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Abstract—This paper describes a systematic sensitivity analysis
of optimal operation conducted on an activated sludge process
model based on the test-bed Benchmark Simulation Model No. 1
(BSM1). The objective is to search for an operational structure
that leads to optimal economic operation, while promptly rejecting
disturbances at lower layers in the control hierarchy avoiding thus
violation of the more important regulation constraints on effluent
discharge. We start by optimizing a steady-state nonlinear model
of the process. The resulting active constraints must be chosen
as economic controlled variables. These are the effluent ammonia
from the bioreactors and the final effluent total suspended solids
at their respective upper limits, as well as the internal recycle flow
rate at its lower bound. The remaining degrees of freedom need to
be fulfilled, and we use several local (linear) sensitivity methods to
find a set of unconstrained controlled variables that minimizes the
loss between actual and optimal operation; particularly we choose
to control linear combinations of readily available measurements
so to minimize the effect of disturbances and implementation
errors.

I. INTRODUCTION

Much to the authors’ surprise, optimization of wastewater
treatment plants has not received much attention in the WWTP
research community given the small number of contributions
found in the literature. Only few articles discuss the subject
from a heuristic economic point of view[1], [2], [3] to formal
optimization using an explicit mathematical model of the
process[4], [5], [6] for optimal design and operation. However,
none of the publications define an optimal operation policy
from a systematic prism. Araujo et al.[7] applied a systematic
procedure for control structure design of an activated sludge
process in which optimization for various operational condi-
tions were carried out on a mathematical model of the process.

In this communication a systematic sensitivity analysis of
optimal operation of an activated sludge process model based
on the Benchmark Simulation Model No. 1 (BSM1) [8] is
conducted. It must be clear that all analysis, and hence all
conclusions, from this work are based on the underlying math-
ematical model of the process, and should not be considered
as definite guidelines for actual plant operation since the
mathematical model may not be able to reproduce many oper-
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Fig. 1. Schematic representation of the BSM1 activated sludge process.

ational situations. However, the results can be used in practice
as general rules-of-thumb to be tested in actual wastewater
treatment plants of the kind discussed here.

II. PROCESS DESCRIPTION

The BSMI1 [8] represents a fully defined protocol that
characterizes the process including the plant layout, influent
loads, modeling and test procedures as well as evaluation
criteria. Figure 1 shows a schematic of the process consisting
of a bioreaction section divided into five compartments, which
can be anoxic or aerobic, and a secondary settling device. In
order to maintain the microbiological population, sludge from
the settler is re-circulated into the reaction section (returned
activated sludge, @Q,.). Also, part of the mixed liquor leaving
the last reactor can be recycled to the inlet of the bioreactor
(internal recycle, J,) to enhance nitrogen removal. Moreover,
excess sludge at a rate (), is continuously withdrawn from the
settler underflow.

From a modeling point of view, the original BSM1 is based
on two widespread accepted process models: the celebrated
Activated Sludge Model No.1 (ASM1) [9] used to model the
biological process, and a non-reactive Takacs one dimensional
layer model for the settling process [10], [11]. The full model
equations as well as kinetic and stoichiometric parameters are
given within the benchmark description [8]. In addition, influent
data are provided in terms of flow rates and ASMI state
variables over a period of 14 days with 15 minutes sampling
time.

Each reactor is modeled as a perfectly-mixed, constant-
volume tank within which complex biological reactions give
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rise to component mass balance equations, generating a system
of (coupled) ordinary differential equations. The ASM1 is a
well establish and reliable model widely used among WWT
modelers, and further discussion on its known capabilities of
reproducing with fidelity the behavior of the reaction section of
an activated sludge process can be found in the vast wastewater
literature.

However, the same cannot be said about the settler model,
though, for the reason that these units display very complex
mechanisms that are not still fully understood [12]. Never-
theless, much progress has been made towards building a
physically sound model for the secondary clarifier based on the
theory of partial differential equation applied to conservation
law with discontinuous fluxes [13], [14], [15], [16]. While
these more meaningfully grounded mathematical models satis-
fying fundamental physical properties [17] still have not found
widespread application in the WWT field, it is a commonplace
to resort to approximate models of the settler, and the one due to
Takacs [10], [11] is the most widely used representation of the
secondary settler in published studies and commercial software
environments. Some authors [18], [19], [20], however, pointed
out many setbacks related to this model, among which is the
fact that the number of discretization layers is not in agreement
with numerical convergence and without distinguishing model
formulation and numerical solution, but instead it is used
solely as a model parameter in order to match experimental
observations [21]. Numerical simulations have showed [17] the
failure of Takacs’ model to represent the complex behavior of
secondary settlers under certain conditions, and this has led
researchers to switch to more reliable physically meaningful
sedimentation models. One such development is described by
Diehl [13] who formulated and analyzed dynamically the settler
model based on the one-dimensional scalar mass conservation
law (1)

0X(z,t) 0

a5+ 5, (F(X(2,),2)) = s(1)(2) (1)

where X is the flocculated solids concentration, d is the Dirac
measure, s is a source, and F' is a flux function, which is
discontinuous at three points in the space coordinate z, namely
at the inlet and the two outlets. Details are fully given in the
cited references. We here are interested in the sensitivity of
the static optimum of the settler coupled with the biological
reaction section, and the steady-state solutions of the above
equation provide the basis for our analysis.

A simple analysis of the model described in [15], shows
that the steady-state model of the settler that must hold for
optimization purposes is given by (2)

X, = S_J;(XM) )
X, — f(Xar)

qu
Xar = M(qu)

Xf S (Xm,X]W)

where X, and X, are the solids concentration in the effluent
and in the wastage streams, respectively; s is the feed flux
given by s = qyXy, where gy is the feed flux and X is
the solids concentration in the feed; f(X) is a flux function
given by f(X) = Xvys(X)+ qu X, where vs(X) is the settling
velocity law given by the double exponential equation [10];
Xy is a minimizer of f(X); X,, is a value strictly less
than X, satisfying f(X,,) = f(Xun); g and ¢, are the
effluent and wastage fluxes, respectively; M is a function that
computes the local minimizer of f(X/). In addition, we can
also calculate the steady-state concentration of suspended solids
in the clarification (X,;) and thickening zones (Xy;) as in (3)
[15]

9(Xa) +s=f(Xnm) 3
X =Xy

where g(Xcl) = Xclvs(Xcl) - leCl'

Note that, although in this communication a nonreactive
settler is considered, we here follow [14] and treat the dissolved
oxygen in the settler in a special way. We assume that the
oxygen is consumed within the settler and, consequently, the
oxygen concentration at the settler’s outlets is set to zero,
which is indeed a realist assumption. This results in a more
conservative computation of the oxygen demand in the reaction
section.

III. SYSTEMATIC SENSITIVITY ANALYSIS METHODOLOGY

The methodology is mainly based on the first 4 steps,
known as “top-down analysis”, of the more general procedure
described in [22], where economic variable selection is the key
issue. The analysis conducted is of local nature, i.e., we use
linearized models of the process to develop the methodology.

In this communication we use optimal measurement com-
binations [23] for unconstrained variable selection, i.e. the
ones left after choosing the active constraints as “primary”
economic variables. The basic idea is to select combinations
c of the measurements y such that ¢ = Hy, where H is
a (static) selection matrix. To determine H, two approaches
are developed based on a linearized model of the process and
a second-order Taylor series expansion of the cost function
used for optimization; two sources of uncertainty are assumed
which are represented by (1) external disturbances (d) and
(2) implementation (measurement) errors (n). The first of two
approaches combines these uncertainties in one single scaled
vector to minimize the worst case economic loss (L), defined as
the difference between actual operation (with a given control
structure in place) and operation under optimal control. The
second approach is to first minimize the loss with respect to
external disturbances, and then, if there are still available mea-
surements, minimize the loss with respect to implementation
(measurement) errors.

The steps to be followed are:

1. Define operational objectives: We first quantify the
operational objectives in terms of a scalar cost function (here
denoted J) as given in (4) that should be minimized
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J = cost of feed + cost of utilities (energy) @)

—revenue from valuable products

Constraints can then be added to the process as inequality
equations of the form g < 0.

2. Determine the steady-state optimal operation: Using a
steady-state model of the process, identify degrees of freedom
and expected disturbances, and perform optimizations to assess
sensitivity for the expected disturbances.

Usually, the economics of the plant are primarily determined
by the (pseudo) steady-state behavior [24], so the steady-state
degrees of freedom (ug) are usually the same as the economic
degrees of freedom. Which variables to include in the set ug is
immaterial, as long as they make up an independent set. The
important disturbances (d) and their expected range for future
operation must then be identified. These are generally related
to feed rate and feed composition, as well as external variables
such as temperature and pressure of the surroundings. We
should also include as disturbances possible changes in speci-
fications and active constraints (such as product specifications
or capacity constraints) and changes in parameters (such as
equilibrium constants, rate constants and efficiencies). Finally,
we need to include as disturbances the expected changes in
prices of products, feeds and energy.

In order to achieve near optimal operation without the need
to re-optimize the process when disturbances occur, one needs
to minimize the loss in (5)

L = Jo(c,d) — Jo(c°P!(d),d) > 0 (5)

where Jy(c,d) is the value of the cost for a chosen set of
constant setpoint variables c¢ that fulfill all remaining degrees
of freedom and Jo(c°Pt(d), d) is the value of the cost after re-
optimization. Clearly, the loss in (5) depends on the objective
function as well as on the measurements through c, since c is
a function of the available y. We then need to learn about the
sensitivity to disturbances not only of the cost function, but
also of the measurements.

At last, the steady-state optimization problem can be formu-
lated as in (6)

min Jo(z, uo, d) (©)

subject to
Model equations: f(z,up,d) =0
Operational constraints: g(z,ug,d) < 0

where z are internal variables (states). In f(xz,ug,d) = 0
possible operational equality constraints (like a given feed flow)
is also included. The main objective is to determine the optimal
nominal operating condition to be used in the variable selection
step.

3. Select “‘economic” (primary) controlled variables: In
this step, the issue is the implementation of the optimal
operation point found in the previous step in a robust and,

most importantly, simple manner. We need to identify as many
economic controlled variables (c¢) as there are economic de-
grees of freedom (ug). For economic optimal operation, active
constraints must be selected [25], which in turn consumes part
of the degrees of freedom (u’). For the remaining degrees of
freedom u (with n,, = n,, —n,/), we select variables for which
close-to-optimal operation is achieved with constant nominal
setpoints, even when there are disturbances [26]. Because our
considerations in this communication are of local nature, we
assume that the set of active constraints does not change
with changing disturbances, and we consider the problem in
reduced space in terms of the remaining unconstrained degrees
of freedom w, which can be expressed as in (7) [27]

rrbin Jo(z,u,d) @)

subject to
Model equations: f(z,u,d) =0
Active constraints: ggctive (T, u,d) =0

where we consider as active constraints a subset gactive (2, u, d)
of g(x,ug,d) for which optimal values are always at bounds
for all disturbances. By eliminating the states using the equality
constraints in (7), the unconstrained optimization problem can
be expressed simply as in (8)

Hbin J(u,d) (3)

Ensuring active constraint operation consumes part of the
degrees of freedom for optimization. The remaining degrees of
freedom need to be fulfilled, and we select variables such that
when kept at optimal setpoints leads to near optimal economic
operation despite of disturbances, i.e., the deviation (loss L in
(5)) from re-optimization as a function of disturbances should
be small. The optimal setpoints of ¢ are then determined from
the optimization at the nominal operating point. This is the
celebrated “self-optimizing” control technology [26]. It can be
shown that the loss in (5) can be expressed in its worst case
form (L) as in (9) [23]

max

d/
r
where d’ and n¥’ are the scaled disturbance and measurement
error variables related by d = Wyd' and n¥ = W,yn¥’ (Wy
and W,y are scaling matrices), and M = —M,H F , Where
F = [FW 4W,.] being F = a%—(:t the optimal measurement
(y°P') sensitivity with respect to the disturbances and M,, any
nonsingular n,, X n,, matrix. In other words, we need to find H
that minimizes (M), i.e., H = arg ming (M ).There are ba-
sically two approaches to solve for this minimization problem.
The first one solves the minimization at once by combining
disturbances and measurement errors, and an explicit formula
for H is given by (10) [23]

L:%#m@ ©)
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HT = (FFT)'\qv(GYT(FETY~tqv)~1Jl/?

(10)

where GV is the static model of the process from the uncon-

2
(5)
is the Hessian of J with respect to u evaluated at u°P* (uoﬁt is
the optimal value of the manipulated variables).

The second approach, called the extended nullspace method
[23], solves the problem by first minimizing the loss with
respect to disturbances, and then, if there are still enough mea-
surements left, minimize the loss with respect to measurement
errors. It can be shown that the explicit expression for H in
this case is given in (11)

strained inputs u to the measurements and J,, =

H=M71JW Gy W} (11)
where J = [Ji{bz %2Ju’u1Jud] (Jud = %) and Gv =
[GY GY] (GY is the static model from disturbances d to y).

There are four cases where (11) can be applied:
3a. “Just-enough” measurements, i.e., n, = n, + nq. Here,
the expression for H becomes (12)

H=M;'J(Gv)™! (12)
which is the same as having H in the left null space of F, i.e.,
He N(FT).

3b. Extra measurements (select just enough measurements),
ie., ny > n, + ng, and we want to select a subset of the
measurements y such that n, = n, + ng4. The solution is to
find such a subset that maximizes g(éy) using, e.g. existing
efficient branch-and-bound algorithms [28]. The resulting Gv
is then used to compute H in (12).

3c. Extra measurements (use all available measurements),
i.e., ny > n, +ngq. H is calculated using (11), where { denotes
the left inverse, calculated as AT = (AT A)~t AT for any given
matrix A.

3d. “Too few” measurements, i.e., ny < 7, + ng. In this
case, the optimal H in (11) is not affected by the noise weight
and therefore becomes

H=M;1J(Gy)! (13)

where 1 denotes the right inverse, calculated as AT =
AT (AAT)L,

The above procedure boils down to selecting suitable can-
didate measurements, i.e. identify n, vis-a-vis n, + ng4, and
find that linear combination (matrix H) of all, or a given
subset, which results in the smallest loss among all possible
solutions. One big hurdle to be surmounted is the numerical
calculation of J,,,, and J,4. For some ill-posed problems, it may
become an intractable task, and one solution is to compute F
numerically instead, since F' = dl{’j—iipt. Particularly, the extended
nullspace general formula (11) can, after some matrix algebra,
be reformulated as in (14)

H = M,(G")'[GY (G — P)(W,'Gv)Tw,.} (14)
where M, = (JJul/zMn) can be any non-singular m, X 7,
matrix. In this case, we could select M, = 1%2 so that (10)

and (11) are independent of Hessian information.

IV. SENSITIVITY ANALYSIS RESULTS
A. Step 1. Operational objectives

The operational costs in a wastewater treatment plant de-
pend on the wastewater system itself and can be divided into
manpower, energy, maintenance, chemicals usage, chemical
sludge treatment, and disposal costs. However, in this work, the
objective is to reduce the cost of energy and sludge disposal as
much as possible. Therefore, the following costs are considered:

o Required pumping energy (Ep expressed in kW h/d);

o Required aeration energy (E4 expressed in kWh/d);

« Required mixing energy when the aeration is too low (Ej

expressed in kWh/d);

e Sludge disposal (Cp expressed in $ /d).

The mathematical expressions for all these quantities can
be found in [8], and by assuming a constant energy price of
kg =0.09$% /kWh and a sludge disposal price of kp = 80 $
/ton, the total cost in $/d can be calculated as:

Cost =kg(Ep+ Eas+ En) + kpCp  [$/d]

The overall cost function in (15) is then minimized subject to
environment regulations for the effluent and some constraints
related to process operability, as listed in Table I.

15)

TABLE I
CONSTRAINTS TO THE PROCESS.

Constraint Unit Status

COD(f) <100 gCOD/m3  Regulation constraint
TSS(ff) < 30 gSS/m3 Regulation constraint
TN(lf) <18 gN/m3 Regulation constraint
Bop!fH <10 gBOD/m3  Regulation constraint
S](\?ilf <4 gN/m3 Regulation constraint
Quw < 1845 m3/d Manipulation constraint
Qr < 36892 m3/d Manipulation constraint
Qa < 92230 m3/d Manipulation constraint
Kra(l=% <360 d-! Manipulation constraint

B. Step 2. Steady-state optimal operation

There are 8 manipulated variables (last four entries in Table
I), which correspond to 8 steady-state degrees of freedom (u).
The liquid levels in the reactor tanks are assumed constant at
maximum capacity due to the overflow layout considered for
the plant.

Compared to other process industries, a wastewater treatment
plant is subject to very distinct operation modes because of
daily, weekly and seasonal variation in the incoming wastew-
ater. In this paper we consider the influent load data as given
by the IWA Task Group in the benchmark website. The data
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are presented in terms of ASMI1 state variables and influent
flow rates. In general, these data reflect expected diurnal trend
variations in weekdays which are typical for normal load be-
havior at a municipality treatment facility. Table Il summarizes
the given disturbances in terms of influent flow rate and load.
The average composition and flow rate and the average values
for the process inputs are taken from the various weather data.

TABLE II
WEATHER PROFILES EVENTS.
Qo coDp™) TS50 TN(n) T
[m®/d] [gCOD/m3] [gSS/m?®] [gN/m?®] [°C]
) 18446 381 211 54 15
e1 21320 333 183 48 15
s 40817 204 116 28 15
e3 19746 353 195 50 15
e4 34286 281 101 37 15
es 20850 347 199 41 15
es5.min 20850 347 199 41 9
€5.maz 20850 347 199 41 21

C. Step 3. Variable selection

The results of the optimization shows that three constraints
are active, namely, 7.SS(/7) (upper limit), S](\?f{f ) (upper
limit), and Q, (lower limit). As expected, 7'SS(/7) is at
its maximum to make (), small. In general, the reason why
free ammonia (Sj(\flfif )) is active at its upper bound is that, as
nitrification is an oxygen demanding process and because the
transfer efficiency of oxygen from gas to liquid is relatively
low so that only a small amount of oxygen supplied is used by
the microorganisms, the aeration demand (FE4), which is the
major cost contributor in a wastewater treatment plant, is high.
One interesting fact is that the process is optimally operated
aerobically, that is to say, with no anaerobic zone. The possible
reason is due to the attempt to minimize the high aeration costs
and to the fact that the effluent total nitrogen and ammonia
constraints are quite easily reached for the given influent loads.

As those 3 active constraints must be implemented to ensure
optimal operation [25], we are left with 5 degrees of freedom,
and we use the local methods described in step 3 of the
procedure to decide for the best (optimal) set of unconstrained
self-optimizing control variables to fulfill the available degrees
of freedom. We consider n, = 28 measurements (the list is
not shown here for the sake of compactness), n,, = 5 manip-
ulated variables, and ny = 5 disturbances, and clearly with
ny > N, + ng one can expect to substantially reduce the loss
for disturbances and measurement errors. As there are as many
measurements as there are manipulations and disturbances, one
can compute various H matrices and their respective local
losses. The methods considered in this communication are

1. The combined disturbances and measurements errors
using all available measurements, where H is computed
by (10). In this case, H; is a 5 X 28 combination matrix.

2. The extended nullspace using all measurements, with H
computed by (14). In this case, Hy is also a 5 x 28
combination matrix.

3. The extended nullspace using just enough measurements,
where GY in (14) is found by a branch and bound
algorithm [28]. In this case, H3 is a 5 X 10 combination
matrix.

For the sake of compactness only the resulting local losses
calculated using (9) are reported, and they are Lgé =0.1184,
L2 = 0.1291, and L3 = 0.0761, and one should expect to
have actual (nonlinear) losses of the same magnitude for any
of the calculated H matrices. In the last case, where the loss is
expected to be the smallest, the variables chosen by the branch
and bound algorithm that maximized the minimum singular
value of GY were Sg), Sgl), S](\;l)o, MLSS, KraW, Kra®,
Kra®, K™, CODU™ and T0™).

V. DISCUSSION

The nominal optimization results showed that it is econom-
ically optimal to keep effluent suspended solids and ammonia
concentrations at their respective upper bounds, and that no
internal recirculation of sludge should be used, at least under
the steady-state assumption. This fact is surprising but quite
realistic. Indeed, the main purpose of the internal recirculation
is to provide enough nitrate to enhance denitrification in the
bioreactor anoxic zones and from an economical point of view
this can be efficiently achieved by the return sludge (Qr) only
which brings back sufficient nitrate for denitrification reducing
the pumping costs due to @),. However, when operating the
process dynamically, one may consider using @, to control
some internal variable so as to improve the disturbance rejection
capability of the process.

If these variables are controlled at their respective optimal
setpoints (active constraint control), a choice had to be made
on the selection of the remaining 5 degrees of freedom, and
we use the sensitivity analysis based on a plantwide procedure
to decide on which 5 variables to fix/control at their respective
nominal optimum values. The exact local (linear) method and
the extended nullspace method based on the concept of self-
optimizing control were used to systematically select those
variables such that the cumbersome combinatorial curse of
choosing and testing 5 out of 28 possible variable combinations
is avoided. The resulting combination matrices I were easily
computed using elementary matrix algebra, as described by
the formulas (10), (11), and (12). The only burden with those
calculations lies on the computation of the optimal matrices
Juu> Jud, and F'. Since accuracy of second order information
found numerically is known to be difficult to guarantee, in
addition to assuring positive definiteness of J,,,, calculation of
F might become more attractive, and a replacement formula for
(11) was derived as in (14). M, in this equation can be freely
selected, as long as it is a non-singular matrix, and we chose
M, = 1%2 so to avoid the need to compute J,,. Moreover,
since the solution for H in (10) is not unique [23], we can also
find a non-singular n, X n, D matrix such that H,.,, = DH
is another yet solution, and we can select D as a function of
J&{f; in this paper we assumed D = JJ,} / 2

The above derivations are local since we assume a linear
process and a second-order objective function in the inputs and
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the disturbances. Thus, the proposed controlled variables are
only globally optimal for the case with a linear model and a
quadratic objective. In this article, for a final validation, the
actual losses are checked using the nonlinear model of the
process. Table III shows that the losses are about the same
order of magnitude for a given disturbance. Note also that
feasibility is not always guaranteed for all alternatives, and
indeed only the alternative where H was computed using the
extended nullspace method with “just-enough” measurements
is feasible for all disturbance spectrum.

TABLE III
NONLINEAR LOSS CALCULATION FOR VARIOUS DISTURBANCES.

€1 €2 €3 €4 €5 €5 min €5, max
JoPt 426.78  490.09  420.56  599.36  419.83 491.28 357.96
J 427.08  507.18  420.62  602.53  420.36 494.37 Inf
%L1 0.07 3.49 0.014 0.53 0.13 0.63 Inf
JH2 42697 49586  420.59  608.95  420.37 492.82 358.71
% LH2 0.04 1.18 0.01 1.60 0.13 0.31 0.21
JHs 427.07 Inf 420.60 Inf 419.94 507.74 359.40
% L3 0.07 Inf 0.01 Inf 0.03 3.35 0.40

VI. CONCLUSION

This paper discussed the application of a sensitivity proce-
dure for optimal operation of a wastewater treatment plant. For
the given modified mathematical model of the process, where
the settler is modeled based upon the static one-dimension
scalar mass conservation law with discontinues fluxes theory,
keeping the active constraints (SI(\';}CIf ), 7SSEl), and Qo)
at their optimal values and using linear combinations of the
measurements as the five remaining unconstrained degrees of
freedom can guarantee near-optimal operation with minimum
loss when operating at the nominal optimal mode despite the
severe disturbances that affect the process.
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