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Abstract—This paper focuses on the robust H∞ control prob-
lem for a class of nonlinear switched systems containing neutral
uncertainties with average dwell time (ADT). Uncertainties are
assumed to be nonlinearly dependent on state and state derivative
and allowed to appear in channels of state, control input and
disturbance input. The robust H∞ control problem of the
switched system with stabilizable and unstabilizable subsystems
is solvable if the stabilizable and unstabilizable subsystems satisfy
certain conditions and admissible switching strategy among them.
ADT and piecewise Lyapunov function approaches are applied
to achieve the control design. A numerical example is provided
to illustrate the effectiveness of the proposed results.

I. INTRODUCTION

The last decades have witnessed a rapidly growing interest
from the control field in the study of switched systems [1-
7]. More specifically, switched systems belonging to a class
of hybrid dynamical systems contain a finite number of
subsystems and a switching signal that must be designed in
order to orchestrate the switching among the subsystems. Re-
cently, there is increasing growth of interest in applying ADT
switching to handle the switched systems [8-10]. As a class
of typical controlled switching signals, ADT switching means
that the number of switches in a finite interval is bounded
and the average time between the consecutive switching is
not less than a specified value. It is widely recognized that
ADT switching is of practical and theoretical significance to
deal with the related stability analyses and control syntheses
problems.

As is well known, uncertainties are unavoidable in engi-
neering control and are frequently the source of instability
and performance deterioration. Thus during the past decades,
the problems of stability analysis and controller synthesis
with uncertainties have received much attention [11-13]. [14]
studied the robust stabilization problem for a class of uncertain
nonlinear cascaded systems, in which the uncertain parameters
are from a known compact set. In [15], the problem of robust
l2-l∞ filtering for switched linear discrete-time systems with
polytopic uncertainties and time-varying delays is investigated.
Furthermore, neutral uncertainties describing many practical

parameter perturbations are often nonlinearly state and nonlin-
early state derivative dependent. [16] discussed the robust L2-
gain performance synthesis problem for a class of nonlinear
systems with neutral uncertainties. However, few results have
focused on switched systems with neutral uncertainties so far.

On the other hand, H∞ control theory for switched systems
has attracted considerable attention by researchers and has
been a hot topic in the control area [17-21]. Especially,
results about nonlinear H∞ control of switched systems have
progressively appeared to solve robust stabilization and distur-
bance attenuation issues [22-25]. The nonlinear H∞ control
problem for switched systems can be stated as follows: Find
a compensator, either state feedback or more general output
feedback and a switching rule (if necessary) such that (1) the
internal state of the closed-loop system is stable and (2) the
L2 gain of the mapping from the exogenous input disturbance
to the controlled output is minimized or guaranteed to be less
than or equal to a prescribed value. In [26], the H∞ control
problem of switched systems has been addressed with ADT
in both linear and nonlinear contexts. [27] investigated the
H∞ control problem for a class of switched nonlinear cascade
systems using the multiple Lyapunov function method.

In this paper, we discuss the problem of robust H∞ control
for a class of nonlinear switched systems with neutral uncer-
tainties. For the case where states are measurable, sufficient
conditions for the switched system to be asymptotically stable
with H∞-norm bound and design of both switching law
and state feedback controller are proposed for all admissible
uncertainties. ADT switching is used so that the results cover
the case where stabilizable and unstabilizable subsystems both
exist in the switched system. An numerical example is given
to illustrate the applicability of the developed method. As
compared to the existing results, this paper deals with neutral
uncertainties. Additionally, uncertainties are also allowed to
appear in channels of state, control input and disturbance input.

Notation: we use standard notations throughout this paper.
Rn denotes the n-dimensional real Euclidean space, and given
a matrix P, P > 0 denotes that P is positive definite, PT

stands for the transpose of P , I is the identity matrix, ‖ · ‖
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represents either the Euclidean vector norm or the induced
matrix 2-norm, and σ(·) denotes the largest singular value of
a matrix.

II. PROBLEM STATEMENT AND PRELIMINARIES

In this paper, we consider a class of nonlinear switched
systems described by equations of the form:

ẋ + ∆jσ(t)(ẋ, t) =fσ(t)(x) + ∆fσ(t)(x, t) + (cσ(t)(x)
+ ∆cσ(t)(x, t))ωσ(t),

y =hσ(t)(x), (1)

where σ(t) : [0,+∞) → Im = {1, · · ·,m} is the switching
signal, which is assumed to be a piecewise constant function
depending on time, x ∈ Rn is the state, ωi ∈ Rci is the
disturbance input belongs to L2[0,∞) , ui ∈ Rmi and y ∈ Rpi

stand for the control input and the measurement output of the
ith subsystem respectively. fi(x), ci(x) and hi(x) are known
smooth nonlinear function matrices of appropriate dimensions
satisfying fi(0) = 0 and hi(0) = 0, ∆ji(ẋ, t),∆fi(x, t)
and ∆ci(x, t) represent unknown smooth nonlinear function
matrices, i ∈ Im.

The switching sequence σ(t) associated with the switched
system (1) is given by

∑
= {x0; (i0, t0), (i1, t1), · · · , (ik, tk), · · · ,

|ik ∈ Im, k ∈ N}, (2)

in which t0 is the initial time, x0 is the initial state. When
t ∈ [tk, tk+1), σ(t) = ik, the ikth subsystem is active, and the
trajectory x(t) of the switched system (1) is the trajectory xik

of the ikth subsystem. As commonly assumed in the literature,
we exclude Zeno behavior for all types of switching signal in
this paper. In addition, we assume that the state of the switched
system (1) does not jump at the switching instants, i.e., the
trajectory x(t) is everywhere continuous.

In this paper, we assume all uncertainties in the switched
system (1) having the following properties.

Assumption 1. The uncertain functions ∆ji(ẋ, t),∆fi (x, t)
and ∆ci(x, t) are gain bounded smooth functions described as
follows:

∆ji(ẋ, t) = ejiδji(ẋ, t), ‖δji‖ ≤ ‖Wji ẋ‖ ,

∆fi(x, t) = efiδfi(x, t), ‖δfi‖ ≤ ‖Wfi(x)‖ ,

∆ci(x, t) = eciδci(x, t), ‖δci‖ ≤ ‖Wci(x)‖ , (3)

where eji
, efi

, eci
are known constant matrices and δji

, δfi
, δci

are unknown function vectors with δji(0, t) = 0 and δfi(0, t)
= 0. Wji ,Wfi are known smooth function matrices, Wci are
given weighting matrices, i ∈ Im.

Now, the robust H∞ control problem to be addressed in this
paper can be represented as: given a constant γ > 0, design a
switching law i = σ(t) for the switched system (1) such that

(i) The autonomous system (1) is globally asymptotically
stable when ωi ≡ 0.

(ii) System (1) has weighted L2-gain from ωi to y for all
admissible uncertainties, ie., there holds

∫ ∞

0

e−λτyT (τ)y(τ)dτ ≤ γ2

∫ ∞

0

ωT
i (τ)ωi(τ)dτ + β(x0)

for some real-valued function β(·) with β(0) = 0.
Assumption 2. For robust H∞ control problem, suppose

that not all the subsystems of the switched system (1) are
stabilizable.

Definition 1. For any T2 > T1 ≥ 0, let Nσ(T1, T2)
denote the number of switching of σ(t) over (T1, T2). If
Nσ(T1, T2) ≤ N0 + T2−T1

τa
holds for τa > 0, N0 ≥ 0, then τa

is called average dwell time.
Definition 2. For the switched system (1), suppose that

Vi(t) is the corresponding Lyapunov function for the ith
subsystem, then V (t) is called a piecewise Lyapunov function
candidate if it can be written as V (t) = Vσ(t)(x), where
Vσ(t)(x) is switched among Vi(t) in accordance with the
piecewise constant switching signal σ(t).

III. MAIN RESULTS

For the switched system (1) with stabilizable and unstabi-
lizable subsystems, the robust H∞ control problem is solvable
if the stabilizable and unstabilizable subsystems satisfy certain
conditions and admissible switching law among them, respec-
tively. In what folllows, we give the design method for the
robust H∞ control problem of the switched system (1).

Consider the switched system (1). Under Assumption 2, for
the robust H∞ control problem, not all the subsystems are
stabilizable, without loss of generality, we assume that the ith
subsystem (1 ≤ i ≤ s) is stabilizable (where the positive
integer s satisfies 1 ≤ s < m), whereas the other subsystems
of (1) are unstabilizable.

Then, for any piecewise constant switching signal σ(t) and
any 0 ≤ t0 < t, we let Π−(t0, t) (resp.,Π+(t0, t)) denote
the total activation time of stabilizable (resp., unstabilizable)
subsystems during (t0, t). Then, we present the following
switching law:

(F): Let t0 < t1 < t2 < · · · < ti (limi→∞ ti = ∞) be
a specified sequence of time instants satisfying maxi(ti+1 −
ti) = T < ∞. Determined the switching signal σ(t) so that
the inquality

Π−(ti, ti+1)
Π+(ti, ti+1)

≥ β + λ∗

α− λ∗
(4)

holds on time every interval [ti, ti+1)(i = 0, 1, · · · ) with α >
0, β > 0 and λ∗ ∈ (0, α). Meanwhile, we choose λ∗ ≤ α as
the average dwell time scheme: for any t > t0,

Nσ(t0, t) ≤ N0 +
t− t0

τ
, τ > τ∗ =

lnu

λ∗
. (5)

Under the switching law (F) for any t0, t satisfying ti−1 <
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t0 < ti < ti+1 < · · · < tk < t, we can infer

βΠ+(t0, t)− αΠ−(t0, t)

≤β(ti − t0) +
k−1∑

l=i

[βΠ+(tl, tl+1)− αΠ−(tl, tl+1)]

+ β(t− tk)
≤β(ti − t0)− λ∗(tk − ti) + β(t− tk)
≤(β + λ∗)(ti − t0)− λ∗(t− t0) + (β + λ∗)(t− tk). (6)

Since on any interval [ti, ti+1), the total activation time
period of unstable subsystems satisfies Π+(ti, ti+1) ≤
α−λ∗
α+β (ti+1 − ti) according to the requirement in (F), we get

from (6) that

βΠ+(t0, t)− αΠ−(t0, t) ≤ c− λ∗(t− t0), (7)

Where c = 2(β+λ∗)(α−λ∗)
(α+β) T .

The following theorem provides theoretical basis for the
robust H∞ control problem of the switched system (1).

Theorem 1. Given any constant γ > 0, suppose that
there exist radially unbounded positive definite differentiable
functions Vi(x), i = 1, · · ·,m, constants µ ≥ 1, such that the
following inequalities

∂Vi

∂x
fi + γ2

i CT
i Ci + γ2

i (
1

2γ2
i

∂Vi

∂x
Bi + CT

i Di)R−1
i (

1
2γ2

i

∂Vi

∂x

·Bi + CT
i Di)T + αVi < 0, i ≤ s, (8)

∂Vi

∂x
fi + γ2

i CT
i Ci + γ2

i (
1

2γ2
i

∂Vi

∂x
Bi + CT

i Di)R−1
i (

1
2γ2

i

∂Vi

∂x

·Bi + CT
i Di)T − βVi < 0, i > s, (9)

Vi ≤ µVj , (10)

and

α∗1 (‖x‖) ≤ Vi (x) ≤ α∗2 (‖x‖) , i, j = 1, · · ·,m (11)

hold, where α∗1 (x) and α∗2 (x) are two class K∞ functions
and

γ2
i =

γ2

1 + σ̄(Wci)/λ2
ci

, Bi = [ci, λjieji , λfiefi , λcieci ],

CT
i = [(1/γi

)hT
i , (1/λji

)fT
i WT

ji
, (1/λfi

)WT
fi

, 0],

DT
i = [0, (1/λji

)BT
i WT

ji
, 0, 0], Ri = I −DT

i Di (12)

with λji , λfi , and λci , i ∈ Im are positive constants.
Then, the robust H∞ control problem of the switched

system (1) is solvable under the switching condition (F) and
the average dwell-time (5).

Proof: From Definition 2, we choose the following piece-
wise Lyapunov function candidate:

V (t) = Vσ(t) (x) (13)

for the switched system (1), where Vσ(t) (x) is switched
among the solution Vi (x)’s of (8)-(11) in accordance with
the piecewise constant switching signal σ.

Regard neutral uncertainty ∆ji(ẋ, t) as an exogenous dis-
turbance and make a new extended disturbance input including
it. In this case, define

dT
i = [ωT

i ,−(1/λji
)δT

ji
, (1/λfi

)δT
fi

, (1/λci
)ωT

i δT
ci

]. (14)

Then, we can conclude that

dT
i di ≤‖ωi‖2 + (1

/
λ2

ji

)δT
ji

δji
+ (σ̄(Wci

)/λ2
ci

) ‖ωi‖2

+ (1
/
λ2

fi

)δT
fi

δfi

≤(1 + σ̄(Wci
)/λ2

ci
) ‖ωi‖2 + (1

/
λ2

ji

)δT
ji

δji

+ (1
/
λ2

fi

)δT
fi

δfi , (15)

which means

−γ2 ‖ωi‖2 ≤ γ2
i dT

i di + (γ
2
i
/
λ2

ji

)δT
ji

δji
+ (γ

2
i
/
λ2

fi

)δT
fi

δfi
.

Owing to Assumption 1, it holds that

V̇ + ‖y‖2 − γ2 ‖ωi‖2

=
∂Vi

∂x
(fi + ∆fi + ciωi + ∆ciωi −∆ji) + ‖y‖2 − γ2 ‖ωi‖2

=
∂Vi

∂x
(fi + efi

δfi
+ ciωi + eci

δci
ωi − eji

δji
) + ‖y‖2

− γ2 ‖ωi‖2

=
∂Vi

∂x
(fi + Bidi) + hT

i hi − γ2
i dT

i di +
γ2

i

λ2
ji

δT
ji

δji

+
γ2

i

λ2
fi

δT
fi

δfi . (16)

Furthermore

γ2
i

λ2
ji

δT
ji

δji
≤ γ2

i

λ2
ji

(fi + ∆fi + ciωi + ∆ciωi −∆ji)T WT
ji

·Wji
(fi + ∆fi + ciωi + ∆ciωi −∆ji)

=
γ2

i

λ2
ji

(fi + Bidi)T WT
ji

Wji
(fi + Bidi)

=
γ2

i

λ2
ji

fT
i WT

ji
Wji

fi +
2γ2

i

λ2
ji

fT
i WT

ji
Wji

Bidi

+
γ2

i

λ2
ji

dT
i BT

i WT
ji

Wji
Bidi. (17)

Combining the previous two inequalities (16)-(17) and con-
sidering (8)-(9), then by completing the squares, there holds

V̇ (x(t)) + ‖y‖2 − γ2 ‖ωi‖2

=
∂Vi

∂x
(fi + Bidi) + hT

i hi − γ2
i dT

i di +
γ2

i

λ2
ji

fT
i WT

ji
Wji

fi

+
2γ2

i

λ2
ji

fT
i WT

ji
Wji

Bidi +
γ2

i

λ2
ji

dT
i BT

i WT
ji

Wji
Bidi

+
γ2

i

λ2
fi

δT
fi

δfi

≤∂Vi

∂x
(fi + Bidi) + γ2

i CT
i Ci − γ2

i dT
i Ridi + 2γ2

i CT
i Didi
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=
∂Vi

∂x
fi − γ2

i

∥∥∥∥R
1
2
i di −R

− 1
2

i (
1

2γ2
i

∂Vi

∂x
Bi + CT

i Di)T

∥∥∥∥
2

+ γ2
i (

1
2γ2

i

∂Vi

∂x
Bi + CT

i Di)R−1
i (

1
2γ2

i

∂Vi

∂x
Bi + CT

i Di)T

+ γ2
i CT

i Ci

≤∂Vi

∂x
fi + γ2

i CT
i Ci + γ2

i (
1

2γ2
i

∂Vi

∂x
Bi + CT

i Di)R−1
i

· ( 1
2γ2

i

∂Vi

∂x
Bi + CT

i Di)

≤
{ −αVi, i ≤ s,

βVi, i > s.
(18)

Note that when ω(t) ≡ 0, we know from (18) that for any
t ∈ [tk, tk+1) (t0 ≤ k ≤ Nσ(t0, t)), the piecewise Lyapunov
function candidate (13) satisfies

V (t) = Vσ(t)(t) ≤
{

e−α(t−t0)Vσ(tk)(tk), if i ≤ s,
eβ(t−t0)Vσ(tk)(tk), if i > s.

(19)

From (10), Vσ(tk)(tk) ≤ µVσ(t−k )(t
−
k ) is true at the switch-

ing point tk. Therefore, we obtain by induction that

V (t) ≤ eβΠ+(tk,t)−αΠ−(tk,t)Vσ(tk)(tk)

≤ µeβΠ+(tk,t)−αΠ−(tk,t)Vσ(t−k )(t
−
k )

≤ µeβΠ+(tk,t)−αΠ−(tk,t)Vσ(tk−1)(tk−1)

≤ · · · ≤ µkeβΠ+(tk,t)−αΠ−(tk,t)Vσ(t0)(t0)

≤ µN(t0,t)eβΠ+(tk,t)−αΠ−(tk,t)Vσ(t0)(t0), (20)

where N(t0, t) is the switching numbers in the time interval
(t0, t).

Taking (5) and (7) into account, we get

V (t) ≤ µN(t0,t)eβΠ+(tk,t)−αΠ−(tk,t)Vσ(t0)(t0)

≤ eN0 ln µ+ce−(λ∗− ln µ
τ )(t−t0)Vσ(t0)(t0)

≤ c0e
−λ(t−t0)Vσ(t0)(t0), (21)

where c0 = eN0 ln µ+c, λ = (λ∗ − ln µ
τ ).

According to (11), we have

α∗1 (‖x‖) ≤ Vi (x) ≤ α∗2 (‖x‖) . (22)

Combining (20)-(22) gives

‖x(t)‖ ≤ α∗−1
1 (c0e

−λ(t−t0)α∗2 (‖x(t0)‖) , (23)

which means global asymptotic stability of the switched
system (1) with ω(t) ≡ 0. The proof of internal stability is
completed.

It can be easily seen from (18) that for any t ∈
[tk, tk+1) (t0 ≤ k ≤ Nσ(t0, t)), the piecewise Lyapunov
function candidate (13) satisfies

V (t) ≤





e−α(t−tk)Vσ(tk)(tk)− ∫ t

tk
e−α(t−τ)Γ(τ)dτ,

if σ(tk) = i ≤ s,

eβ(t−tk)Vσ(tk)(tk)− ∫ t

tk
eβ(t−τ)Γ(τ)dτ,

if σ(tk) = i > s.

From (10), Vσ(tk)(tk) ≤ µVσ(t−k )(t
−
k ) is true at the switch-

ing point tk. Therefore, we obtain by induction that

V (t) ≤eβΠ+(tk,t)−αΠ−(tk,t)Vσ(tk)(tk)

−
∫ t

tk

eβΠ+(τ,t)−αΠ−(τ,t)Γ(τ)dτ

≤µeβΠ+(tk,t)−αΠ−(tk,t)Vσ(t−k )(t
−
k )

−
∫ t

tk

eβΠ+(τ,t)−αΠ−(τ,t)Γ(τ)dτ ≤ · · ·

≤µkeβΠ+(t0,t)−αΠ−(t0,t)Vσ(t0)(t0)

− µk

∫ t1

t0

eβΠ+(τ,t)−αΠ−(τ,t)Γ(τ)dτ

− µk−1

∫ t2

t1

eβΠ+(τ,t)−αΠ−(τ,t)Γ(τ)dτ − · · ·

− µ0

∫ t

tk

eβΠ+(τ,t)−αΠ−(τ,t)Γ(τ)dτ

=µkeβΠ+(t0,t)−αΠ−(t0,t)Vσ(t0)(t0)

−
∫ t

t0

µNσ(τ,t)eβΠ+(τ,t)−αΠ−(τ,t)Γ(τ)dτ

=eβΠ+(t0,t)−αΠ−(t0,t)+Nσ(t0,t) ln µVσ(t0)(t0)

−
∫ t

t0

eβΠ+(τ,t)−αΠ−(τ,t)+Nσ(τ,t) ln µΓ(τ)dτ. (24)

Multiplying both sides of the above inequality by
e−Nσ(t0,t) ln µ leads to

e−Nσ(t0,t) ln uV (t)

+
∫ t

t0

eβΠ+(τ,t)−αΠ−(τ,t)−Nσ(t0,τ) ln uyT (τ)y(τ)dτ

≤eβΠ+(t0,t)−αΠ−(t0,t)Vσ(t0)(t0)

+ γ2

∫ t

t0

eβΠ+(τ,t)−αΠ−(τ,t)−Nσ(t0,τ) ln µωT (τ)ω(τ)dτ.

Under the switching law (F) and the average dwell time
scheme (5) with σ < λ∗, we can obtain

∫ t

t0

e−α(t−τ)−στyT (τ)y(τ)dτ

≤ec−λ∗Vσ(t0)(t0) + γ2

∫ t

t0

ec−λ∗(t−τ)ωT (τ)ω(τ)dτ. (25)

Integrating both sides of the foregoing inequality from t0
to ∞ and rearranging the double-integral area, we obtain

∫ ∞

t0

e−στyT (τ)y(τ)dτ

≤αec

λ∗
Vσ(t0)(t0) +

αec

λ∗
γ2

∫ ∞

t0

ωT (τ)ω(τ)dτ, (26)

which means that the switched system achieves the weighted
disturbance attenuation level

√
αec

λ∗ γ under the average dwell
time scheme (5) and the switching law (F).
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When the switched system (1) is in the following linear
form:

[I + Eji

∑
ji

(t)Fji ]ẋ =[Ai + Eai

∑
ai

(t)Fai ]

+ [Hi + Ehi

∑
hi

(t)Fhi
]ωi,

y =Cix, (27)

where the uncertain matrices satisfy
∑

υ (t)
∑

υ (t) ≤ I, υ ∈
{ji, ai, hi, i ∈ Im}. Let δji =

∑
ji

(t)Fji ẋ, δfi =∑
ji

(t)Fji
x, δgi

=
∑

hi
(t)Fhi

x, it is clear that υ ∈
{ji, ai, hi, i ∈ Im}. satisfy Assumption 1 with Mji

=
Fji

,Wfi
= Fai

,Wci
= Fhi

. Then, we have the following
Theorem.

Theorem 2. Given any constant γ > 0, suppose that there
exist a set of positive definite matrices Pi, i ∈ Im, constants
α > 0, β > 0 and µ ≥ 1, such that the following inequalities

PiAi + AT
i Pi + γ2

i CT
i Ci + γ2

i (
1

2γ2
i

PiBi + CT
i Di)R−1

i

· ( 1
2γ2

i

PiBi + CT
i Di)T + αPi < 0, i ≤ s, (28)

PiAi + AT
i Pi + γ2

i CT
i Ci + γ2

i (
1

2γ2
i

PiBi + CT
i Di)R−1

i

· ( 1
2γ2

i

PiBi + CT
i Di)T − βVi < 0, i > s, (29)

and

Pi ≤ µPj , i, j ∈ Im (30)

hold, where

γ2
i = γ2

1+σ̄(Fhi
)/λ2

pi

, B̂i = [Hi, λji
Eji

, λfi
Eai

, λpi
Ehi

],

CT
i =




(1/γi
)Ci

(1/λji
)Fji

Ai

(1/λfi
)Fai

0


 , Di =




0
(1/λji

)FjiBi

0
0


 ,

Ri = I −DT
i Di,

with λji , λfi , and λci , i ∈ Im are positive constants.
Then, the switching strategy (5) satisfying (F) solve the

robust H∞ control problem of the switched system (27).
Proof: The proof is similar to Theorem 1.

IV. EXAMPLE

In this section, we give a numerical example to illustrate
the performance of the proposed approach.

Example 1. Consider the nonlinear switched system (1)

with σ = {1, 2} and

f1(x) =
1
4
x, c1 = 1, h1 = −1

2
x, f2(x) = −2x, c2 = −1,

h2 = x,∆j1(ẋ, t) = a1ẋ sin t, ej1 = 1, δj1 = a1ẋ sin t,

Wj1 = 1,∆j2(ẋ, t) = a2ẋ cos t, ej2 = 1, δj2 = a2ẋ cos t,

Wj2 = 1,∆f1(x, t) =
1
2
b1x cos t, ef1 = 1, δf1 =

1
2
b1x sin t,

Wj2 =
1
2
x,∆f2(x, t) = b2x sin t, ef2 = 1, δf2 = b2x sin t,

Wf2 = x,∆c1(x, t) = c1e
−t, ec1 = 1, δc1 = c1e

−t,Wc1 = 1,

∆c2(x, t) = c2e
−t, ec2 = 1, δc2 = c2e

−t,Wc2 = 1, (31)

and ai, bi, ci, i = 1, 2 are unknown constants in the set [0, 1].
It is easy to check that the first subsystem is unstabilizable

and the second one is stabilizable. Let γ2 = 2 and λji =
λfi = λci = 1, then according to Theorem 1, we obtain

γ1 = γ2 = 1, B1 = [−1, 1, 1, 1], B2 = [1, 1, 1, 1],
C1 = [x,−2x, x, 0], C2 = [− 1

2x, 1
4x, 1

2x, 0],

DT
1 =




0 −1 0 0
0 1 0 0
0 1 0 0
0 1 0 0


 , DT

2 =




0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0


 ,

We choose V1(x) = 2x2, V2(x) = 4x2, and α = 0.8, β =
0.5. Then following (8)-(9),we can infer

∂V1

∂x
f1 + γ2

1CT
1 C1 + γ2

1(
1

2γ2
1

∂V1

∂x
B1 + CT

1 D1)R−1
1

· ( 1
2γ2

1

∂V1

∂x
B1 + CT

1 D1)T − βV2 = −315
16

x2 ≤ 0, (32)

and
∂V2

∂x
f2 + γ2

2CT
2 C2 + γ2

2(
1

2γ2
2

∂V2

∂x
B2 + CT

2 D2)R−1
2

· ( 1
2γ2

2

∂V2

∂x
B2 + CT

2 D2) + αV1 = −182
15

x2 ≤ 0, (33)

Let µ = 2, λ∗ = 0.3, we have τ∗ = ln µ
α = 0.8664 and

the activation ratio of stabilizable subsystems to unstabilizable
subsystems is Π−(t0,t)

Π+(t0,t) = β+λ∗

α−λ∗ = 1.6. Using the switching
strategy provided by Theorem 1, we obtained that the robust
H∞ control problem of (1) is solvable, the simulation results
are depicted in Figs. 1-2.

V. CONCLUSION

In this paper, we have investigated the problem of robust
H∞ control for a class of uncertain nonlinear switched systems
based on ADT. Uncertainties are considered to be nonlinearly
relied on state and state derivative and allowed to appear in the
state, control input and disturbance input. Under the condition
that the activation time ratio between stabilizable subsystems
and unstabilizable ones is not less than a specified constant,
we have derived sufficient conditions for the stabilization
and weighted L2-gain property of the switched system. The
feasibility of the developed results have been proved by using
a numerical example.
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Fig. 1. The switching signals for the switched system (1).
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Fig. 2. The state responses of the switched system (1).
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