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Abstract—This paper concerns the observer-based pole place-
ment control for MIMO time varying non-lexicographically-fixed
discrete systems. If both of the reachability indices and the
observability indices are non-lexicographically-fixed, augmented
plant equation and augmented observer are needed. Design
procedure of this control system is proposed and the stability
and the separation principle of the total closed loop system is
also shown.
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I. INTRODUCTION

It is well known that the pole placement control can be
designed for linear time-varying system by using the controlla-
bility canonical form as in the time-invariant case [5], [6]. The
linear time-varying multivariable system whose controllability
indices or observability indices are not constant is called
the non-lexicographically-fixed system. Valasec et. al. [7]
proposed the pole placement design method for such a system
by augmenting the system equation so that the augmented
system is lexicographically-fixed. This paper concerns the pole
placement and the observer design method for linear time-
varying discrete non-lexicographically-fixed system. Using
the Valasec’s idea, the procedure to extend a discrete non-
lexicographically-fixed system to a lexicographically-fixed
augmented system will be presented. Then, the simple pole
placement technique can be applied to the augmented system
without transforming the system into any canonical form [12].
Further, using the property of the anti-causal dual system,
it will be shown that the same design method can be used
for the augmented observer for non-lexicographically-fixed
systems. Finally, as for the time-invariant case, the stability
and the separation principle of the total closed loop system
are also shown for the case where both of the augmented pole
placement controller and the augmented observer are used.

978-1-4673-1558-6/12/$31.00 ©2012 IEEE

Tomohiro Hara
Department of Engineering and
Applied Sciences
Sophia University
7-1 Kioicho, Chiyoda-ku, Tokyo, Japan

II. PRELIMINARIES

Consider the following linear time-varying m-input p-output
MIMO discrete system.

zk+1) =
y(k) =

where x € R",u € R™,andy € RP are the state variable, the
input and output, respectively. A(k) € R"*", B(k) € R™*™
and C(k) € RP*™ are time-varying coefficient matrices.
Definition 1: System (1) is called “completely reachable in
n steps” if for any x1 € R™ there exists a bounded input u(j)
(j=k,---,k+n—1)suchthat z(k) =0 and z(k+n) = x;
for all k.
The reachability matrix, R(k), of this system is defined by

Rik) = [BB(k) - WK |-
co | L (k) k)] 3

n—1
Here, bl(k) € R" is calculated by the following recurrence
equations.

A(k)a (k) + B(k)u(k) (D
C(k)x(k) @)

= b(k+n-1)
Ak +n — 1)bi(k —1) “
(7:207"'7”_27 l:177m)
where, b’ (k) € R™ is the [-th column of B(k).

If the system (1) is completely reachable in n steps, the rank
of R(k) is n, from which we can define the nonsingular n xn

matrix R(k) using the reachability indices p;(i = 1,2, -+, m)
as follows.
R(k) = [b5(k), b, 1 (k)]
R b oy (R) ] )

The reachability indices satisfy that 1" p; = n and are
assumed that uy > pg > - -+ > u,, without loss of generallity.

Here, we state the definition of the observability in n steps
as a dual concept of the reachability in n steps.
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Definition 2: The system (1), (2) is said to be completely
observable in n steps if for any k, z(k) is determined uniquely
from y(k), y(k + 1), ---, y(k +n —1).

The following steps are the pole placement control design
procedure proposed by the authors in [11] without using a
transformation into any canonical form.

STEP 1 Check the reachability of the system (1) and obtain
R(k) and p; (i =1,---,m).

STEP 2

Calculate the new output signal, §(k), by the following
equation, so that the relative degree from w(k) to g(k) is the
system degree, n.

g(k) = Ck)x(k) = WR™" (k — n)x(k) (©)
where W is the matrix defined by the following.
W = diag(w1;w27"'7wm)
w; = [0 0 1]eRtm (7)

STEP 3 Let ¢(2) be the ideal and stable characteristic
polynomial for the closed-loop system of degree u;, i.e.,

Gi(z) = +ab_ M Vb talztal ()
Here, z is the shift operator. Then, we have the following
equation [11].
0 (z)
(k) = F(k)z(k) + A(k)u(k) (9)
qm(2)

where A(k) € R™*™ is nonsingular. (See Appendix.)
STEP 4 From (9), the state feedback

u(k) = D(k)x(k) = —A7' (k) F (k)= (k) (10)
makes the closed loop system
a1 (2)
g(k) =0 (1D
Gm (2)
This implies that the closed loop state equation
z(k+1) = {A(k) + B(k)D(k)}z(k) (12)

is equivalent to the time invariant system with desired poles,
i.e., there exists some transformation matrix, P(k), that satis-
fies the following equation.

P(k+ 1){A(k) + B(k)D(k)}P~ (k) = A*  (13)
where
det(z] — A*) =[] ¢'(2) (14)

Then, if the matrix P(k) is the Lyapunov transformation,
the closed loop system is stable and equivalent to some time-
invariant system that has the ideal and stable eigen values.

III. POLE PLACEMENT OF
NON-LEXICOGRAPHICALLY-FIXED SYSTEMS

In the previous section, the reachability indices are supposed
to be fixed. Such indices are said to be lexicographically-fixed.
However, since the system has time-varying parameters, the
reachability indices might be variable as well. Such indices
are said to be non-lexicographically-fixed. In this section,
we consider the pole placement control designing procedure
for a system with non-lexicographically-fixed indices. Valasek
et. al. proposed the pole placement design method for non-
lexicographically-fixed multivariable continuous systems in
[8]. In this paper, we apply this idea to the discrete system
together with the new pole placement technique stated in the
previous section.

Suppose that the system (1) is completely reachable in n
steps, and has non-lexicographically-fixed reachability indices.
It is assumed that the maximum value of each reachability
index p; is known, i.e.,

vi =maxp(k)  (i=1,---,m) (15)
Using v;, we define 1, by
n, = ivi (16)
o
Define the augmented system by
xg(k+1) = Ag(k)xy(k) + By(k)u(k) (17)
r)= | )
4= | 40w | B®= 500 |

where 2, € R" and . € R"~". A (k) € R(Pa—m)x(ng=n),
As(k) € Rmo—mxn and B,(k) € R(Ms~™*™ are design
parameter matrices so that the above augmented system has

lexicographically-fixed reachability indices, v; (¢ = 1,---,m).

The reachability matrix R, (k) of this augmented system is
Rg(k): [ bgtl)(k) ban(k) |

o | by -1 () by, -1 (k) | (18)

where b,!(k) € R" is defined by the following recurrence
equations.

bgé(k) =
b92+1(k) =

by (k +ng — 1)
Ag(k"‘"g_l)bgé(k_l)
(i=0,---,mg—2, I=1,---

(19)
;)
Here, b, !(k) € R"s is the I-th column of B, (k).

For the augmented system to have lexicographically-fixed

reachability indices, v;, the following ng x n, matrix Ry(k)
should be nonsingular for all k.

[ bg(l)(k)a"'abgirl(k”'”
e fbg B (k) b () ]

Rg (k) =
(20)
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On the other hand, R, (k) can be written as

RA@:[%”

® ) e

where R, (k) € R"*" and R.(k) € R("s~™)*"s are

R
|66n(k)7"'7bzznm—1] (22)
RE(k) = [re(l)(k),---,requlfl(k)|---

clre k), et (k) ] (23)

Since, from the assumption, the rank of R,(k) is n, there
exists a matrix, R, (k), such that R, (k) is nonsingular for all
k. The problem is to find A;(k), A2(k), and B, (k) that give
such r. L(k) € R ".

From (20)-(23), we have

24

Tep

b= 4G |

then, using (17) and (24), the recurrence equation (19) can be
modified as follows.

_ bl (k) _ b (k + ng — 1)
bgé(k)_{reé(k)]_[bel(k+ng—1)]
bz l(k)
byt = | G |
k+mng,—1) 0
[A2k+”g_1) Al(k-f—ng—l)}bgé(k_l)
A(k +ny — 1)bk(k — 1)
[ [ A2(k +ng —1) Al(k"‘ng_l)]bgi'(k_l)}
(2_0717"'7 l:]-::m) (25)

Here, b,'(k) is the I-th column of B, (k). From (25), the
relation between r..(k) and A;(k), As(k), and B.(k) is

(3
obtained as follows.

Be(k_'_n.q_]‘):[re(l)(k) Tt T(T)n(k)]
[ Ay(k+ng—1) Ai(k+ny—1) | Ry(k—1)
= Re (k) (26)
where R.. (k) is defined by
Re+(k) = [ Te%(k) Tezl;l(k)|"'
cre (k) e el (R) ] 2D

From the above, design parameter matrices such that the
augmented plant (17) has lexicographically-fixed reachability
indices, v;(z = 1,---,m), can be calculated as follows. First,
determine R, (k) so that R, (k) is nonsingular for all k. Then,
using arbitrarily determined parameters r. ; (k) --, re i (k)
in (26) and (27), and then, A;(k), A2(k) and B(k) are
obtained by

Be(k) = reglk—ng+1) -+, ref'(k—ng+1) ]
[ Az(k) Ai(k) ] = Rey(k—ng + )R, (k —ny)
(28)

The state feedback for the pole placement can be obtained
as the following form by applying the pole placement design
procedure stated in the previous section to this augmented
system.

(k)
z.(k)

This implies that there exists the time-varying transformation
matrix P, (k) € R™*™s that satisfies

Py(k + 1){Ag (k) + By(k) Dy (k) } Py (k)

Hence, if the transformation matrix P, (k) is the Lyapunov
transformation, the closed loop system is stable and equivalent
to some time-invariant system that has desired and stable
constant eigenvalues.

) =[0:0). D] | 2 | =Dy 29

=A> (30

IV. OBSERVER OF NON-LEXICOGRAPHICALLY-FIXED
SYSTEMS

In this section, we consider the design of the observer for
the system that has non-lexicographically-fixed observability
indices. Suppose that the system (1),(2) is completely observ-
able in n steps and has observability indices, v;(i = 1,---,p),
which are non-lexicographically-fixed. Further, it is assumed
that the following d; are known.

d; = maxvi(k)  ((=1,--,p) 3D
Using these d;, we define ng by
m
n,=>d; (32)
i=1

If the system has lexicographically-fixed observability in-
dices, its observer can be written as follows.

k+1) = A(k)E(k) + Bk)u(k)

—H(k)(y(k) — C(k)z(k))  (33)

where &(k) € R™ is the state estimation of z(t). Then, the
problem is to find the observer gain matrix H(k) € R"*P.
But, since the observability indices are non-lexicographically-
fixed, we augment the observer system as follows.

Ek+1) = A(k)z(k)+ B(k)u(k)
—H(k)(y(k) - C(k)&(k))
—(Aa(k) + H(F)Ce (k))e(k) (34)
e(k+1) = As(k)e(k) + He(k)(y(k) — C(k)&(k))
+H,(k)C.(k)e(k) (35)
Here, e(k) € R"™ ™ is an auxiliary signal and As(k)

€ Rme—mx(ne—n) = 4,(k) € R ms—n) and C,(k) €
Rp*(ns—n) are design parameter matrices determined later.
Using the state estimation error, e(k) = z(k) — &(k) the
following state error equation is obtained from (1), (2), (34),
and (35).

es(k+1) = Ay(k)es (k) + Hy(k)Cs()es (k) (36)
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where
_ | elk) _ | A(k)  Aq(k)
es(k) - [ 6(]{:) :|;As(k) - |: 0 A;(k) :|
_ | H(k) _
w0 = | g0 [.ew=rcw cm)
(37)

From this, the observer design problem is to find H, (k) so that
As(k) + Hy(k)C,(k) is equivalent to some constant matrix
which has desired constant eigenvalues.

For this purpose, consider the following anti-causal system
as a dual system of the system (A5(k), Cs(k)).

&,k = 1) = AT(R)E (k) + CT (k)o(k)
(AT 0 )
A= A Ag(k)},cg’ (k)_[CZ(k)
(38)

Since the system (A(k),C(k)) is completely observable in
n steps and has the observability indices, v;(i = 1,---,p),
its dual system is completely reachable in n steps and has
reachability indices, v;.

The reachability matrix, Rs(k), of the augmented dual
system (38) can be written as

Ry(k) = [ eso(k) cs §'(k) | -+
o] eon, 1 (R) ¢ m-1(k) ] (39)
where ¢;L(k) € R" is defined by the following recurrence
equations.
csh(k) = ci'(k—ns+1)
csipi(k) = AJ(k—ns+Desy(k+1) (40)

(Z'ZO,"',TLS—Q, l:177m)

Here, c;!(k) € R" is the [-th column of CT ().

For the augmented system to have lexicographically-fixed
reachability indices, d;, the following n, x ny matrix, R,(k),
should be nonsingular for all k.

Ry(k) = [ cso(k),csgq(R)]-
coles G (R), e i (R) ] (4D)
R, (k) can be written as
R = | 50 | “2)

where, Ry(k) € R"*" and Ry,(k) € R"™s~™*"s are defined
by

Rd(k) = [c(l)(k)v"'aczljlfl(k”"'
celegt k), st ] (43)
Rh(k) = [rh(l)(k)f":rh%h—l(k”'”
o lragt (k) urng i (R) ] (44

Since, the anti-causal dual system is reachable in n steps,
the rank of Ry(k) is m, and, hence, there always exists the

matrix, R, (k), such that the rank of Ry(k) is ny for all k.
Thus, as the previous section, C(k), Al(k), and AT (k)
can be obtained by
CI) = [ rad(k+ms—1) - 1%k +ng—1) ]
[ AT(K) AT(k) | = Rus (k+ o — DR, (k + ).
(45)

Here, Ry, (k) is defined by

Ry (k) = [ rai(k) -+ rag, (B)]--
e () i (k) ] (46)
where r, (k). -+, rp ' (k) are arbitrarily determined param-
eters.

From the above, the anti-causal augmented dual system,
(38), has lexicographically-fixed reachability indices, d;. Thus,
using the pole placement technique stated in the section 2, the
matrix HI (k) can be obtained so that AT (k) +CT (k)HT (k)
is equivalent to some constant matrix A*7 which has desired
constant eigenvalues. i.e., there exists some transformation
matrix, Qs(k) € R™ *™=, such that

Qs(k + D{As(k) + Cs(k)H ()} Q7 (k) = A7 (47)

Hence, if () (k) is the Lyapunov transformation, (34) and (35)
becomes the augmented observer, and e(k) and e(k) converge
to 0.

V. STABILITY OF THE TOTAL CLOSED LOOP

If the system (1), (2) has both of non-lexicographically-
fixed reachability indices and non-lexicographically-fixed ob-
servability indices, the augmented plant and the augmented
observer are needed for the observer based pole placement. In
this section, for such a system, the stability of the total closed
loop system and the separation principle are considered.

The augmented plant is (17), and the augmented observer is
(34), (35). Then, for the observer based pole placement, the
state feedback (29) is modified to

u(k) = [ Do(k) De(k) ] { f(k) ] (48)

e(F)
where Z(k) is the state estimation. In this state feedback, Z. (k)
is used instead of z.(k), because, in the second equation of
(17), (t) should be replaced by z (k).
Hence, the total closed loop system for this case becomes
as follows.

z(k+1) A BD,
T(k+1) | 0 A, + B.D,
z(k+1) —-HC BD,
e(k+1) H.C 0
BD, 0 z(k)
As + B.D,, 0 Te (k)
A+BD,+HC —-A,—HC, (k)
—-H.C As + H.C, e(k)
(49)
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Using the transformation matrix

I 0 ‘ 0 0
0 I 0 O
T= I 0 e L (50)
0 0 0 I
the total system (49) is transformed into
x(k+1) A+ BD, BD,
ie(k'i']-) _ A2 +Ber A1+B6D6
e(k+1) - 0 0
e(k +1) 0 0
—BD, 0 z(k)
—Ay — B.D, 0 Ze(k)
A+ HC Ay + HC, e(k)
H.C As+ H.C, e(k)
(k)
_ Ay + ByD, E z.(k) 51)
0 As +CsH, e(k)
e(k)
where
_ —B(k)D, (k) 0
Bk) = { —As(k) + B.(K)Da(k) 0 62

In (49) and (51), the symbol ”’(k)” is omitted because of the
small space.
From the above, using the transformation matrix

o[ Gl
the following relation is obtained.
®(k+1) { Agé"’) i((’?) ] & (k)
— |: %* Pg(k + 1)i§k)Q;1(k) :| (54)

Thus, since the system matrix of (49) is equivalent to the
right hand side of (54), if. P, (k) and Q5(k) are the Lyapunov
transformation matrices, the total closed system is stable and
has a property of the separation principle.

VI. NUMERICAL EXAMPLE
Consider the system (1), (2) with

2 cos(1.5k) 0 0
Alk) = 2sin(1.5(k — 1)) 0 -2 (55)
2sin(1.5k) 2cos(1.5k) 0
[ 1 0
B(k) = 0 1 (56)
| sin(1.5k) 0O
Ch) = [ $cos(15(k—1)) 0 3cos(l.5(k—1))
0 % 0
(57)
This system has non-lexicographically-fixed reachability

indices and non-lexicographically-fixed observability indices.

We design the observer based pole placement for this system.
Because of the small space, we use the following symbols, i.e.,
S = sin(1.5k), S1 = sin(1.5(k — 1)), C = cos(1.5k),C, =
cos(1.5(k — 1))

The reachability indices of this system is pu; = 2, up =1
or uy =1, e = 2. From this v; = vy, = 2. The Augmented
plant equation (17) becomes

zg(k +1) = Ag(k)zy (k) + By (k)u(k) (58)
_ | =(k)
.Z'g(k) - |: ZL"E(]C) :|

T AR 0
Ag“‘“)—{Az(k) Ay (k)

where x,(k) € R* and z.(k) € R!, and

B.(k)

=[-1 0]
[ Aa (k)

Ay(k) | =
—20,528,

(59
-28
(60)

[ 25257(C1 + 1)
—2028 .
On the other hand, the observability indices of this system

isalsov; = 2,v5 = 1orv; =1, vy = 2. Then, the augmented
observer becomes

#(k+1) = A(k)z(k)+ B(k)u(k)
—H(k)(y(k) — C(k)@(k))
(As(k) + H(k)Ce(k))e(k) (61)
e(k+1) = As(k)e(k) + He(k)(y(k) — C(k)&(k))
+He(k)Ce (k)e(k). (62)
Here, ¢(k) € R! and
clk) = [2 0] (63)
[ AT(k) AT(K)] = [0 0 0 O]. (64

Using the following desired stable characteristic polynomial
for both of the pole placement and the observer

¢'(z) =
’(z) =

the simulation results are shown in Fig.l1 and Fig.2.
Fig.1 shows the response of the augmented system,
k), 2e(K)] = [w1(k),wa(k),s(k), & (k)], and Fig.2
shows the response of augmented state estimation error,
[e(k), e(k)] = [ex(K), e2(k), es(k), e(k)].

a3z? + a1z +ap = 2% + 0.4z — 0.05 (65)
a3z’ +afz+af = 2%+ 0.4z — 0.05 (66)

VII. CONCLUTIONS

In this paper, the design procedure of the observer-
based pole placement for linear time-varying MIMO sys-
tems is proposed. Especially, the system is supposed to have
the non-lexicographically-fixed reachability indices and non-
lexicographically-fixed observability indices. The total closed
loop stability and the separation principle are also established.
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Fig. 1. Response of the Augmented Plant of the Observer-Based Pole

Placement Control for the non-lexicographically-fixed System
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APPENDIX
Let &/ (k) be the i-th row of C'(k). Then, we define &' (k)
by the following for¢ =1,---,m.
&T(k) = & (k)
& k) = Tk DAR)
Using this, F'(k) is calculated by
F{'(k) ]
Fky=|
Fp(k) |
where
g
T o . & (k)
Fi (k):[a(l)aazla"'aa::,i—lal] :
N0
A(k) is calculated as
1 ya2(k)  7s(k) Yim (k)
0 1 7s(k) Yom (k)
Aky=|0 0 1 Y3m (k)
0 0 cee 1
where v;; = EE“iil)Tbj(k) (j>i+1).
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