure 2 Q residual chart of new loaded PCA data 

 

Figure 3 Q Residual Contributions at point of detection 

From Figure 2, it can be seen that at around sample 570 a 
difference between the data in the model and the data now 
loaded is detected, this difference becomes even worse, at 
around sample 624 where the Q residual value goes extremely 
large. What we are actually experiencing here is an indication 
that something is wrong, to what we deem normal operating 
conditions for blank temperatures. Further investigation into 
the data at sample 624 shows that variables 5 and 6 are the 
main cause of this anomaly. 

Looking at the data at this point indicates a sensor failure 
on IS station 3, variables 5 and 6. The above shows promising 
results that PCA techniques can be used for identifying 
process abnormalities. 

IV. CONSTRUCTION OF INTELLIGENT SOFTWARE SENSORS 

A. PLS Model Development 

The first stage in the development of a suitable PLS Model 
is to obtain relevant training and model testing data. In this 
application Data was collected from two main process areas, 
the actual process variables themselves and the final product 
quality data measured and recorded by the operatives 
themselves. 

There was also a further problem introduced within this 
process as there is huge transport lag between the process data 
recorded and the quality data obtained from the operatives, 
here an empirical approach was undertaken in order to 
calculate the desired transport lag and construct the data matrix 
for analysis to begin.  

Finally a PLS Model was generated which contained 3 
latent variables was developed using this data. 

In this model the following measurements were used as 
input variables (X) 50 Psi  I-S Station operating Air , 35 Psi I-S 
Station Operating Air , Plunger Cooling I-S Station Air and IS 
Station Blank Temperatures , with Output Variables (Y) of 
container wall thickness measurements and container base 
thickness Measurements. 
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Figure 4 PLS Model Data Construction 

The input Variables were constructed into the input variable 
matrix X and the output variables into the column vectors.  
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These data matrices were then split into two, half utilised 
for model training data and the remaining half utilised for 
model verification. 

B. Implementation of Software Sensors 

Based on the PLS model generated, a software sensing 
approach was investigated as due to the harsh nature of the 
environment it was common to experience sensor failures, so 
with the ability to predict these variables we would be at an 
advantage if required to adopt such soft sensing techniques for 
further applied control loops around this process. A ‘software 
sensor’ was developed to estimate a container forming IS 
station Blank temperature. The accuracy of this software sensor 
is illustrated in Figure 5, although there is some modelling 
error present this model development is a big step forward and 
as a basis to providing feasibility towards such applications. 
The figure gives good evidence that PLS based model 
prediction is feasible for 'soft sensing' applications on glass 
container forming processes. 

 

Figure 5 PLS Blank Temperature Prediction 

V. MODEL PREDICTION OF GLASS CONTAINER WALL AND 

BASE THICKNESS 

 

A. PLS Model Development 

Using the data Matrices X, Y1 and Y2 previously 
constructed it is also possible to utilise the obtained process 
data to predict product quality variables. 

B. Implementation of  Linear regression Modellling using 
PLS fitting 

In the previous section it was demonstrated that PLS 
techniques can be used for software sensing techniques within 
glass container forming processes, in this section it will be 
shown that the same techniques are able to be applied to 
predict two important glass container quality variables - 
container wall thickness and base thickness. Based upon the 
PLS model generated, real data measured for container base 
thickness and wall thickness are compared with what are 
predicted using the container forming process input variables, 
this is of great benefit as the ability to predict such variables 
would remove the transport times involved before any 
feedback is generated on glass container variables. 

The PLS Model generated is found to be very good in this 
application and has the ability to predict the container wall 
thickness, the model generated actually does so to within 
0.5mm. Further tests gave similar promising results with the 
ability to predict container base thickness as shown in Figures 
6 and 7. Comparing with the real data collected from 
production (solid green line), PLS Model is found to predict 
these product quality variables and shows promising evidence 
that these techniques and methods are applicable to glass 
container forming processes.  

 

 

Figure 6 PLS Model Wall Thickness Prediction 

 

284



 

Figure 7 PLS Model Base Thickness Prediction 

 

VI. CONCLUSIONS 

In this paper, statistical models of a glass manufacturing IS 
machine processes have been produced. Comparisons between 
the real-world data and that produced from the developed 
models were produced and gave promising results towards the 
application of such techniques. Intelligent software sensors 
were also developed and discussed. All the initial results show 
that these methods are very promising in providing a 
significant improvement within this area which is usually 
unmonitored and is susceptible to long time delays between 
forming and quality inspection. 
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