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Abstract—In order to meet tight product quality specifications
for batch/fed-batch processes, it is vital to monitor and control
batch product quality throughout the batch duration. The ideal
strategy is to control batch product quality through trajectory
tracking of a desirable batch product quality evolution during
the batch run. However, due to the lack of in-situ sensors
for continuous measurements of batch product quality, the
measurement of batch product quality is usually implemented
by laboratory assay of samples and thus these measurements
are generally intermittent. Therefore direct trajectory tracking
of batch product quality is not feasible for such scenarios with
intermittent measurements. This paper proposes an approach
to use intermittent measurements to realize trajectory tracking
control of batch product quality through moving window estima-
tion. The first step of the approach is to identify a partial least
squares (PLS) model using intermittent measurements to relate
process variable trajectories and batch product quality. Then
the identified PLS model is further applied to predict product
quality trajectory during the batch run so as to realize trajectory
tracking of a desirable product quality evolution. An example
from fed-batch fermentation for penicillin production is used
to illustrate the principle and the effectiveness of the proposed
approach.

I. INTRODUCTION

Batch processes are widely used in industry for manu-
facturing low-volume and high-value added products such
as specialty chemicals, polymers and pharmaceuticals [1].
The popularity of batch operation in industry has two main
reasons [2]: one is that batch processes are easier to set up
and operate with the possibility of continuous improvements
from earlier batch runs; the other is that batch operation is
more efficient than continuous operation for frequent product
changes and the production of small quantities with little or no
hardware modification at all, which is especially attractive for
starting commercial productions of novel materials to recover
research and development costs before competing products
affect prices.

The ultimate task for batch processes is to ensure consistent
and desirable batch end-product quality for each batch run.
This is not easy to fulfil in practice as batch processes
are usually complex physical-chemical processes with time-
varying and nonlinear dynamics. Furthermore, there still lack
reliable in-situ sensors to monitor batch product quality during
the batch run. Batch-to-batch variations resulting from changes

to raw material properties and operating conditions also ren-
der robust control of batch end-product quality even more
challenging. Many process monitoring and control schemes
have been proposed in the literature to confront the issues
encountered in batch operations [3], [4], [5], [6], [7]. Initial
studies for the control of batch processes were based on
mechanistic process models and traditional control methods
[8], [9], [10], [11], [12], [13]. However, the identification of
an accurate mechanistic model for a batch process is often
difficult and time-consuming. Therefore multivariate statistical
process control methods, which are based on process history
data to develop empirical models, become a popular technique
for modern process monitoring and control [14], [1], [15], [4],
[16], [7], [17]. Among them, multi-way principal components
analysis (PCA) and multi-way projection to latent structures
(PLS), which are the extensions of PCA and PLS, enabling
them handle three-dimensional matrices, are most widely used
[18], [19], [20], [21], [7].

Using latent variable models such as multi-way PCA and
PLS, currently there are two control approaches for batch pro-
cesses: batch end-product quality control and trajectory track-
ing. The typical batch end-product quality control approach is
addressed in [19], [22], where a PLS model relates process
variable trajectories to batch end-product quality. Manipulated
variable trajectories (MVTs) are determined such that they
minimize the difference between the predicted and the target
batch end-product quality. Since there is no measurement of
batch product quality during the batch running period, the
effectiveness of the approach relies heavily on the accuracy
of the identified PLS model. The typical trajectory tracking
approach is addressed in [21], [7], where a PCA model
is identified to model the process dynamics of all process
variable trajectories and MVTs are deduced from feeding
future process variable trajectories with the target trajectories.
Due to the difficulty of on-line measurements of batch product
quality during the batch run, the target trajectories are usually
some key process variable trajectories such as temperature set-
points rather than the target batch product quality trajectories
and thus the assumption is that the batch end-product quality
can be guaranteed if these key process variable trajectories
follow their pre-determined set-points. However, such an as-
sumption is not always true as the batch end-product quality
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can deteriorate in the case of disturbances even if the pre-
determined process variable trajectories are perfectly tracked.

Although batch product quality cannot typically be mea-
sured continuously along with other process variables due to
the lack of in-situ sensors for quality measurement, it can often
be measured intermittently through laboratory assay of sam-
ples taken during the batch run. Making use of the intermittent
measurement data, a PLS model can be identified according to
the method proposed in [5], where a series of created pseudo
batches are synchronized to their batch endpoints and a PLS
model is identified upon the synchronized pseudo batch data.
The identified PLS model can further be applied to predict
future batch product quality trajectories using moving window
estimation. Thus it is possible to realize trajectory tracking of
a pre-determined product quality trajectory directly rather than
trajectory tracking of other process variable trajectories for a
new batch run.

This paper proposes a practical approach to realize trajec-
tory tracking control of batch product quality using intermit-
tent measurements and moving window estimation. The paper
is organized as follows: Section 2 details the methodology
of the proposed trajectory tracking control of batch product
quality; a case study of penicillin fermentation is described
in Section 3; some conclusions and remarks are provided in
Section 4.

II. TRAJECTORY TRACKING CONTROL OF BATCH PRODUCT
QUALITY

In order to realize trajectory tracking control of batch
product quality using intermittent measurements and moving
window estimation, three steps are to be fulfilled: the first step
is to identify a PLS model using intermittent quality measure-
ments and a PCA model without any data from intermittent
quality measurements; the second step is to predict future
quality trajectories using the identified PCA&PLS models and
the strategy of moving window estimation; and the third step
is to compute the MVTs and implement them in a receding
horizon manner. These three steps are to be described in detail
in the following subsections.

A. Model identification

For PLS, process variables are divided into two groups: the
predictor values such as measured process variable trajectories
and manipulated variable trajectories; the response values such
as measured batch product quality variables. The method for
identifying the PLS model using intermittent measurements is
similar to the approach proposed in [5], where pseudo batches
are created at those measurement points and they are further
aligned toward their end-points for identifying the PLS model
based on a selected modeling window.

Taking two batches shown in Figure 1 as an example,
each batch has three intermittent measurements for product
quality during the batch run. Therefore a total of six pseudo
batches are created and they are aligned toward their end-
points as shown in Figure 1. Then a modeling window is
selected to identify the PLS model with the intermittent

Fig. 1. Model building using intermittent measurements

measurements as the response values and all other process
variable measurements including the manipulated variables as
the predictor values. The predictor and response values are
generally three-dimensional matrices of size I×J×K, where
I is the number of pseudo batches for which data are available,
J is the number of variables that are measured and K is the
number of samples collected during the time period of the
modeling window. These three dimensional matrices of data
can be unfolded in a batch-wise way to model differences
among batches [7]. The batch-wisely unfolded data are further
mean-centered and scaled to be unit variance and performing
PLS on the obtained data results in a latent variable model of
the form:

X = TPT + E, (1)
Y = UQT + F, (2)

where X is a matrix of I × JxKx for the predictor variables,
Y is a matrix of I × JyKy for the response variables, P of
JxKx × A and Q of JyKy × A are the loading matrices,
respectively. Here A is the number of latent variables. The
scores T and U are related by a diagonal matrix B of
proper dimensions with U = TB. T = XW(PTW)−1,
where W is the weight matrix. Finally, E and F are residual
matrices. In practice, the PLS model is often expressed as
a predictive model relating the predictor variables and the
response variables directly [23]:

Y = XW(PTW)−1BQT + F∗, (3)
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where F∗ is a residual matrix.
Without considering the intermittent measurements for

product quality variables, multi-way PCA can be identified
instead to model the correlation structure for all predictor
variables:

X = TcPT
c + Ec. (4)

B. Moving window estimation

Once the PCA and PLS models have been identified from
past batch data, they can be further used to predict future batch
product quality for a new batch run through the strategy of
moving window estimation. The principle of moving window
estimation can be described in Figure 2, where the length of
the modeling window for the identified PCA&PLS models is
assumed to be l and the current time instant is θi. The first
step for moving window estimation is to place the modeling
window to cover the measured l − 1 samples of predictor
variables, which are uθi−l+1→θi−1 for the manipulated vari-
able xθi−l+2→θi and for all other measured process variables.
Assume that the future manipulated variable trajectory is
known in advance, then the future process variables xθi+1

can be estimated using the identified PCA model and missing
data algorithms. Several missing data imputation methods have
been proposed in the literature [24], [25]. The common idea
of them is to make use of the underlying data pattern to
deduce the missing part from the known part. Taking the
missing data algorithm called Projection to the Plane as an
example, the predictor variables x are grouped into two parts
xT = [x∗

T

x]
T

], where x∗
T

= [xTθi−l+2→θi uTθi−l+1→θi ]
contains the known data and x] = xθi+1 contains the missing
data. The loading matrix P from the identified PCA model
can also be grouped into two corresponding parts P∗c and P]

c.
Then the missing data can be deduced from the optimal score
vector τ̂ , which is obtained from minimizing the following
objective function [21]:

J =
1
2

(x∗ −P∗cτ)T (x∗ −P∗cτ). (5)

The optimal solution for Eq. (5) is τ̂ = (P∗
T

c P∗c)
−1P∗

T

c x∗

and thus the missing data x] can be deduced from it straight-
forwardly:

x] = P]
cτ̂ . (6)

Therefore the estimation of the future process variable xθi+1,
denoted as x̂θi+1, can be expressed as a function of the
measured process variable trajectories xθi−l+2→θi and the
manipulated variable trajectories uθi−l+1→θi :

x̂θi+1 = P]
c(P
∗T
c P∗c)

−1P∗
T

c [xTθi−l+2→θi uTθi−l+1→θi ]
T . (7)

Using the estimated x̂θi+1 and the identified PLS model, the
product quality at the time instant θi + 1, denoted as ŷθi+1,
can be predicted as follows according to Eq. (3):

ŷθi+1 = [xTθi−l+2→θi x̂Tθi+1 uTθi−l+1→θi ]W(PTW)−1BQT .
(8)

After the process variable values and the product quality
value at the time instant θi + 1 have been estimated using

Fig. 2. Moving window estimation

the identified PCA&PLS models, the modeling window is to
be moved forward as shown in Figure 2. Then the process
variable values and the product quality value at the time
instant θi + 2 can be deduced in a similar way, where the
value of xθi+1 is assumed to be known in advance as the
formerly estimated value x̂θi+1. The whole estimation process
is repeated sequentially up to the end of the control horizon
θc. So the estimated process variable trajectories x̂θi+1→θc and
the estimated product quality trajectories ŷθi+1→θc can both
be expressed as a function of the future manipulated variable
trajectories uTθi→θc−1.

C. Trajectory tracking control

The proposed trajectory tracking control is performed in
a typical receding horizon manner: the future manipulated
variable trajectories with the horizon of c are optimized to
minimize the difference between the predicted future quality
trajectory and the target future quality trajectory at each con-
trol decision point; the optimized future manipulated variable
trajectories are implemented into the process up to the next
control decision point and the whole process is repeated until
the operation ends. Assume that the control decision point
is at the current time instant θi and the target future quality
trajectory is ȳθi+1→θi+c, the predicted future quality trajectory
ŷθi+1→θi+c can be obtained using moving window estimation.
According to the moving window estimation procedure de-
scribed in Eqs. (7-8), the predicted future quality trajectory
ŷθi+1→θi+c can be illustrated as a function of the future
manipulated variable trajectory uθi→θi+c−1, i.e.,

ŷθi+1→θi+c = f(xθi−l+c+1→θi ,uθi→θi+c−1). (9)
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The corresponding optimization for the optimal future manip-
ulated variable trajectory ũθi→θi+c−1 can then be formulated
as follows:

min
uθi→θi+c−1

(ŷθi+1→θi+c − ȳθi+1→θi+c)
TQ1

(ŷθi+1→θi+c − ȳθi+1→θi+c) +
∆uTθi→θi+c−1Q2∆uθi→θi+c−1,

s.t. Ulb ≤ uθi→θi+c−1 ≤ Uub (10)

where Q1 and Q2 are the weight matrices for trajectory errors
and control rates, respectively; Ulb and Uub are the lower and
upper bound for uθi→θi+c−1, respectively.

III. CASE STUDY

In order to assess and validate the proposed approach for
trajectory tracking control of product quality, a benchmark
simulation for fed-batch fermentation of penicillin is used. The
simulator, called Pensim, is based upon a series of detailed
mechanistic models that describe the fermentation process
[26]. The following process variables are collected hourly
during the fermentation process: aeration rate, agitator power,
substrate feed temperature, substrate concentration, dissolved
oxygen concentration, culture volume, carbon dioxide con-
centration, pH, fermenter temperature, generated heat and
substrate feed rate. The substrate feed rate is the manipulated
process variable and the batch product quality is the biomass
concentration that is measurable intermittently through labo-
ratory assay during the batch run. Ten batch data are collected
for model building and each batch has a duration time of 200
hours. It is further assumed that the biomass concentration is
measured four times at a time interval of 50 hours during the
batch running for each batch and therefore a total of 40 pseudo
batches are created according to Figure 1. The validation of the
proposed approach is performed in two steps: the first step is
focused on building the PCA&PLS models and validating their
accuracy for the strategy of moving window estimation; the
second step is focused on realizing trajectory tracking control
of batch product quality using the identified PCA&PLS models
and the strategy of moving window estimation. These two
steps are detailed in the following two subsections.

A. Building the PCA&PLS models and validating their accu-
racy using moving window estimation

The PCA&PLS models are identified using the created 40
pseudo bath data, where the length for the modeling window is
selected to be 50 hours and the number of latent variables for
the identified PCA&PLS models is selected to be 12 through
cross-validation [27]. Taking a new batch run for an example,
the control decision point is set at 50th hour and the future
substrate feed rate is also assumed to be known. Then the
future process variables such as the future carbon dioxide
concentration can be estimated recursively using the identified
PCA model according to Eq. (7). The estimated future carbon
dioxide concentration from 50th hour to 90th hour is shown in
Figure 3, where the estimated values are compared with their

Fig. 3. Moving window estimation of the future carbon dioxide concentration

actual values. It can be seen that the estimated values are close
to their actual values and thus the identified PCA model can be
used to estimate the future process variable trajectories using
the strategy of moving window estimation.

Using the same known future substrate feed rate and the es-
timated future process variable trajectories, the future biomass
concentration can also be predicted using the identified PLS
model and the strategy of moving window estimation accord-
ing to Eq. (8). The predicted future biomass concentration
from 50th hour to 90th hour is shown in Figure 4, where the
predicted values are compared with their actual values. It can
be seen that the identified PLS model can also successfully
apply to predict the future product quality trajectory. These
results shown in Figures 3 and 4 have demonstrated the
accuracy of the identified PCA&PLS models as well as the
effectiveness of moving window estimation and therefore they
can be used for the following trajectory tracking control of
batch product quality.

B. Trajectory tracking control using the identified PCA&PLS
models and moving window estimation

For the same new batch run, the task of the proposed con-
troller is to track a pre-determined product quality trajectory
during the batch run. Taking a pre-determined biomass concen-
tration trajectory under nominal conditions as an example, the
control result of tracking the predetermined trajectory is shown
in Figure 5, where the control horizon is selected to be 10
hours and the controller is switched on at 50th hours. It can be
seen that the target product quality trajectory has been tracked
approximately. However, there are some oscillations for the
controlled quality trajectory. This is due to the oscillatory
trajectory of the computed substrate feed rates, as shown in
Figure 6. Additional measures such as adding extra constraints
on control input sequences are to be taken to reduce such
oscillatory behavior for a smoother trajectory tracking in the
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Fig. 4. Moving window prediction of the future biomass concentration

Fig. 5. Tracking an ideal product quality trajectory using the controller

future work [22].
The proposed control approach for trajectory tracking of

batch product quality is further compared to the traditional
end-point control approach of batch product quality [19]. In
order to demonstrate the benefits of considering intermediate
product quality trajectory rather than just the batch end-
product quality, the fed-batch process is assumed to be subject
to un-modeled disturbances. The added disturbance is chosen
to be a step change in the concentration of the substrate feed
from its nominal value of 600 g/l to 570 g/l occurring at
the 30th hour. As shown in Figure 7, the traditional batch
end-product quality control approach lacks the capability to
detect the occurred disturbance and thus generates a much
lower batch end-product quality than the proposed control
approach. The proposed control approach manages to track

Fig. 6. The computed manipulated variable trajectory from the controller

Fig. 7. Tracking product quality trajectory subject to un-modeled disturbances

the target product quality trajectory approximately despite the
occurrence of the added disturbance and thus it can generate
a much better batch end-product quality as well.

IV. CONCLUSIONS

Due to the lack of in-situ sensors for continuous measure-
ments of batch product quality, it is hard to realize trajectory
tracking control of product quality directly. Making use of
intermittent measurements for batch product quality, this paper
proposes a practical approach for tracking a desirable quality
trajectory during the batch runs. The proposed approach is
based on the strategy of moving window estimation for online
prediction of future product quality trajectory. The benchmark
simulation results have demonstrated the accuracy of the iden-
tified PCA&PLS models using intermittent measurements and
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Fig. 8. The computed manipulated variable trajectories subject to un-modeled
disturbances

the effectiveness of the proposed trajectory tracking scheme
for batch product quality control, especially in the case of
un-modeled disturbances. The obtained manipulated variable
trajectory tends to be oscillatory and measures are to be taken
to reduce such oscillatory behavior in the future work.
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[26] G. Birol, C. Ündey, and A. Çinar. A modular simulation package for
fed-batch fermentation: penicillin production. Computers and Chemical
Engineering, 26:1553–1565, 2002.

[27] G. Diana and C. Tommasi. Cross-validation methods in principal
component analysis: a comparison. Statistical Methods and Applications,
11:71–82, 2002.

270




