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Abstract—This paper concerns phase plane description and 

modulation of the performance for a nonlinear Unmanned Aerial 

Vehicle (UAV) system based on Variable Structure Control (VSC) 

by reaching sliding mode.  The novelty lies in the application of a 

phase analysis approach to achieve a robust controller for a 

complex nonlinear system. The aircraft dynamics are introduced 

and approximately linearized and decoupled on-line using 

feedback linearization theory. Then the sliding mode control 

(SMC) scheme is accomplished for the decoupled sub-channels. 

The phase modulation method is applied for theoretically 

ensuring further robustness. The simulation results demonstrate 

the efficiency and effectiveness of the proposed strategy. 

Keywords-nonlinear aircraft; feedback linearization; sliding 

mode; phase modulation; robust controller 

I.  INTRODUCTION  

Flight control systems have strict real application 
requirements to achieve high reliability against model 
uncertainties. The model-based approach to sustainable control 
for dynamic systems (based on analytical redundancy instead 
of hardware redundancy) has long been emphasized for 
achieving robustness and minimizing the effects of modelling 
uncertainty to the system [1-4]. Some approaches are based on 
robust control or passive fault tolerant control (FTC) as an 
alternative to achieve system reconfiguration [5-7]. Here we 
consider the robust approach for passive flight FTC system. 

Advanced high-performance aircraft, not only have the 
characteristics of high nonlinearity and are Multiple Input and 
Multiple Output (MIMO) from a control standpoint, but also 
require high manoeuvrability with static instability [8]. For the 
purpose of efficiency and simplification, the feedback 
linearization technique is well-proven and has been developed 
to be one of the feasible control strategies in the study of 
nonlinear system, especially for aircraft [9], [10]. Feedback 
linearization can remove nonlinear features from the system 
and provide a linearized and decoupled closed-loop form. In 
addition to these features, dynamic linearization has advantages 
such as insensitivity to parameter changes and disturbances, 
and simplicity in physical realization [11-13]. 

For the linearized and decoupled aircraft system, a further 
robust controller is required to achieve tracking accuracy and 
passive FTC performance. As a main mode of VSC, the SMC 
technique turns out to be characterized by high simplicity and 

robustness [14], [15]. The main idea at the basis of the SMC 
strategy is the design of a particular control surface to coerce 
the controlled system trajectories into the sliding manifold to 
achieve expected performance via rapid switching between 
positive and negative control gains, resulting in variable 
structure of the control law. An advantage of sliding behavior 
is its insensitivity similar as the on-line feedback linearization 
strategy. The undesired phenomenon of so-called “chattering” 
of real-time SMC system, which is due to the finite switching 
frequency, could be avoided by using an approximated 
saturation function instead of the sign function during SMC 
system design [16-18]. In this study, the simultaneously 
worked feedback linearization controller and sliding mode 
controller optimize the system response against most of 
disturbances and even chattering. 

As another aspect to this work, the literature of the 
development of SMC within phase modulation is well 
summarized in the work of [19] and [20]. By just using a real-
time system response signal, a simple and effective phase 
modulation strategy can be used to purposely rectify the 
controller structure and parameters. This method also 
facilitates an approach to theoretical analysis for ensuring 
robustness of the SMC system, before adding external 
disturbances for certification. The approach, also presents a 
unique and efficient criterion for studying system 
characterization, especially when using linearised systems 
approaches for which the most suitable mathematical 
description is difficult to conclude because of unpredictable 
error during linearization and decoupling. 

The contribution of this paper lies in the application of the 
combined SMC strategy based on feedback linearization with 
phase modulation theory to a nonlinear aircraft system. The 
aircraft example includes full force and moment longitudinal 
and lateral dynamics, which are deliberately linearised and 
decoupled into three second order sub-systems. The phase 
diagrams are then feasibly obtained and successfully used as 
criteria for achieving system robustness. The designed SMC 
systems illustrate the efficiency for real-time application. 

Section II introduces the theoretical foundation of the 
control strategies. The mathematical model and linearization 
processing for a nonlinear UAV, the Machan, are introduced in 
Section III. The modulation analysis and simulation results are 
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given in Section IV to illustrate the proposed approach. The 
concluding discussion is given in Section V. 

II. CONTROL SYSTEM SCHEME 

A. Nonlinear Feedback Linearization 

The concept of feedback linearization makes use of the 
principle of transforming a smooth non-linear dynamical 
system into linear input-output form [21].  

For the MIMO affine nonlinear system: 
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If the matrix  ( )      is invertible, then the system can 
be linearized by decoupling the non-linear terms in (3) by 
choosing   as follows: 

     ( )[  ( )   ]                            (6) 

which leads to the closed-loop decoupled, linear system: 
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Once linearization has been achieved, any further control 
objectives may be easily met [22], [23].  

Furthermore, if the system has the total relative degree 
              , the standard MIMO form for 
system states can be reformulated as: 
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where   are the chosen transformed states for linearization and 

decoupling. The system in (8) can be converted into a pseudo-
linearized system as: 
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Note that       ,    (   )   and the aforesaid state 
transform     (   ) is a diffeomorphism that maps   onto 
standard coordinates. The transformed input vector   has the 
expression from (9) as:  

    (     )                                  (11) 

Once the linearization has been achieved, any further 
control objectives may be easily met. 

B. Variable Structure Control and Robustness Analysis 

As mentioned above, the nonlinear terms of the system can 
be eliminated by selecting an appropriate set of input 
transformations. However, the input-output linearization only 
fits in with systems with accurate models. In order to ensure 
control system robustness in the presence of system 
uncertainties, such as parameter uncertainties or unmodelled 
dynamics, the sliding mode control based on variable structure 
theory is chosen and applied to the linearized system. 

Taking into account the presence of uncertainties in the 
nonlinear system (1), and (7) becomes: 
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where the uncertainties represented by ‖  ‖  and ‖  ‖  are 
bounded. The switching surface is chosen as [24]: 
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where    is a positive constant and      the reference command 

signal. Differentiating (13) with respect to time   leads to: 
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In order to design a robust controller, the exponential 
approaching law is selected for SMC. The control input can 
then be expressed in the following form [25]: 

      ( ){              ( )}            (15) 
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Substituting   and (12) into (14) yields to: 
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In order to guarantee asymptotic stability of the control 
system,    ̇    must be ensured yields to: 

   ̇  ‖ ‖[‖  ‖    ‖       ‖   ‖     ‖  
                        ‖      ‖  ‖       ‖]                             (18) 

If ‖  ‖  ‖ ‖, and satisfy   (‖  ‖  ‖       ‖  
‖      ‖  ‖         ‖) (  ‖   

  ‖) , then    ̇    

can be guaranteed. This means that the reaching condition of 
the sliding mode is tenable and the desired sliding motion is 
reachable by means of a suitable control law   [26], [27]. 

C. Phase Modulation Analysis 

A proper selection of parameters that satisfy the above-
cited conditions can ensure stability and robustness of the 
control system, although this is a sufficient but not necessary 
condition for reachability of the sliding mode. Moreover, the 
system uncertainties come from the unmodelled information 
and linearization error make the transformed system, even a 
simple one, more complicated to obtain desirable results.  

Phase plane portraits are traditionally used to graphically 
show the SMC working performance [28], [29]. Recent 
research considers it as a modulation strategy to instructively 
adjust system structure and parameters for ensuring the system 
robustness [19], [20]. The basic principle of phase modulation 
is introduced in Fig. 1. The system real-time response error   
and its derivative form  ̇  are used to establishing the 
coordinates. The switching line     defined by VSC theory 
divides the phase plane into four regions dominated by 
negative and positive feedback, respectively. Once the control 
system reach the designed sliding surface, the phase trajectory 
will frequently cross the switching line to repeatedly enter the 
different regions for compensating system uncertainties 
through switching between negative and positive feedback with 
high-frequency [30].  

 

Figure 1. Phase plane with switching line 

III. NONLINEAR MACHAN AIRCRAFT 

The aircraft chosen is a UAV (or remotely piloted vehicle), 
the Machan, used as a development vehicle by Marconi 
Avionics, RAE Farnbrough and NASA Dryden for research on 
high incidence flight and non-linear control laws [31]. The 
methodology has wider application for FTC for systems with 
known nonlinear dynamic structure. 

The Machan Euler equations relate the forces  ,  ,   and 
moments  ,  ,   in the aircraft body axes to the angular and 
linear velocities in the inertial axes are shown as: 

 ( ̇       )   

 ( ̇       )   

 ( ̇       )   
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   ̇  (     )    }
  
 

  
 

                           (19) 

where,   is the mass of the aircraft;   ,   ,    are the moments 

of inertia about the axes through the centre of gravity parallel 
to the aircraft body axes;  ,   and   are the forward, side and 
vertical velocity of the aircraft respectively;  ,   and   are the 
roll, pitch and yaw rates, respectively. 

The aerodynamic force and moment equations are: 

           (     )           
               

   (     )                     
       

       (       ) ̅    (          )

    }
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where   (degrees) is the angle of attack;   and   (degree) are 
the pitch and roll angles, respectively;    (N) is the side force; 
   (m) is the position of the aircraft centre of gravity;    (N) 
is the thrust force due to the engine;    (N·m

-1
) is the tail 

moment;   (N) is the force acting on the airframe;   ,    and 
   (N) represent the wing, total tail and tail lift due to the pitch 

rate respectively;   ,    and    (N·m
-1

) are the pitching, 
yawing and rolling moment components respectively;   ̅(m) is 
the mean aerodynamic chord and    (N·m

-1
) is the rolling 

moment due to the engine. 

The first order non-linear engine dynamic is given as: 

 ̇  (             )                        (21) 

where,     ,   ,   ,    and    represent the maximum engine 

power, the throttle demand, the propeller efficiency, the 
engine rise rate and the air flow rate, respectively. The 
parameter details are given in Aslin 1985. The open-loop 
Machan UAV is unstable, thus a closed-loop “base-line” 
control system must be configured for stability before the 
further robust or FTC system can be developed. 

To simplify the system, this paper only considers the angle 
states and their rates. Thus the system state vector  , and the 
output state vector   for the nonlinear aircraft model are 
chosen as: 
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where   is yaw angle. 

A. State-space Description 

The states  ,   and   in (19) can be expressed as: 
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Additionally, the roll, pitch and yaw angles  ,  and   can 
be expressed in the terms of  ,   and   as: 

 ̇                        

 ̇              

  ̇                     

}                (24) 

The real input vectors for the aircraft system are as: 
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                             (25) 

where   ,   ,    are the aileron, elevator and rudder input, 
respectively. By only considering the nonlinear part of system, 
the input vectors   of feedback linearization and decoupling 
control issue in (1) is chosen as described in (23): 
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Then       can be easily calculated in the terms of    since 
they are linearly related from the form of the forces and 
moments equations [31], which can be shown as: 
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                            (27) 

where    ,    ,    are all the linear parameters. 

Thus the affine system in (1) for this nonlinear UAV is 
simplified as: 

 ( )  

[
 
 
 
 
 
 
 
 
 
 
                      

            
                   

(     )

  
  

(     )

  
  

(     )

  
  

]
 
 
 
 
 
 
 
 
 
 

 

 ( )  [
    
    

] 

 ( )  [        ]                     (28) 

B. System Feedback Linearization and Decoupling 

For achieving linearization and decoupling, the pseudo-
linearized system states in (9) for transforming the nonlinear 
system in (28) are chosen as [32]: 
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To check whether this coordinate transformation is 
invertible, the Jacobi Matrix for    ( ) is organized as: 
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where   [  
   

   
   

   
   

 ] . 

The rank of     is    (  )         and    ( ) is 
a sufficiently smooth vector field with inversion, thus 
   ( ) is a global diffeomorphism of the system in (28) [9]. 

The input transformation   in (6) takes the form:  

                                          (31) 

where   [      ] ,   [      ]
 ,   

[      ]
  follow the description in (9), (10) as: 
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Now, by choosing  ̅  [  
   

   
 ]  to be the three 

output channels for the transformed system, each of these 
channels can be expressed as: 

   (           )[(           
           )    
 (           )     ]  (     )     
 (     )             
 (     )              

   (            )(                      )
 (     )         
 (     )           

   (           )[    (            
            )]
 (     )             
 (     )              

   [                 ]  

   [          ]  

   [                 ]               (34) 

After input-output feedback linearization for the system, 
the nonlinear aircraft dynamics have been theoretically 
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decoupled into three 2
nd

 order linear sub-systems with the 
transformed states and outputs described in (3) as: 
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Each of the three sub-systems is a single-input single-
output (SISO) 2

nd
 order linear system in controllable (or phase 

variable) canonical form and is hence suitable for phase 
portrait analysis. For the 2

nd
 order system in phase variable 

canonical form, the quality of the sliding mode invariance 
properties are satisfied, which means that once the states reach 
the sliding surface, the system dynamic performance is 
critically decided by the parameters of the designed SMC 
system [29].  

C. Sliding Mode Controller Design 

For the Machan system, the thrust input    related to all 
the states is set as a very small constant value   to limit it’s 
effect on the nonlinear aircraft dynamics, which could be 
modeled as system uncertainty. The SMC theory is used to 
achieve sub-controllers for each decoupled channel. The 
complete control system scheme is shown as Fig. 2. 

 

Figure 2. Control system scheme 

For the 2
nd

 order subsystems, the switching surface can be 
derived from (13) as: 

         ̇ (       )                          (37) 

where    is the adjustable parameter for SMC;             
is system output error;      and    are system reference input 

and real output, respectively. 

The time derivative of (37) is then given as: 

 ̇     ̇   ̈    (       
 )  ( ̇      

 )(       ) (38) 

By choosing a proper    for each subsystem, the sliding 
surface would take on desired characteristics. The SMC 
approaching law used in this system has the proportional form: 

   ̇          (       )                        (39) 

where    is positive constant. From (37)-(39), the subsystem 
control inputs   (       ) derived from SMC are as:  

      ̇                                     (40) 

The above system with discontinuous control is termed a 
VSC since the effect of the switching surface is to alter the 
system feedback structure. The state trajectories on either 
sides of the surface      will remain in the vicinity of the 
sliding manifold since     ̇    on this surface. Once    is 
obtained, the system chosen input vector   and real input       
could be easily calculated from (31) and (27). 

IV. SIMULATION AND ANALYSIS 

The SMC parameters are chosen as   [        ]
  

[       ] ,   [        ]
  [        ] .  

The system responses and their phase trajectories shown in 
Fig. 3 appear to be stable but the phase trajectories for the 
states   and   are tangential to the switching line instead of 
crossing it, which indicates that the controllers are of dubious 
value without robustness. The reason for this phenomenon is 
that the linearized system may have conjugate poles too close 
to the imaginary axis, which makes the system readily unstable 
through the high controller gain action.  

 

Figure 3. System responses and coordinating phase portraits 

The solution is to add integrators for the corresponding 
states to replace system poles [30]. The new SMC parameters 
  are chosen as: [        ]

  [      ] ,   is the same one as 
above. The developed system responses and their phase 
trajectories are shown in Fig. 4. The trajectories in Fig. 4 
satisfy the principle of phase criterion for SMC described in 
Section II. For this case, the actuator faults   are chosen as step 

signals   [             ]
 
 [           ]  acting at time 

    . The system responses shown in Fig. 5 demonstrate the 
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control scheme robustness and the efficiency of the modulation 
strategy. 

 

Figure 4. System responses and coordinating phase portraits 

 

Figure 5. System responses with faults 

V. CONCLUSION 

The design of a passive FTC scheme for the highly nonlinear 

dynamics of a UAV, the Machan is achieved via VSC theory 

based on feedback linearization. The inner stable control loop 

is designed for on-line linearizing and decoupling the 

nonlinear system. The principle of phase plane analysis is 

outlined for observing the system robustness. The further 

SMC sub-systems are developed using the phase modulation 

principle to guarantee robust performance and robust stability. 

The designed system responses illustrate that this strategy is 

feasible valid and a very promising passive approach to robust 

FTC for flight systems. 
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