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Abstract—This article is concerned with stability analysis of a 
linear discrete-time dynamic quantizer system with packet loss. 
First, several modifications are made to the original dynamic 
quantizer to make it easier to realize. Then communication 
channel subject to packet loss of Bernoulli distribution from the 
quantizer to the plant input is considered. Moreover, based on 
Lyapunov function approach, a sufficient condition for mean 
square stability of the closed-loop system is derived. Finally, a 
numerical simulation is given for effectiveness of the proposed 
method.  

Keywords-Discrete-time; Dynamic quantizer; Mean square 
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I.  INTRODUCTION 

In the past few years, quantized control has been of great 
significance in the research field of control systems. In 
practical discrete-time systems, owing to limited network 
bandwidth, extensive use of encoders and decoders, command-
driven actuators and discrete-level sensors, it becomes 
necessary for the signals to be quantized before transmission. 

Numerous results on this subject have been obtained in 
recent years. Early studies of quantized control systems mainly 
focus on construction of static quantizers which can guarantee 
the stability of the system. For example, global asymptotic 
stabilization of continuous-time systems is considered in [1], 
[9], where a special uniform quantizer with scaling factor is 
used for quantization. Stabilization of the given system with 
the coarsest quantization density is analyzed in [2], [3], [7] 
using the sector bound approach. Furthermore, stabilization 
problem for systems with one-dimensional input using 
quantized feedback with a memory structure is analyzed in [4]-
[6], focusing on the tradeoff between static quantizer 
complexity and system performance. And the least amount of 
information needs to be communicated between the quantizer 
and the controller in order to stabilize an unstable linear system 
is addressed in [8], [10]-[13]. Moreover, the coarsest 
quantization density to stabilize the system with networked 
packet losses is considered in [17]-[18], and input-to-state 
stability of systems with time-varying delays is analyzed in [19] 
in terms of LMIs. 

For early works of quantized control systems, the 
parameters of quantizers stay invariant as the system evolves, 

which will generate large quantized error. This means that part 
of the system performance has to be sacrificed to cope with 
such a quantized error. For this reason, in [14], [15], a novel 
optimal dynamic quantizer was given whose parameters can 
vary as the system evolves, which is able to handle such 
problem. The optimal dynamic quantizer in [14], [15] is 
constructed to minimize the quantized error according to the 
output of the plant, which can sacrifice fewer system’s 
performance. In further study of this work in [16], the stability 
problem was considered under a dynamic quantized LFT 
system in terms of the poles/zeros. However, these works 
cannot deal with networked problems such as packet losses and 
time-delays effectively. 

In this paper, stability of optimal dynamic quantized system 
is analyzed based on Lyapunov function approach. Besides, 
networked packet loss of the closed-loop system is also taken 
into consideration, which cannot be effectively solved in the 
LFT form. Moreover, some modifications are made to the 
original dynamic quantizer. The static part of the dynamic 
quantizer is replaced by the static quantizer with scaling factor 
and saturation value, which makes it easier to be realized and 
can guarantee smaller quantized error when the state comes 
close to the equilibrium point. 

The whole paper is organized as follows. In section 2, we 
review the original dynamic quantized system and introduce 
the improved dynamic quantizers used in this paper. Next in 
section 3, main result on stability analysis is derived. A 
numerical simulation is given in section 4 and section 5 
concludes this article. 

II. PROBLEM FORMULATION AND PRELIMINARIES 

A. Original Dynamic Quantized System 

Consider the discrete-time systems shown in Fig.1, where 
the linear plant P is given by 

( 1) ( ) ( )
:

( ) ( )

x k Ax k Bv k
P

y k Cx k

  
 

                        (1) 

where nx R is the state, mv R is the control input, py R is 

the output, n nA R  , n mB R  , and p nC R  are system 
matrices. The initial state of the plant P  is 
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0(0)x x for 0
nx R , the pair  ,A B is stabilizable and A is 

unstable. Assume the following assumption holds: 

Assumption 1. The plant P  satisfies that the dimensions of v  
and y  are the same  m p  and the matrix CB  is nonsingular. 

The original optimal dynamic quantizer Q  in Fig.1 ( ** ) is 
given by [14] 

 
1

( 1) ( ) ( ) ( )
:

( ) ( ( ) ( ) ( ))

k A k Bu k Bv k
Q

v k q CB CA k u k

 



   


  
                (2) 

where nR  , mu R , and mv R are the state, input, and 
output of this quantizer respectively, ,A B and C of the 

quantizer are the same as the plant P , : m mq R R is a static 
uniform quantizer. 

The static uniform quantizer q in (2) satisfies that 

1
( )

2

x
q x

     
                                    (3) 

that is 

( ( ) ) ( ( ))
2

abs q x x abs x q x


                         (4) 

where a a    denotes the biggest integer satisfying a a , and 

∆ is the quantized interval of the quantizer. 

 

Figure 1.  Two controlled plants: (
* ) usual controlled plant; (

** ) 
controlled plant with dynamic quantizer 

Remark 1. The dynamic quantizer Q  in Fig.1 ( ** ) has been 
proved to be an optimal quantizer according to the output of the 
plant in [14]. Which indicates the parameters of the dynamic 
quantizer Q  are chosen such that the output 

error *( ) sup ( ) ( )
k Z

E Q y k y k


   between the system **  and *  

is minimized. For the static quantizer q , the quantized error 

is
2


as (4) indicates. It is clear that such open-loop dynamic 

quantized system cannot always guarantee stability of the 
whole system for the quantizer itself may not be stable. 

B. Closed-loop System 

In this paper, consider that packet losses occur with 
probability  in the input channel of the plant as is shown in 
Fig.2. The plant is described as 

( 1) ( ) ( ) ( )
:

( ) ( )

x k Ax k B k v k
P

y k Cx k

  
 

                      (5) 

where ( )k  is a Bernoulli random variable with a probability 
distribution given by 

 
, 0,

Pr ( ) 0 1
1 , 1,

i
k i

i


 




     
             (6) 

Consider the closed-loop system  in Fig.2 using sate 
feedback control law ( )u k  which is given by 

 ( ) ( )u k Kx k                                    (7) 

where m nK R   is the feedback gain. 

 

Figure 2.  Dynamic quantized system with packet loss 

In this paper we replace static uniform quantizer q in (2) 

with q   

 

1
( ) ,

( ) 2

1
( ) ( ) ,

( ) 2

1 1
( ),

( ) 2 ( ) 2

x
k M if M

k

x
q x k M if M

k

xx
k if M

k k










 


  


     

        

     (8) 

where ( )k  is the scaling factor, M is the saturation value and 
∆ is the sensitivity. 

Obviously, the following conditions can be obtained 
according to the quantizer: 

Ⅰ.If ( )x M k , then
( )

( )
2

k
q x x


  ; 

Ⅱ.If ( )x M k , then
( )

( ) ( )
2

k
q x M k

 
  . 

Remark 2. The uniform quantizer q  here is different from 

quantizer q in that it brings in a scaling factor ( )k  , and a 
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saturation value M . The former can guarantee q  not saturate 

by adjusting scaling factor ( )k  properly, which will be 
considered in next section. The latter makes the static part of 
the dynamic quantizer easier to realize. Moreover, it is clear 
that by bringing in this scaling factor ( )k , when the quantizer 
does not meet with saturation, the quantized error varies 
according to ( )k . 

Therefore, an improved dynamic quantizer *Q in Fig.2 is 
given by 

 *
1

( 1) ( ) ( ) ( )
:

( ) ( ( ) ( ) ( ))

k A k Bu k Bv k
Q

v k q CB CA k u k

 



   
   

                 (9) 

Remark 3. It should be noticed that although the static 
quantizer q used here is different from q  in [14], the dynamic 

quantizer *Q is still the optimal quantizer for the system . It 
has been proved in [14] that for the dynamic quantizer (2) with 
static quantizer (3), minimum value of output error ( )E Q can be 
given as 

( ) ( )
2

E Q abs CB


                                   

where for the matrix  : ijM M ,  ( ) : ijabs M M . 

When it comes to q for our system, the quantized 

error becomes
( )

2

k
, obviously, similar conclusion can 

be expressed as 

( ) ( )
2

E Q abs CB


                                 

where  sup ( )
k Z

k 


 is upper bound of ( )k . As a result, the 

improved dynamic quantizer is still optimal dynamic quantizer 
for the system. 

Therefore, the closed-loop system  in Fig.2 can be written 
as 

1

1

( 1) ( )( )

( 1) ( )0 ( )

( )

( )
( ) [ 0]

( )

x k x kA BK B CB CA

k kA B CB CA

B
q

B

x k
y k C

k




 


 







       
          

         
 

       

     (10) 

where 1( ) ( ) ( )CB CA k Kx k    . 

Rewrite the closed-loop system  as 

( 1) ( ) ( ( ))

( ) ( )

z k Az k Be z k

y k Cz k

    



                (11) 

where  ( ) ( ) ( )
T

z k x k k , ( ( )) ( )e z k q      denotes the 

quantized error, and  1( )CB CA K     . 

Matrices 2 2n nA R  , 2n mB R   , 2p nC R  are defined as 

1

1

( )

0 ( )

A BK B CB CA
A

A B CB CA

  



  
   

,
B

B
B

 
  
 

, [ 0]C C . 

When ( ) 1k  , we let 

1

1 1

( )

0 ( )

A BK B CB CA
A A

A B CB CA





  
 




 , 1

B

B
B B

 
 





 . 

When ( ) 0k  , we can get 

12

0

0 ( )

A

A B CB CA
A A 




 


 
 

, 2

0

B
B B

 
 





 . 

Definition 1. System (11) is said to be mean square stable if  

  2
lim 0
k

E z k


                             (12) 

for any initial state 2(0) nz R . 

Lemma 1. The following inequality holds for any positive 
definite matrix G  and matrices E  and F  

T T T TE GF F GE E GE F GF               (13) 

III. STABILITY ANALYSIS 

The following theorem presents a sufficient condition for 
the stability of the closed-loop system : 

Theorem 1. For a given feedback gain K and packet loss 
probability  , if there exists a positive definite symmetric 
matrix P  satisfying that 

1 1 2 2(1 ) 0
1

2
T TA A AP PA P                      (14) 

then the system (11) is mean square stable under control 
law ( ) ( )u k Kx k . 

Proof: The closed-loop system (11) can be expressed as 

  
 

1

2

1

2

( 1) 1 ( ) ( ( ))

( ) ( ( ))

( 1) ( )

z k z k B e z k

z k B e z k

y k

A

A

Cz k





     


  


 

           (15) 

Choose a Lyapunov function, ( ( )) ( ) ( )TV z k z k Pz k , where 
2 2n nP R  is a positive definite matrix, ( ( ))V z k is given by 

the following expression 

 ( ( )) ( ( 1)) ( ( ))V z k E V z k V z k                         

by using Lemma 1, we can get  
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 
  1

1 1 1

2

2 2

1 1 1

1

2 2 2

2

( ( ))

( 1) ( 1) ( ) ( )

1 [ ( )( ) ( )

[ ( )( ) ( )

( ) ( ( ))

( ( )) ( ) ( ( )) ( ( ))]

( ) ( ( ))

( ( )) ( ) ( ( ))

T T T

T T T T

T T T

T T T T

T T

T

T

P P z k PB e z k

e z k B P z k e

V z k

E z k Pz k z k Pz k

z

z k B PB e z k

P P z k PB e z k

e z k B P z k e z

k A A z k A

A

z k A A z

B

k

k

A

A







   

  

     

  

   

 



2

1 1 2

1 1 2 2

1

* *

2

1 2 2

( )[(1 ) ] ( )

2 1

( )[(1 ) ]

( ( ))]

1
2

2

( ( ))[( ) ] ( ( ))

1
2

2

( ( )) ( ( )

( )

)2

T T

T T T

T T

T T

T

T

PB e z k

P P P

e z k B PB B P

z k A A A A z k

B e z k

P P Pz k A A A A z k

e z k P e zB B k











  

  





 





 

 

         

(16) 

where  *
1 1 2 2: max( ),T TB B B BP PB B . 

Define 1 1 2 2(1 )
1

2
T TD A A AP P PA    

 
, if the 

matrix D is positive definite, (14) can be obtained directly, and 
(16) can be rewritten as 

2 2 2
mi

*
n

* *

*

2 ( ( )) ( ( ))

( ( ))

( ) (

2 ( ) ( ) (

)

)

2 T TT

T

D e

V z k

z k z k B Bz k P e z k

D z k BP kB 

   

    









       (17) 

The last expression of (17) is negative if the state of is 
outside the ball 

 ( ) : ( ) ( )H z k z k k                     (18) 

where
* *

min ( )

T P

D

B B


  .  

Define the scaling factor  as 

2 1max

min

( )

( )

P
M

P





                  (19) 

where 0   is a fixed real number.  

We will analyze the control strategy by two stages 
according to the variation of the scaling factor ( )k as [1], [9]: 

The “zooming-out” stage of the quantizer.  

Set ( ) 0u k  , (0) 1  , ( )
k

k A  and increase k  fast 

enough, then a positive integer k  can be found such that 

min

max

( )( )
2

( ) ( )

Pz k
M

k P


 


                               

In the view of condition Ⅰ in the former section 

min

max

( )( ) ( )

( ) ( ) ( )

Pz k z k
q M

k k P


  
  

      
 

       

Define 

min
0

max

( )( )
min 1:

( ) ( )

Pz k
k k q M

k P


 
         

   
    (20) 

Hence it follows that 

0 0 min

0 0 max

( ) ( ) ( )

( ) ( ) ( )

z k z k P
q M

k k P


  
  

    
 

           

Therefore 

min
0 0

max

( )
( ) ( )

( )

P
z k M k

P





                        

Which means 

min
0 0

max

( )
( ) ( )

( )

PM
z k k

P








                      

Hence 0( )z k belongs to an ellipsoid 

2
2

1 min2
( ) : ( ) ( ) ( ) ( )T M

R z k z k Pz k k P 
    

  
     (21) 

It is obvious that ( ) ( )z k M k  holds with 0( ) ( )k k   

for all 1( )z k R .  

Take M and   in (19) properly to guarantee 1  , it 
follows that 1R H . Moreover, if 0k k , ( )z k  will never 

leave 1R . 

The “zooming-in” stage of the quantizer. 

Define 

22 2 2
min max

2 2
min

( ) ( )
=

( )

M P T P

T D

 


 

  


              (22) 

We can have 0  as 1  . Define      , where     

denotes the smallest integer satisfy   , 0Z  . 

Assume an inequality can be get according to 0Z    

2 2 2
0 0 0 max[ ( ) ( )] ( )( ) ( )TE z k Pz k k P           (23) 

Suppose (23) is not true, then we can have that 

 2 2 2
0 0 0 max[ ( ) ( )] ( )( ) ( )TE z k Pz k k P           (24) 

That is 

2 2 2 2
0 0[ ( ) ] ( )( )E z k k                    (25) 

for all  0 0,k k k   . 
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Based on (18) and 1  , it is clear that 

0

0 0

0 0

2 2 2 2
min 0 min 0

2 2
min 0

1

[ ( ) ( )]

[ ( 1) ( 1)]

- ( ) [ ( 1) ] ( ) ( )

- (

[ ( )

)

]

) (

T

T

k

E z k Pz k

E z k Pz k

D E z k D k

D

z

k

V 

 

 

   

  

 

   

   

     

 



   (26) 

Furthermore, it can be obtained that 

0

0 0

0 0

2 2 2 2
min 0 min 0

2 2
min 0

[ ( 1) ( 1)]

[ ( ) ( )]

- ( ) [ ( ) ] ( ) ( )

- ( )

[ ( )

( )

]
T

T

k i

E z k i Pz k i

E z k i Pz k i

D E z k i D k

D

V

k

z 

 

 

   

  

 

       

   

     

 



  (27) 

where  1,2,3, ,i   . 

Then we have 

0 0 0 0

2 2
min 0

2 2
min 0

2
2 2 2 2

max 0 min 02

[ ( ) ( )] ( ) ( )

- ( ) ( )

- ( ) ( )

( ) ( ) ( ) ( )

T TE z k Pz k z k Pz k

D k

D k

M
P k P k

 

   

   

   

  

 

 

   


          (28) 

However, the following inequality can be obtained from 
(21) and (24) 

0 0 0 0

2
2 2 2 2

0 max 0 min2

2
2 2 2 2

max 0 min 02

[ ( ) ( )] ( ) ( )

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T TE z k Pz k z k Pz k

M
k P k P

M
P k P k

 

    

   

  

    


   


    (29) 

Obviously (28) and (29) contradict with each other, which 
implies the validity of (23). 

Based on (23) and 1  , it follows that 

  

2 2 2
0 0 0 max

2
2

0 min2

[ ( ) ( )] ( )( ) ( )

( ) ( )

TE z k Pz k k P

M
k P

    

 

     

 


    (30) 

Thus it is clear that 0( )z k  belongs to 

 
2

2

2 min2
( ) : [ ( ) ( )] ( ) ( )T M

R z k E z k Pz k k P 
     

  
 (31) 

Let 0( ) ( )k k   for 0 0 2k k k     , a similar result 
can be obtained 

 
2

22
0 0 0 min2

[ ( 2 ) ( 2 ) ] ( ) ( )T M
E z k Pz k k P      


 (32) 

Let 1
0( ) ( )ik k   for 0 0( 1)k i k k i      , it can be 

given as 

 
2

2

0 0 0 min2
[ ( ) ( ) ] ( ) ( )T i M

E z k i Pz k i k P      
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  (33) 

By repeating this procedure, we can obviously obtain that 

( ) 0k  as k  , and
2

lim [ ( ) ] 0
k

E z k


 , which means the 

closed-loop system  is mean square stable. 

IV. A NUMERICAL EXAMPLE 

In this section, a numerical example is given to show the 
effectiveness of the proposed method. Consider the following 
system 

 

1.1 1
( 1) ( ) ( ) ( )

0.5 2:

( ) 1 0.2 ( )

x k x k k v k
P

y k x k


    

      
   

 

                

where ( )k  is a Bernoulli random variable with probability 
distribution given by 

 
0.2, 0

Pr ( )
0.8, 1

i
k i

i



   

                      

which means the packet-loss rate is 0.2. 

Obviously, the plant P is unstable as one of its eigenvalues 
is 1.1. And it is stabilizable as [ ] 2rank B AB  . Set the 
feedback gain [ 1.53 0.13]K   . The dynamic quantizer is 
given as 

 
 

1.1 1.53 0.13
( 1) ( ) ( )

0.5 3.06 0.26

1
( ):

2
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k k x k
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

    
         

     
 

  

  

         

whose parameters are determined by the plant P and the 
feedback gain K . 

The closed-loop system can be expressed as 

 
 
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We can find there is a positive definite matrix 

7.7602 -1.2269 2.1796 -0.4196

-1.2269 0.3699 -0.5016 0.1113

2.1796 -0.5016 9.8224 0.1117

-0.4196 0.1113 0.1117 0.5190

P

 
 
 
 
 
 

                

satisfying (14), then the system is mean square stable under 
control law (7). 

The static quantizer is given by 

4 ( ), 3.95 ( )

( ) 4 ( ), 3.95 ( )

0.05 ( ), 3.95 ( )
( )

k if x k

q x k if x k

x
k if x k

k



 

 

 






   
     

            

with 4M  and 0.1  . 

Set 0.1  , we can get 0.7497 1   . Let the initial state 
of the system be (0) [5 7 8 6]Tz  . Then the trajectories of 

state ( )z k are shown in Fig.3, where ( )z i  denotes the i -th 

component of ( )z k . It is clear that system (11) is mean square 

stable as ( ) 0z k   when k  . 

 

Figure 3.  Trajectories of state ( )z k  

V. CONCLUSION 

This paper has discussed the stability of the optimal 
dynamic quantizer system with packet loss subject to Bernoulli 
distribution. In order to make the quantizer more practical and 
have better performance, traditional optimal dynamic quantizer 
has been improved here by replacing its static part with another 
one which contains saturation value and scaling factor. The 
communication channel has been considered subject to packet 

loss from the quantizer to the plant input. Based on Lyapunov 
function approach, a sufficient condition for mean square 
stability of the closed-loop system has been given.  
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