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Abstract—This study presents a periodic disturbance rejection
method for a class of nonlinear systems with the input weighting
vector in the proportional nonlinear form. Especially, the periodic
disturbance does not match with the system input. A neural
network approximator is employed for the estimation of the ideal
feedforward control input that tackles the influence brought by
disturbances in closed-loop system. Moreover, The adaptive con-
trol techniques are applied to deal with nonlinear uncertainties
and unknown parameters in the system. The proposed control
design ensures the closed-loop convergence of the system, i.e. all
states converge to a small set around their equilibrium points. A
simulation example is included to support this control approach.

I. INTRODUCTION

Disturbance rejection of nonlinear systems is a widely
discussed issue in the recent decade. Many existing
disturbance rejection results are based on the internal model
principle. An internal model is constructed to generate a
desired feedforward input for the annihilation of disturbance.
For the disturbance signal generated by an unknown linear
exosystem, the global asymptotic stability of a disturbed
nonlinear system is achieved via state feedback with a state
observer and an internal model [1]. With an additional
filter design, this method is extended to a nonlinear system
whose nonlinear uncertainties and disturbance uncertainties
are tackled concurrently [2]. Generally, not all disturbance
signals are linear in practice. From this point of view,
periodic disturbances suppression is investigated. An adaptive
feedforward disturbance cancellation scheme is proposed for
the rejection of sinusoidal disturbances [3] [4]. In particular,
periodic disturbances generated by a nonlinear exosystem
are considered. The asymptotic tracking is achieved for
an output feedback nonlinear system via incorporating
filtered transformation, high gain control and saturation for
internal model design [5]. As a special case, the periodic
disturbance rejection problem is examined. The nonlinear
system disturbed by general periodic disturbances which are
half-period alternative is asymptotically suppressed. With
known wave profiles of disturbances, an estimate of the
feedforward control input is constructed by bringing in new
operations of a half-period integration and a delay operator
[6]. This method is extended to a nonlinear system with

unmatched disturbances in [7].

The aforemetioned publications focus on the reconstruction
of feedforward control input via internal model design.
In fact, the output of the exosystem is constrained by its
structures, i.e. not all periodic disturbances can be generated
by the exosystem. In terms of a general periodic disturbance
without dynamic limits, new approximation methods are
worth being investigated. As a hot topic, Neural Network
(NN) is exploited in many control design applications. It is
well-known that NN can be used to estimate any nonlinear
signals in a compact set. The theory about adaptive NN
approximator for the periodically disturbed nonlinear function
is established. With different selections of basis functions,
two types of three-layer NN approximator are included
as FSE-MNN-based approximator and FSE-RBFNN-based
approximator [8]. After that, A two-layer NN approximator
in [9] is introduced for output feedback stochastic nonlinear
stabilisation. Motivated by these NN approximator designs,
the two-layer approximator is used to estimate the feedforward
control input in [10].

Note that the aforementioned nonlinear system has a
constant input vector. Recently, disturbance suppression is
established for various types of nonlinear systems with time
varying weighting vector. Robust adaptive techniques are used
in output feedback control design for a disturbed nonlinear
system. It is notified that the system is in output feedback
form with time varying input and disturbance vectors. The
terminology of flat zone in a neighbourhood of the origin is
introduced such that output tracking error converges to the
flat zone under that control. It is also specified that, in this
case, the element in input vector is coupled with a nonlinear
function of output [11]. A novel asymptotic disturbance
rejection approach for unknown sinusoidal disturbances is
designed for nonlinear systems in output feedback form with
an input gain vector whose element is a function of the output
[12].

In this paper, a new disturbance rejection method is
introduced for a nonlinear system in output feedback form
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with an input vector with elements being a production of a
constant and a nonlinear function of output. This research is
still based on the existence of an invariant manifold which
has a zero output under an ideal feedforward control input.
To extract the zero dynamics of the system, a filter based
transformation is proposed as similar as in [5]. As matter of
fact that an NN can be used to estimate any nonlinear signals
in a prescribed compact set. Since the desired feedforward
control input is regarded as an unknown function of bounded
disturbance signal, an NN approximator is applied for
its estimation. In addition, a new unknown parameter is
introduced to compensate the closed-loop influence from
nonlinear uncertainties. Adaptive techniques are then applied
to estimate unknown parameters online. Finally, backstepping
control design based on the estimate of filters is carried
out. Lyapunov stability analysis is presented to confirm the
closed-loop stability. All states converge to a small area
around their equilibrium points. Compared with the existing
results, the information of disturbance are not necessarily
needed. Furthermore, the disturbance can be any type of
periodic signals.

The structure of this paper is organised as follows. The
problem description is presented in section II. Section III
introduces a filtered transformation and extracts system zero
dynamics. The NN approximator design is addressed in
section IV. Adaptive backstepping control design procedures
are presented in section V. Lyapunov stability analysis is then
followed to ensure the convergence of the closed-loop system
in section VI. A simulation example is included in section
VII to demonstrate a standard control approach. Finally,
section VIII concludes this paper.

II. PROBLEM STATEMENT

Consider SISO nonlinear systems which can be transformed
to the output feedback form as{

ẋ = Ax+φ(y)+bσ(y)u+dw
y = CT x (1)

with

A =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0

, b =


0
...

bρ

...
bn

, C =

 1
...
0

,

and d = [d1, . . . ,dn]
T where state x = [x1, . . . ,xn]

T ,
output y ∈ R, input u ∈ R, smooth nonlinear function
φ(y) = [φ1(y), . . . ,φn(y)]T with φ(0) = 0, smooth function
σ(y) : R→ R with σ(y) 6= 0, w ∈ R is a bounded periodic
disturbance signal, bi 6= 0 for i = ρ, . . . ,n, i.e. this system is a
relative degree ρ system.

The assumption below is necessary for this control design.

Assumption 2.1: The system is minimum phase, that is, the

zeros of polynomial B(s) =
n

∑
i=ρ

bisn−i have negative real parts.

The design objective of disturbance rejection problem is
described as: Find out a finite dimensional system{

µ̇ = ν(µ,y,u),µ ∈ R
u = ζ (µ,y) (2)

The closed-loop system is then stable under this controller.

III. FILTERED STATE TRANSFORMATION

For system (1) with relative degree ρ , a filter is introduced
as 

ξ̇1 = −λ1ξ1 +ξ2
...

ξ̇ρ−1 = −λρ−1ξρ−1 +σ(y)u

(3)

where λi > 0 for i = 1, . . . ,ρ−1 are the designed parameters.
The filtered transformation is implemented by introducing

z̄ = x− [ f̄1, . . . , f̄ρ−1]ξ (4)

where ξ ∈ Rρ−1, f̄i ∈ Rn for i = 1, . . . ,ρ−1. The value of f̄i
is given recursively by{

f̄1 = b
f̄i = [A+λi+1I] f̄i+1 for i = 2, . . . ,ρ−1 (5)

with positive designed λρ . Then, the system (1) is transformed
to {

˙̄z = Az̄+φ(y)+dw+ f ξ1
y = CT z̄ (6)

where f = [ f1, . . . , fn]
T = [A+λ1I] f̄1. It is noted that f1 = bρ .

Further, it is observed

D(s) :=
n

∑
i=1

fisn−i = B(s)
ρ+1

∏
i=1

(s+λi) (7)

With Assumption 2.1, it implies that all zeros of D(s) are
located on the left half plane. ξ1 is considered as the input
of system (7), i.e. this system has relative degree 1. For
the convenience of analysing zero dynamics, another state
z̃ ∈ Rn−1 is brought in as

z = z̄2:n−
f2:n

f1
y (8)

(?)2:n stands for a new vector or matrix which is constructed
by the 2nd to nth raw of ?.

The system dynamics with new coordinates is given
by {

ż = Dz+ψz(y)+dzw
ẏ = z1 +ψy(y)+d1w+bρ ξ1

(9)
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with

D =



− f2

f1
1 . . . 0

...
...

. . .
...

− fn−1

f1
0 . . . 1

− fn

f1
0 . . . 0


(10)

where D is the left companion matrix of f and

ψz(y) = D
f2:n

f1
y+φ2:n(y)−

f2:n

f1
φ1(y) (11)

ψy(y) =
f2

f1
y+φ1(y) (12)

dw = d2:n−
f2:n

bρ

d1 (13)

D is Hurwitz from equation (7). Thus, there exist positive
matrix Pz and Qz which satisfy

DT Pz +PzD =−Qz (14)

With the property of φ(y), It renders ψz(0) = 0 and ψy(0) = 0.

From Isidori’s output regulation theory [13], the existence of
a controlled invariant manifold is a necessary condition of
establishing a solution to nonlinear system output regulation
problem. From this point of view, the following assumption
is necessary.

Assumption 3.1: There exist an invariant manifold π(w) :
R→Rn−1 and a forwarding control input µ(w) : R→R such
that {

π̇ = Bπ +dzw
0 = π1 +d1w+bρ µ

(15)

Let z̃ denotes the error between z and π . The final model for
control design is obtained as

˙̃z = Dz̃+ψz(y)
ẏ = z̃1 +ψy(y)+bρ (ξ1−µ)

ξ̇1 = −λ1ξ1 +ξ2
...

ξ̇ρ−1 = −λρ−1ξρ−1 +σ(y)u

(16)

IV. NEURAL NETWORKS DISTURBANCE APPROXIMATOR

In the section, a Neural Networks approximator based on
the output y is introduced to approximate the desired input
µ(ω) on a compact set Ω [9].

µ =W T S(y)+δ (17)

where S(y) = [s1(y), . . . ,sl(y)]T : Ω→ Rl is a known smooth
vector function with neural network node number l > 1. The
basis function is given by Gaussian function as

si(y) = exp
[
− (y−ai)

2

h2

]
, for i = 1, . . . , l (18)

with the centre ai ∈ Ω and the width h > 0. The desired
weighting vector W = [W1, . . . ,Wl ]

T is defined as

W := arg min
Ŵ∈Rl

{
sup
y∈Ω

|µ−Ŵ T S(y)|
}

Ŵ is the estimate of W , δ is the NN inherent approximation
error satisfying |δ | ≤ δ̄ , which is the minimum upper bound
of δ . It can be decreased by increasing the number of r and
l. The approximation of µ can be written as

µ̂ = Ŵ T S(y). (19)

V. ADAPTIVE BACKSTEPPING CONTROL DESIGN

In this control design, some designed parameters are intro-
duced. They satisfy

c0 >
1
2
+

b2
ρ

4
c1 > −1
ci > 0 for i = 2, . . . ,ρ−1
hi > 0

Define the desired value of ξi as ξ̂i for i = 1, . . . ,ρ − 2 with
error ξ̃i = ξi− ξ̂i. Therefore, from system (9), we have

ẏ = z̃1 +ψy(y)+bρ(ξ̂1 + ξ̃1−µ) (20)

The virtual control is designed as

ξ̂1 =
1

bρ

(−c0y−ψy(y))+Ŵ T S(y) (21)

Substituting equation (21) into (20), it gives

ẏ =−c0y+ z̃1 +bρ ξ̃1−bρW̃ T S(y)−bρ δ (22)

with the notation W̃ =W −Ŵ .

The backstepping technique is employed to search other
virtual controls step by step.

Step 1: When i = 1,
˙̃
ξ1 = ξ̇1− ˙̂

ξ1

= −λ1ξ1 +ξ2−
∂ ξ̂1

∂Ŵ
˙̂W

−∂ ξ̂1

∂y

(
z̃1 +ψy(y)+bρ (ξ1−µ)

)
= −λ1ξ1 + ξ̃2 + ξ̂2−

∂ ξ̂1

∂Ŵ
˙̂W

−∂ ξ̂1

∂y

(
z̃1 +ψy(y)+bρ (ξ1−µ)

)
(23)

Design ξ̂2 as

ξ̂2 = λ1ξ1− c1ξ̃1−h1

(
∂ ξ̂1

∂y

)2

ξ̃1 +
∂ ξ̂1

∂Ŵ
˙̂W

+
∂ ξ̂1

∂y

(
ψy(y)+bρ

(
ξ1−Ŵ T S(y)

))
(24)
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Step i: Introduce ξρ for the convenience of notation. Similarly,
virtual controls are obtained as:

ξ̂i = −ξ̃i−2 +λi−1ξi−1− ci−1ξ̃i−1

+
∂ ξ̂i−1

∂y

(
ψy(y)+bρ

(
ξ1−Ŵ T S(y)

))
+

i−2

∑
i=1

∂ ξ̂i−1

∂ξi
ξ̇i−hi−1

(
∂ ξ̂i−1

∂y

)2

ξ̃i−1

+
∂ ξ̂i−1

∂Ŵ
˙̂W for i = 2, . . . ,ρ (25)

Finally, the control input u is designed as

u =
ξ̂ρ − Θ̂r(ξ̃ρ−1,y)

σ(y)
(26)

where Θ̂ is the estimate of Θ∈R that is an unknown constant,
Smooth nonlinear function r(ξ̃ρ−1,y) is given by

r(ξ̃ρ−1,y) =
1

ξ̃ρ−1

(
‖ψz(y)‖2) (27)

where Θ and r(ξ̃ρ−1,y) are introduced for the sake of com-
pensating the closed-loop influence brought by the nonlinear
function ψz(y). The desired value of Θ is given by

Θ = β‖Pz‖2 (28)

where β is a positive constant satisfying inequality below

β (1−λmin)+
1
2
+

ρ−1

∑
i=1

1
4hi

< 0 (29)

where λmin denotes the minimum eigenvalue of positive
definite matrix Pz.

Estimates of unknown parameters Θ and W are generated by
following adaptive laws.


˙̂
Θ = γθ

(
ξ̃ρ−1r(ξ̃ρ−1,y)−σθ Θ̂

)
˙̂W = −Γw

(
bρ yS(y)−

ρ−1

∑
i=1

bρ ξ̃i
∂ ξ̂i

∂y
S(y)+σwŴ

) (30)

where γθ ∈ R and Γw ∈ Rl are positive definite designed
adaptive gain matrix, σθ ∈ R and σw ∈ R are σ modification
gains which are selected to be small positive constants.

The dynamics of ξ̃ is given by

˙̃
ξ1 = ξ̃2− c1ξ̃1−h1

(
∂ ξ̂1

∂y

)2

ξ̃1−
∂ ξ̂1

∂y
z̃1

+bρ

∂ ξ̂1

∂y
W̃ T S(y)+bρ

∂ ξ̂1

∂y
δ

˙̃
ξi = −ξ̃i−1 + ξ̃i+1− ciξ̃i−hi

(
∂ ξ̂i

∂y

)2

ξ̃i

−∂ ξ̂i

∂y
z̃1 +bρ

∂ ξ̂i

∂y
W̃ T S(y)+bρ

∂ ξ̂i

∂y
δ

for i = 2, . . . ,ρ−2

˙̃
ξρ−1 = −ξ̃ρ−2− cρ−1ξ̃ρ−1−

∂ ξ̂ρ−1

∂y
z̃1

−hρ−1

(
∂ ξ̂ρ−1

∂y

)2

ξ̃ρ−1 +bρ

∂ ξ̂ρ−1

∂y
δ

+bρ

∂ ξ̂ρ−1

∂y
W̃ T S(y)− Θ̂r(ξ̃ρ−1,y)

(31)

VI. STABILITY ANALYSIS

The stability analysis is based on Lyapunov stabilising
theory. The Lyapunov function candidate of this system is
chosen as

V =Vy +βVz +
ρ−1

∑
i=1

Vξi +Vw +Vθ (32)

with 

Vy =
1
2

y2

Vz = z̃T Pzz̃
ρ−1

∑
i=1

Vξi =
1
2

ρ−1

∑
i=1

ξ̃
2
i

Vw =
1
2

W̃ T
Γ
−1
w W̃

Vθ =
1
2

γ
−1
θ

Θ̃
2

(33)

with the notation Θ̃ = Θ− Θ̂.

From equation (22), it shows

V̇y = yẏ

= −c0y2 + yz̃1 +bρ yξ̃1−bρ yW̃ T S(y)−bρ yδ

≤ −c0y2 +
1
2

y2 +
1
2
‖z̃‖2 +

b2
ρ

4
y2 + ξ̃

2
1

−bρ yW̃ T S(y)−bρ yδ

≤
(
−c0 +

1
2
+

b2
ρ

4

)
y2 +

1
2
‖z̃‖2 + ξ̃

2
1

−bρ yW̃ T S(y)−bρ yδ (34)
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then from equation (9), it is obtained

V̇z = ˙̃zT Pzz̃+ z̃T Pz ˙̃z
= z̃T (DT Pz +PzD

)
z̃+2z̃T Pzψz(y)

≤ (1−λmin)‖z̃‖2 +‖Pz‖2‖ψz(y)‖2 (35)

With dynamics of ξ̃i in equation (31), it is derived that

ρ−1

∑
i=1

V̇ξi = −
ρ−1

∑
i=1

ciξ̃
2
i +hi

(
∂ ξ̂i

∂y

)2

ξ̃i +
∂ ξ̂i

∂y
z̃1


+

ρ−1

∑
i=1

bρ ξ̃i
∂ ξ̂i

∂y
W̃ T S(y)+

ρ−1

∑
i=1

bρ ξ̃i
∂ ξ̂i

∂y
δ

−ξ̃ρ−1Θ̂r(ξ̃ρ−1,y)

≤ −
ρ−1

∑
i=1

(
ciξ̃

2
i −

1
4hi
‖z̃‖2

)
+

ρ−1

∑
i=1

bρ ξ̃i
∂ ξ̂i

∂y
δ

+
ρ−1

∑
i=1

bρ ξ̃i
∂ ξ̂i

∂y
W̃ T S(y)− ξ̃ρ−1Θ̂r(ξ̃ρ−1,y)(36)

Further, from equation (30), we have

V̇w = −W̃ T
Γ
−1
w

˙̂W

= bρ yW̃ T S(y)−
ρ−1

∑
i=1

bρ ξ̃i
∂ ξ̂i

∂y
W̃ T S(y)+σwW̃ TŴ(37)

V̇θ = −γ
−1
θ

Θ̃
˙̂
Θ

= −ξ̃ρ−1Θ̃r(ξ̃ρ−1,y)+σθ Θ̃Θ̂ (38)

Therefore

V̇ ≤
(
−c0 +

1
2
+

b2
ρ

4

)
y2− (c1 +1)ξ̃ 2

1 −
ρ−1

∑
i=2

ciξ̃
2
i

+

(
β (1−λmin)+

1
2
+

ρ−1

∑
i=1

1
4hi

)
‖z̃‖2

+β‖Pz‖2‖ψz(y)‖2− ξ̃ρ−1Θr(ξ̃ρ−1,y)

+σwW̃ TŴ +σθ Θ̃Θ̂−bρ yδ +
ρ−1

∑
i=1

bρ ξ̃i
∂ ξ̂i

∂y
δ

≤ 2

(
−c0 +

1
2
+

b2
ρ

4

)
Vy−2(c1 +1)Vξ1

(39)

+

(
β (1−λmin)+

1
2
+

ρ−1

∑
i=1

1
4hi

)
Vz

λp

−
ρ−1

∑
i=2

2ciVξi −σwΓwVw−σθ γθVθ +
σw

2
‖W‖2

+
σθ

2
‖Θ‖2−bρ yδ +

ρ−1

∑
i=1

bρ ξ̃i
∂ ξ̂i

∂y
δ (40)

Note that the derivative of V is in a form of V̇ = −ζV +η

where ζ > 0, and η is bounded. The system converges to a
small region around its equilibrium points when time t tends
to infinity.
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VII. SIMULATION STUDY

Consider a three order disturbed nonlinear system as ẋ1 = x2 + y2

ẋ2 = x3 + y3 +2w+(|y|+0.1)u
ẋ3 = 3w+(|y|+0.1)u

The filter is selected as

ξ̇ =−ξ +(|y|+0.1)u

with the virtual control given by

ξ̂ =−3y−2y− y2 +W T S(y)

It is easy to find

D =

[
−2 1
−1 0

]
Adaptive laws are designed as

˙̂W = −Γw(yS(y)− ξ̃
∂ ξ̂

y
S(y)+σWW )

˙̂
Θ = γθ

(
(−3y+ y3−2y2)2 +(−2y− y2)2−σθ Θ

)
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with adaptive gains Γw = 100I, γθ = 100, and σ -modification
gains σW = 0.00001, σθ = 0.00003. Following our backstep-
ping design procedure, the control input u is designed as

u =
1

|y|+0.1

ξ − ξ̃ −
(

∂ ξ̂1

∂y

)2

ξ̃ +
∂ ξ̂

∂Ŵ
˙̂W


+

1
|y|+0.1

∂ ξ̂

∂y
(2y+ y2 +ξ −Ŵ T S(y))

− 1
|y|+0.1

Θ̂

ξ̃

(
(−3y+ y3−2y2)2 +(−2y− y2)2)

where

∂ ξ̂1

∂y
= − 1

5+2y
+W T S′(y)

∂ ξ̂

∂Ŵ
= ST (y)

The simulation result is illustrated in Fig. 1 and Fig. 2. Fig.
2 shows the steady state of systems. It can be observed that
all states are going to be stable. The first subfigure illustrates
the norm of adaptive parameters, the second subfigure presents
the system control input which has a little transient attenuation
that is caused by the small NN approximation error, the third
subfigure shows the convergence of output (|y|< 0.0001) and
NN approximation error (|ξ̃ | < 0.002), to the end, it is also
observed that the NN approximator works well from last
subfigure.

VIII. CONCLUSIONS

In this paper, disturbance rejection is achieved for a peri-
odically disturbed nonlinear system in output feedback form
with time varying input weighting vector. NN is applied to
approximate the feedforward control input µ . Compared with
the results in [7], it is noticed the control design method
is in the same way with different disturbance approximation
methods. The proposed NN method estimates the feedforward
control input without any pre-known information. While in
[7], the wave profile of the disturbance signal is assumed to
be half-period alternative. The disturbance period is known
for the regeneration of the real amplitude and phase shift.
Nevertheless, the method in [7] has a quick and nice time
response. Generally, it is not easy to have the period of the
disturbance in the real practice. The NN approximation method
is a good choice when the information of disturbance signals
are not enough.
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